CN104980934A - Method and device for scheduling multi-service resources - Google Patents

Method and device for scheduling multi-service resources Download PDF

Info

Publication number
CN104980934A
CN104980934A CN201510397535.1A CN201510397535A CN104980934A CN 104980934 A CN104980934 A CN 104980934A CN 201510397535 A CN201510397535 A CN 201510397535A CN 104980934 A CN104980934 A CN 104980934A
Authority
CN
China
Prior art keywords
mrow
msub
user terminal
mtd
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510397535.1A
Other languages
Chinese (zh)
Other versions
CN104980934B (en
Inventor
张勇
郭达
宋梅
李沸乐
张亚男
程刚
鲍叙言
王东安
方一鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201510397535.1A priority Critical patent/CN104980934B/en
Publication of CN104980934A publication Critical patent/CN104980934A/en
Application granted granted Critical
Publication of CN104980934B publication Critical patent/CN104980934B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The embodiments of the present invention provide a method and a device for scheduling multi-service resources. The method comprises the steps of determining at least one user terminal within the coverage of base station equipment at the current moment; calculating the priority weighting factor of each user terminal at each component carrier; according to the service type of each user terminal and the priority weighting factor calculated through the above process, figuring out the resource scheduling priority of the user terminal on the resource block of each component carrier; according to the resource scheduling priority obtained through the above process, allocating corresponding resource blocks in respective component carriers to corresponding user terminals. The above priority weighting factor is composed of a location weighting factor and a carrier load weighting factor. The location weighting factor is influenced by the distance between the user terminal and the base station equipment. The carrier load weighting factor is influenced by the current load of the component carrier. According to the technical scheme of the invention, wireless spectrum resources are dynamically allocated, so that the resource allocation rationality is improved.

Description

Multi-service resource scheduling method and device
Technical Field
The present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for scheduling multiple service resources.
Background
In order to meet the requirements of the fourth generation communication system in terms of bandwidth, peak rate, compatibility and the like, carrier aggregation is one of the key technologies proposed by 3GPP, and has significant advantages in the aspects of increasing the peak data rate and expanding the transmission bandwidth. Carrier aggregation can be classified into three classes according to the arrangement of Component Carriers (CCs). Currently, most of the spectrum being aggregated is scattered and belongs to different frequency bands. Therefore, we need to research an inter-band carrier aggregation technique to flexibly utilize spectrum resources.
Up to now, there has been a lot of research in radio resource scheduling. Two main resource scheduling approaches are Joint Queue Scheduling (JQS) and Independent Carrier Scheduling (ICS). JQS, combining all CCs into one carrier to allocate Resource Blocks (RBs), although this method is very efficient in scheduling, it requires each ue to be able to receive signals from all CCs, so the scheduling complexity is very high and some ues cannot access all CCs in actual operation. The ICS restricts each user to access only one CC at a time, and the user can only use the RB on the CC, but one user terminal can only use one CC, which is prone to cause carrier load imbalance and low system spectrum utilization. In addition, in the specific implementation process of resource scheduling, in the prior art, only channel quality or service load balancing is considered, and various influencing factors and factors directly influencing user subjective experience are not considered comprehensively, so that the user experience quality of different service users is ensured rarely.
Disclosure of Invention
The embodiment of the invention aims to provide a multi-service resource scheduling method and device, which are used for dynamically allocating wireless spectrum resources by comprehensively considering user fairness, carrier load balancing, user experience quality and channel quality, so that the rationality of resource allocation is improved. The specific technical scheme is as follows:
in a first aspect, an embodiment of the present invention provides a method for scheduling multiple service resources, including:
determining at least one user terminal covered by the base station equipment at the current moment;
calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier;
calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor;
and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority.
Optionally, the formula for calculating the priority weighting factor of each ue on each component carrier includes:
<math> <mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>;</mo> </mrow> </math>
wherein,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the position weight factor, beta, of the user terminal k on the mth component carriermCharacterizing a carrier load weight factor of the mth component carrier;
the formula for calculating the position weight factor of the user terminal k on the mth component carrier comprises:
<math> <mrow> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>d</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
dkcharacterizing a distance value, R, between a user terminal k and a base station devicemCharacterizing a coverage radius of the mth component carrier;
the formula for calculating the carrier load weight factor of the mth component carrier includes:
<math> <mrow> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>N</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mi>m</mi> </msup> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
n denotes the number of resource blocks, σ, contained in the mth component carriermCharacterizing the number of currently occupied resource blocks on the mth component carrier.
Optionally, the formula for calculating the resource scheduling priority of each user terminal on each resource block in each component carrier according to the service type of each user terminal and the calculated priority weighting factor includes:
<math> <mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein,characterizing the scheduling priority of the user terminal k on the nth resource block in the mth component carrier at the current time t,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth,determined for the type of service based on user terminal kUser mean opinion score, R, of user terminal k on nth resource block in mth component carrier at current time tk(t) characterizing the average data rate obtained by the user terminal k on all the component carriers at the current moment t.
Optionally, the formula for allocating the corresponding resource block in the corresponding component carrier to each ue according to the calculated resource scheduling priority includes:
k * = arg m a x k P k m , n ( t )
wherein k is*And characterizing the user terminal distributed on the nth resource block in the mth component carrier.
Optionally, the formula for calculating the average data rate obtained by the user terminal k on all the component carriers at the current time t includes:
<math> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>CC</mi> <mi>m</mi> </msub> <mo>&Subset;</mo> <msub> <mi>&Omega;</mi> <mi>k</mi> </msub> </mrow> </munder> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein R isk(t) characterizing the average data rate obtained by the user terminal k on all component carriers at the current time t,representing the average data rate of the user terminal k on the mth member carrier at the current moment t;
the formula for calculating the average data rate of the user terminal k on the mth component carrier at the current time t includes:
<math> <mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>&NotEqual;</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, TcCharacterizing the length of a time window, k*And characterizing the user terminal existing on the mth component carrier at the moment t-1.
Optionally, the service type of the user terminal includes:
one of a VoIP service, a streaming media service, a web browsing service and a file downloading service;
for the VoIP service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>Q</mi> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>Q</mi> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (Q) represents the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, and Q ═ R (R)k m,n(t)) characterizing the current time instant tthTransmission rate factor r of user terminal k on nth resource block in m component carriersk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
and, R (R)k m,n(t))=94-IdWherein <math> <mrow> <msub> <mi>I</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>25</mn> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>&rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>+</mo> <mn>2</mn> <mo>}</mo> </mrow> </math> characterizes the attenuation caused by the time delay of the speech signal, the average data rate of the user terminal k;
for streaming media services, a formula for calculating a user mean opinion score of a user terminal k on an nth resource block in an mth component carrier at a current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>{</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&lsqb;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&rsqb;</mo> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>}</mo> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, a1、a2、a3、a4And PeIs a preset parameter value;
for the web browsing service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
f ( r k m , n ( t ) ) = 5 - 578 1 + ( 11.77 + 11305 r k m , n ( t ) ) 2
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
for the file downloading service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>*</mo> <mi>ln</mi> <mo>&lsqb;</mo> <mi>b</mi> <mo>*</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mn>2.6411</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>min</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time t, a, b, Pe、RminAnd RmaxIs a preset parameter value.
In a second aspect, an embodiment of the present invention further provides a multi-service resource scheduling apparatus, including:
a user terminal determining module, configured to determine at least one user terminal covered by the base station device at the current time;
the priority weighting factor calculation module is used for calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carriers;
a resource scheduling priority calculating module, configured to calculate resource scheduling priorities of the user terminals on each resource block in each component carrier according to the service types of the user terminals and the calculated priority weight factors;
and the resource block allocation module is used for allocating corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority.
In the scheme, at least one user terminal covered by the base station equipment at the current moment is determined; calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier; calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor; and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority. Therefore, the scheme dynamically allocates the wireless spectrum resources by comprehensively considering the four dimensions of user fairness, carrier load balancing, user experience quality guarantee and channel quality, so that the reasonability of resource allocation is improved, and good compromise can be obtained in scheduling efficiency and complexity.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts.
Fig. 1 is a schematic diagram of a system scenario to which a multi-service resource scheduling method according to an embodiment of the present invention is applied;
fig. 2 is a flowchart of a method for scheduling multiple service resources according to an embodiment of the present invention;
fig. 3 is a schematic diagram of a system model corresponding to a multi-service resource scheduling method according to an embodiment of the present invention;
fig. 4 is a schematic structural diagram of a multi-service resource scheduling apparatus according to an embodiment of the present invention.
Detailed Description
The embodiment of the invention provides a multi-service resource scheduling method and device, which are used for dynamically allocating wireless spectrum resources by comprehensively considering four dimensions of user fairness, carrier load balance, user experience quality guarantee and channel quality, so that the rationality of resource allocation is improved, and good compromise is achieved on scheduling efficiency and complexity.
The method for scheduling multi-service resources provided by the embodiment of the invention can comprise the following steps:
determining at least one user terminal covered by the base station equipment at the current moment;
calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier;
calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor;
and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority.
It should be noted that the multi-service resource scheduling method provided in the embodiment of the present invention may be applied to a base station device, and certainly, may also be applied to a device associated with the base station device to assist resource scheduling of radio spectrum resources of the base station device. In addition, the method provided by the embodiment of the present invention is implemented based on the fact that the communication system utilizes a carrier aggregation technology, for example: an LTE-a (Long Term Evolution-Advanced) based communication scenario, but is of course not limited thereto.
In the scheme, at least one user terminal covered by the base station equipment at the current moment is determined; calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier; calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor; and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority. Therefore, the scheme dynamically allocates the wireless spectrum resources by comprehensively considering the four dimensions of user fairness, carrier load balancing, user experience quality guarantee and channel quality, so that the reasonability of resource allocation is improved, and good compromise can be obtained in scheduling efficiency and complexity.
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
For clarity, a method for scheduling multiple service resources according to an embodiment of the present invention is described below with reference to a system scenario of a single cell in a downlink LTE-a system. As shown in fig. 1, a base station equipment (eNodeB) is located at a cell center position, and K user terminals (UEs) are randomly distributed in the cell. And the network supports four service models: analog signal digital service (VOIP), streaming media service, web browsing service, and file downloading service, wherein each type of service corresponds to different characteristics and evaluation criteria.
The time-frequency resource of each Component Carrier (CC) is divided into several Resource Blocks (RBs), as the smallest resource unit, each RB can only be allocated to one UE. The downlink LTE-A system aggregates M CCs, and the CCs of different frequency bands have the same bandwidth and transmitting power. By CCmDenotes an mth CC, one CC containing N RBs. The communication system model in the system scene adopts a space channel expansion modelTo express the path loss of the user terminal k on the mth CC, the specific is as follows:
PL k m = 58.83 + 37.6 lgd k + 21 lgf m - - - ( 1 )
wherein d iskThe unit is km, which is the distance between a user terminal k and an eNodeB; f. ofmIs CCmIn MHz; PLthThe path loss threshold is set by the eNodeB, so the CC in the lower band has a wider coverage, while the CC in the higher band has a narrower coverage, as shown in equation 2:
f1>f2>f3>…>fM,R1<R2<R3<…<RM (2)
wherein R ismIs CCmWhen the distance between the user terminal and the eNodeB is larger than RmThen, the user will not be able to access the CCmUsing the set omegakIndicates CC resources that can be allocated to user terminal k, <math> <mrow> <msub> <mi>&Omega;</mi> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>{</mo> <mrow> <mrow> <mrow> <msub> <mi>CC</mi> <mi>m</mi> </msub> </mrow> <mo>|</mo> </mrow> <msubsup> <mi>PL</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&le;</mo> <msub> <mi>PL</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mo>,</mo> <mn>1</mn> <mo>&le;</mo> <mi>m</mi> <mo>&le;</mo> <mi>M</mi> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mrow> </math>
also, it can be understood that in the multi-carrier aggregation system, the eNodeB and all the user terminals can transmit and receive signals simultaneously among a plurality of non-adjacent carriers, even different inter-band carriers. In order to effectively utilize radio resources and different frequency bands having different radio wave propagation characteristics, a scheduling policy based on the multi-service resource scheduling method provided in the embodiment of the present invention is divided into two stages, i.e., a priority weight calculation stage and a resource allocation stage, and a scheduling model schematic diagram corresponding to the scheduling policy may be as shown in fig. 3, where a resource scheduling process given by the scheduling model indicates that priority weight factors of each ue on each CC are respectively calculated, and then RBs on available CCs are allocated to each ue based on the calculated priority weight factors, it should be noted that a buffer k corresponding to a ue k shown in fig. 3 specifically indicates: cancellation of service requested by user terminal kAnd the data packet to be transmitted in the information queue. Also, to optimize system performance, there should be approximately equal load on different CCs, which may be the load σmTo represent CCmThe number of RBs occupied above, when there are multiple user terminals requesting services simultaneously, will immediately update each sigma after allocating resources to each user terminal in turnmThe value is obtained.
As shown in fig. 1, a method for scheduling multiple service resources may include the following steps:
s101, determining at least one user terminal covered by the base station equipment at the current moment;
the current time is a preset resource scheduling analysis time, the time window length is an interval time period between any two resource scheduling analysis times, and the specific resource scheduling distribution mode determined by the resource scheduling analysis time is applied to the interval time period between the resource scheduling analysis time and the next resource scheduling analysis time.
In this embodiment, in the process of executing the multi-service resource scheduling method, at least one user terminal covered by the base station device at the current time may be determined first, and then resource scheduling is performed for the determined at least one user terminal.
S102, calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors are composed of position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier;
in order to fully utilize the wireless spectrum resources and improve the rationality of resource allocation, the priority weighting factor of each user terminal on each member carrier can be calculated by considering the carrier load weight, the user fairness and the channel quality, wherein the priority weighting factor is composed of a position weighting factor and a carrier load weighting factor, the position weighting factor is influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factor is influenced by the current load of the member carrier.
Specifically, the formula for calculating the priority weighting factor of each ue on each component carrier may include:
<math> <mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the position weight factor, beta, of the user terminal k on the mth component carriermCharacterizing a carrier load weight factor of the mth component carrier;
further, the formula for calculating the location weight factor of the user terminal k on the mth component carrier may include:
<math> <mrow> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>d</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein d iskCharacterizing a distance value, R, between a user terminal k and a base station devicemCharacterizing a coverage radius of the mth component carrier;
further, the formula for calculating the carrier load weight factor of the mth component carrier may include:
<math> <mrow> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>N</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mi>m</mi> </msup> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, N represents the number of resource blocks contained in the mth component carrier, sigmamCharacterizing currently occupied resource blocks on the mth component carrierThe number of the cells.
It should be noted that the above formulas for calculating the priority weighting factors, the formulas for calculating the location weighting factors, and the formulas for calculating the carrier load weighting factors are only examples, and should not be construed as limiting the embodiments of the present invention.
S103, calculating resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor;
after calculating the priority weighting factor of each user terminal on each member carrier, in order to further analyze resource allocation in combination with user experience quality assurance, the resource scheduling priority of each user terminal on each resource block in each member carrier can be calculated according to the service type of each user terminal and the calculated priority weighting factor.
Specifically, the formula for calculating the resource scheduling priority of each user terminal on each resource block in each component carrier according to the service type of each user terminal and the calculated priority weighting factor may include:
<math> <mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,characterizing the scheduling priority of the user terminal k on the nth resource block in the mth component carrier at the current time t,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth,user mean opinion score, R, of user terminal k on nth resource block in mth component carrier at current time t determined based on service type of user terminalk(t) characterizing the average data rate obtained by the user terminal k on all the component carriers at the current moment t.
Specifically, the formula for calculating the average data rate obtained by the user terminal k on all the component carriers at the current time t may include:
<math> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>CC</mi> <mi>m</mi> </msub> <mo>&Subset;</mo> <msub> <mi>&Omega;</mi> <mi>k</mi> </msub> </mrow> </munder> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein R isk(t) characterizing the average data rate obtained by the user terminal k on all component carriers at the current time t,representing the average data rate of the user terminal k on the mth member carrier at the current moment t;
the formula for calculating the average data rate of the user terminal k at the current time t on the mth component carrier may include:
<math> <mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>&NotEqual;</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, TcCharacterizing the length of a time window, k*And characterizing the user terminal existing on the mth component carrier at the moment t-1.
It should be noted that the wireless multimedia service is divided into four service types, which are arranged from large to small according to the sensitivity to time delay, namely, VOIP service, streaming media service, web browsing service and file downloading service. The first two are real-time services, the second two are non-real-time services, subjective perception of unified quantized services can be realized by adopting user average opinion score (MOS), the subjective perception is a continuous value of 0-5, packet delay and data rate are two essential indexes for user Quality of Experience (QoE) optimization, and the packet delay is influenced by the data rate to a great extent. Therefore, on the basis of the existing research and experimental data, a required QoE evaluation model is designed according to the characteristics of four different service types, that is, a formula used for calculating the average opinion score of users under different service types is calculated, wherein it is assumed that all services are transmitted under an ideal channel, that is, the packet error rate is 0. For the sake of clarity of the layout, how to calculate the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t is described in cases based on different traffic types.
S104, distributing corresponding resource blocks in corresponding member carriers for each user terminal according to the calculated resource scheduling priority.
After the resource scheduling priority is calculated, the corresponding resource blocks in the corresponding component carriers can be allocated to each user terminal through a predetermined formula.
Specifically, the formula for allocating the corresponding resource blocks in the corresponding component carriers to each ue according to the calculated resource scheduling priority includes:
k * = arg m a x k P k m , n ( t ) - - - ( 9 )
wherein k is*And characterizing the user terminal distributed on the nth resource block in the mth component carrier.
By the above allocation method, the service requirements of all the user terminals are met or all the RBs are allocated.
In the scheme, at least one user terminal covered by the base station equipment at the current moment is determined; calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier; calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor; and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority. Therefore, the scheme dynamically allocates the wireless spectrum resources by comprehensively considering the four dimensions of user fairness, carrier load balancing, user experience quality guarantee and channel quality, so that the reasonability of resource allocation is improved, and good compromise can be obtained in scheduling efficiency and complexity.
How to calculate the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t is described in a case-by-case manner based on different service types.
(1) In the case of a VoIP service,
the international telecommunications union has defined the E-model as a speech quality prediction model in the ITU-T rec.g.107 standard and expressed the MOS as a function of the transmission rate factor R as follows:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>R</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>R</mi> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>R</mi> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>R</mi> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
r depends mainly on the 5 parameters shown in equation 11, equation 11 is as follows:
R=Ro-Is-Id-Ieff+A (11)
wherein R isoFor basic signal-to-noise ratio, IsFor speech signal attenuation, IdFor attenuation by time delay of speech signals, IeffFor the device attenuation factor, A is a dominant factor related to the type of communication scenario, and in an ideal environment, R may be seto94 and Is=A=IeffTherefore, equation 11 can be simplified as:
R=94-Id (12)
Idis an absolute time delay TaFunction of (c):
<math> <mrow> <msub> <mi>I</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>25</mn> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>a</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>a</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>&rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>+</mo> <mn>2</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Ta(rk)=Tpack+Tm+Tq+Tq,AI(rk)+Tse(rk) (14)
wherein, TpackFor packet delay, TmTo minimize the total delay, TqFor total queuing delay, T, other than the air interfacese(rk) Is a serial delay. T ispack+Tm+TqThe value is 124ms, Tq,AI(rk) Is defined asTse(rk) Is defined asTTTIRepresenting the duration of the transmission time interval,is the average data rate, r, of the user terminal kkIs the instantaneous transmission rate of user terminal k. Since one TTI is usually 1ms in LTE-A, T can be set considering the uplink and downlink transmission delayTTIIs 2ms, therefore, TaCan be expressed as rkFunction of (c):
<math> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>124</mn> <mo>+</mo> <mn>3</mn> <mfrac> <msub> <mi>r</mi> <mi>k</mi> </msub> <mover> <msub> <mi>R</mi> <mi>k</mi> </msub> <mo>&OverBar;</mo> </mover> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
finally, an r can be designed by combining equations 10, 12, 13 and 15kTo calculate the MOS value of VoIP, i.e.:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>R</mi> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>R</mi> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>R</mi> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>R</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
further, based on equation 16, we can obtain: the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t comprises the following steps:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>Q</mi> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>Q</mi> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, f (Q) represents the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, and Q ═ R (R)k m,n(t)) characterizes the transmission rate factor r of the user terminal k on the nth resource block in the mth component carrier at the current instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
and, R (R)k m,n(t))=94-IdWherein <math> <mrow> <msub> <mi>I</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>25</mn> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>&rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>+</mo> <mn>2</mn> <mo>}</mo> </mrow> </math> characterizes the attenuation caused by the time delay of the speech signal, is the average data rate of user terminal k.
(2) For streaming media services:
the user's subjective perception of network video services is affected by many QoS metrics, including application level QoS related to frame rate and transmission bit rate, and related to packet error rate, delay, jitterAnd so on, network level QoS. Wherein when r iskBetween certain threshold ranges, the MOS will follow rkIs increased significantly, and when r is increasedkBeyond the threshold, the MOS will change slowly. Therefore, the MOS of the streaming media service can be modeled as an S-function, as follows:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>{</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&lsqb;</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&rsqb;</mo> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
it will be appreciated that the values of the parameters are different for different text streams. And, when the low threshold and the high threshold of the streaming media service are 300kbps and 3Mbps, respectively, Pe=0,a2=0.04,a31650. Further, in order to limit the value of MOS to 0 to 4.5, a may be set1=4.5,a4=0。
Further, based on the above equation 18, it can be obtained:
the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t comprises the following steps:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>{</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&lsqb;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&rsqb;</mo> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, a1、a2、a3、a4And PeIs a preset parameter value.
(3) For a web browsing service:
the MOS of the subjective user web browsing experience may be calculated by the lorentz utility function:
M O S = 5 - 578 1 + ( 11.77 + 22.61 d ) 2 - - - ( 20 )
where d represents the service response time, measured in seconds.
Wherein the user is in throughput, latency, etc,There is no intuitive feel in jitter and some other QoS parameters, but rather much focus on the speed of the browser's response and the duration of the web page's download. Thus, service response time passes through FSk/rkGiven that FSkThe average is 2Mb for the web page size. Finally, equation 20 can be rewritten as equation 21, as follows:
f ( r k ) = 5 - 578 1 + ( 11.77 + 11305 r k ) 2 - - - ( 21 )
further, based on the above equation 21, it can be obtained:
the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t comprises the following steps:
f ( r k m , n ( t ) ) = 5 - 578 1 + ( 11.77 + 11305 r k m , n ( t ) ) 2 - - - ( 22 )
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth.
(4) For a file download service:
the file transfer application is a flexible service when rkAt RminAnd RmaxIn between, the utility function is a continuously differentiable strictly convex function of the increment of the data rate, RminIs a lower threshold, the user will be very dissatisfied with the service when the data transmission rate is lower than the lower threshold, and the data rate is higher than the upper threshold RmaxThen, the user will experience good, based on the above assumption, the MOS can be calculated as follows:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>*</mo> <mi>l</mi> <mi>n</mi> <mo>&lsqb;</mo> <mi>b</mi> <mo>*</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mn>2.6411</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>r</mi> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein a, b, P can be determined by processing the collected data by a method of fitting a logarithmic curvee、Rmin、RmaxValues of 1.147, 0.25, 0, 100kbps and 3.12Mbps, respectively.
Further, based on the above equation 23, it can be obtained:
the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t comprises the following steps:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>*</mo> <mi>ln</mi> <mo>&lsqb;</mo> <mi>b</mi> <mo>*</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mn>2.6411</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>min</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time t, a, b, Pe、RminAnd RmaxIs a preset parameter value.
Corresponding to the foregoing method embodiment, an embodiment of the present invention further provides a multi-service resource scheduling apparatus, as shown in fig. 2, which may include:
a user terminal determining module 210, configured to determine at least one user terminal covered by the base station device at the current time;
a priority weighting factor calculation module 220, configured to calculate a priority weighting factor of each user terminal on each component carrier, where the priority weighting factor is composed of a location weighting factor and a carrier load weighting factor, the location weighting factor is affected by a distance between the user terminal and the base station device, and the carrier load weighting factor is affected by a current load of the component carrier;
a resource scheduling priority calculating module 230, configured to calculate a resource scheduling priority of each user terminal on each resource block in each component carrier according to the service type of each user terminal and the calculated priority weight factor;
a resource block allocation module 240, configured to allocate, according to the calculated resource scheduling priority, a corresponding resource block in a corresponding component carrier for each user terminal.
In the scheme, at least one user terminal covered by the base station equipment at the current moment is determined; calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier; calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor; and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority. Therefore, the scheme dynamically allocates the wireless spectrum resources by comprehensively considering the four dimensions of user fairness, carrier load balancing, user experience quality guarantee and channel quality, so that the reasonability of resource allocation is improved, and good compromise can be obtained in scheduling efficiency and complexity.
Specifically, the formula used by the priority weighting factor calculating module 220 to calculate the priority weighting factor of each ue on each component carrier may include:
<math> <mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>;</mo> </mrow> </math>
wherein,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the position weight factor, beta, of the user terminal k on the mth component carriermCharacterizing a carrier load weight factor of the mth component carrier;
the formula for calculating the position weight factor of the user terminal k on the mth component carrier may include:
<math> <mrow> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>d</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
dkcharacterizing a distance value, R, between a user terminal k and a base station devicemCharacterizing a coverage radius of the mth component carrier;
the formula for calculating the carrier load weight factor of the mth component carrier includes:
<math> <mrow> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>N</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mi>m</mi> </msup> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
n denotes the number of resource blocks, σ, contained in the mth component carriermCharacterizing the number of currently occupied resource blocks on the mth component carrier.
Specifically, the formula used by the resource scheduling priority calculating module 230 to calculate the resource scheduling priority of each user terminal on each resource block in each component carrier according to the service type of each user terminal and the calculated priority weighting factor includes:
<math> <mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein,characterizing the scheduling priority of the user terminal k on the nth resource block in the mth component carrier at the current time t,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth,user mean opinion score, R, of user terminal k on nth resource block in mth component carrier at current time t determined based on service type of user terminal kk(t) characterizing the average data rate obtained by the user terminal k on all the component carriers at the current moment t.
Specifically, the formula used by the resource block allocation module 240 to allocate the corresponding resource block in the corresponding component carrier to each ue according to the calculated resource scheduling priority includes:
k * = arg m a x k P k m , n ( t )
wherein k is*And characterizing the user terminal distributed on the nth resource block in the mth component carrier.
Specifically, the formula used by the resource scheduling priority calculating module 230 to calculate the average data rate obtained by the user terminal k on all the component carriers at the current time t may include:
<math> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>CC</mi> <mi>m</mi> </msub> <mo>&Subset;</mo> <msub> <mi>&Omega;</mi> <mi>k</mi> </msub> </mrow> </munder> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein R isk(t) characterizing the average data rate obtained by the user terminal k on all component carriers at the current time t,representing the average value of the user terminal k at the current moment t on the mth component carrierAverage data rate;
the formula for calculating the average data rate of the user terminal k at the current time t on the mth component carrier may include:
<math> <mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>&NotEqual;</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, TcCharacterizing the length of a time window, k*And characterizing the user terminal existing on the mth component carrier at the moment t-1.
Specifically, the service type of the user terminal may include:
one of a VoIP service, a streaming media service, a web browsing service and a file downloading service;
for the VoIP service, the formula used by the resource scheduling priority calculating module 230 to calculate the user mean opinion of the user terminal k on the nth resource block in the mth component carrier at the current time t may include:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>Q</mi> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>Q</mi> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (Q) represents the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, and Q ═ R (R)k m,n(t)) characterizes the transmission rate factor r of the user terminal k on the nth resource block in the mth component carrier at the current instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
and, R (R)k m,n(t))=94-IdWherein <math> <mrow> <msub> <mi>I</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>25</mn> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>&rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>+</mo> <mn>2</mn> <mo>}</mo> </mrow> </math> characterizes the attenuation caused by the time delay of the speech signal, the average data rate of the user terminal k;
for streaming media services, the formula for the resource scheduling priority calculating module 230 to calculate the average opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t may include:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>{</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&lsqb;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&rsqb;</mo> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> </mrow> <mo>}</mo> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, a1、a2、a3、a4And PeIs a preset parameter value;
for the web browsing service, the formula for the resource scheduling priority calculating module 230 to calculate the average opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
f ( r k m , n ( t ) ) = 5 - 578 1 + ( 11.77 + 11305 r k m , n ( t ) ) 2
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
for the file downloading service, the formula for the resource scheduling priority calculating module 230 to calculate the average opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>*</mo> <mi>ln</mi> <mo>&lsqb;</mo> <mi>b</mi> <mo>*</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mn>2.6411</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>min</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>max</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>max</mi> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time t, a, b, Pe、RminAnd RmaxIs a preset parameter value.
It is noted that, herein, relational terms such as first and second, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. Also, the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other identical elements in a process, method, article, or apparatus that comprises the element.
All the embodiments in the present specification are described in a related manner, and the same and similar parts among the embodiments may be referred to each other, and each embodiment focuses on the differences from the other embodiments. In particular, for the system embodiment, since it is substantially similar to the method embodiment, the description is simple, and for the relevant points, reference may be made to the partial description of the method embodiment.
The above description is only for the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention shall fall within the protection scope of the present invention.

Claims (7)

1. A method for scheduling multi-service resources, comprising:
determining at least one user terminal covered by the base station equipment at the current moment;
calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carrier;
calculating the resource scheduling priority of each user terminal on each resource block in each member carrier according to the service type of each user terminal and the calculated priority weight factor;
and distributing corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority.
2. The method of claim 1, wherein the formula for calculating the priority weighting factor of each ue on each component carrier comprises:
<math> <mrow> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>;</mo> </mrow> </math>
wherein,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the position weight factor, beta, of the user terminal k on the mth component carriermCharacterizing a carrier load weight factor of the mth component carrier;
the formula for calculating the position weight factor of the user terminal k on the mth component carrier comprises:
<math> <mrow> <msubsup> <mi>&alpha;</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <msub> <mi>d</mi> <mi>k</mi> </msub> <msub> <mi>R</mi> <mi>m</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> <msub> <mi>d</mi> <mi>k</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>R</mi> <mi>m</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
dkcharacterizing a distance value, R, between a user terminal k and a base station devicemCharacterizing a coverage radius of the mth component carrier;
the formula for calculating the carrier load weight factor of the mth component carrier includes:
<math> <mrow> <msup> <mi>&beta;</mi> <mi>m</mi> </msup> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>N</mi> <mo>-</mo> <msup> <mi>&sigma;</mi> <mi>m</mi> </msup> </mrow> <mi>N</mi> </mfrac> <mo>)</mo> </mrow> </mrow> </math>
n denotes the number of resource blocks, σ, contained in the mth component carriermCharacterizing the number of currently occupied resource blocks on the mth component carrier.
3. The method of claim 2, wherein the formula for calculating the resource scheduling priority of each ue on each resource block in each component carrier according to the service type of each ue and the calculated priority weighting factor comprises:
<math> <mrow> <msubsup> <mi>P</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>W</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>&CenterDot;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein,characterizing the scheduling priority of the user terminal k on the nth resource block in the mth component carrier at the current time t,characterizing the priority weighting factor of user terminal k on the mth component carrier,characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth,user mean opinion score, R, of user terminal k on nth resource block in mth component carrier at current time t determined based on service type of user terminal kk(t) characterizing the average data rate obtained by the user terminal k on all the component carriers at the current moment t.
4. The method of claim 3, wherein the formula for allocating the corresponding resource blocks in the corresponding component carriers to each UE according to the calculated scheduling priority of resources comprises:
k * = arg m a x k P k m , n ( t )
wherein k is*And characterizing the user terminal distributed on the nth resource block in the mth component carrier.
5. The method of claim 3, wherein the formula for calculating the average data rate obtained by the user terminal k on all component carriers at the current time t comprises:
<math> <mrow> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <msub> <mi>CC</mi> <mi>m</mi> </msub> <mo>&Subset;</mo> <msub> <mi>&Omega;</mi> <mi>k</mi> </msub> </mrow> </munder> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein R isk(t) characterizing the average data rate obtained by the user terminal k on all component carriers at the current time t,representing the average data rate of the user terminal k on the mth member carrier at the current moment t;
the formula for calculating the average data rate of the user terminal k on the mth component carrier at the current time t includes:
<math> <mrow> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <msubsup> <mi>r</mi> <mi>k</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> <mo>)</mo> <msubsup> <mi>R</mi> <mi>k</mi> <mi>m</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>&NotEqual;</mo> <msup> <mi>k</mi> <mo>*</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, TcCharacterizing the length of a time window, k*And characterizing the user terminal existing on the mth component carrier at the moment t-1.
6. The method of claim 3, wherein the service type of the user terminal comprises:
one of a VoIP service, a streaming media service, a web browsing service and a file downloading service;
for the VoIP service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <mn>0.035</mn> <mi>Q</mi> <mo>+</mo> <mn>7</mn> <mo>&CenterDot;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>6</mn> </mrow> </msup> <mi>Q</mi> <mrow> <mo>(</mo> <mi>Q</mi> <mo>-</mo> <mn>60</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>100</mn> <mo>-</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&le;</mo> <mi>Q</mi> <mo>&le;</mo> <mn>100</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>4.5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Q</mi> <mo>&gt;</mo> <mn>100</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (Q) represents the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, and Q ═ R (R)k m,n(t)) characterizing the transmission rate factor, R, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
and, R (R)k m,n(t))=94-IdWherein <math> <mrow> <msub> <mi>I</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>25</mn> <mo>{</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>log</mi> <mn>2</mn> </msub> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>-</mo> <mn>3</mn> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mi>&alpha;</mi> </msub> <mn>100</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> <mn>6</mn> </msup> <mo>&rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </msup> <mo>+</mo> <mn>2</mn> <mo>}</mo> </mrow> </math> characterizes the attenuation caused by the time delay of the speech signal, the average data rate of the user terminal k;
for streaming media services, a formula for calculating a user mean opinion score of a user terminal k on an nth resource block in an mth component carrier at a current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>{</mo> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>&lsqb;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>&rsqb;</mo> </mrow> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>}</mo> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time instant tth, a1、a2、a3、a4And PeIs a preset parameter value;
for the web browsing service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
f ( r k m , n ( t ) ) = 5 - 578 1 + ( 11.77 + 11305 r k m , n ( t ) ) 2
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current moment tth;
for the file downloading service, the formula for calculating the user mean opinion score of the user terminal k on the nth resource block in the mth component carrier at the current time t includes:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>a</mi> <mo>*</mo> <mi>l</mi> <mi>n</mi> <mo>&lsqb;</mo> <mi>b</mi> <mo>*</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mn>2.6411</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>5</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>&le;</mo> <msup> <msub> <mi>r</mi> <mi>k</mi> </msub> <mrow> <mi>m</mi> <mo>,</mo> <mi>n</mi> </mrow> </msup> <msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>k</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, f (r)k m,n(t)) represents the user mean opinion score, r, of the user terminal k on the nth resource block in the mth component carrier at the current time instant tthk m,n(t) characterizing the instantaneous transmission rate of the user terminal k on the nth resource block in the mth component carrier at the current time t, a, b, Pe、RminAnd RmaxIs a preset parameter value.
7. A multi-service resource scheduling apparatus, comprising:
a user terminal determining module, configured to determine at least one user terminal covered by the base station device at the current time;
the priority weighting factor calculation module is used for calculating priority weighting factors of each user terminal on each member carrier, wherein the priority weighting factors comprise position weighting factors and carrier load weighting factors, the position weighting factors are influenced by the distance between the user terminal and the base station equipment, and the carrier load weighting factors are influenced by the current load of the member carriers;
a resource scheduling priority calculating module, configured to calculate resource scheduling priorities of the user terminals on each resource block in each component carrier according to the service types of the user terminals and the calculated priority weight factors;
and the resource block allocation module is used for allocating corresponding resource blocks in corresponding member carriers to each user terminal according to the calculated resource scheduling priority.
CN201510397535.1A 2015-07-08 2015-07-08 Multi-service resource dispatching method and device Active CN104980934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510397535.1A CN104980934B (en) 2015-07-08 2015-07-08 Multi-service resource dispatching method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510397535.1A CN104980934B (en) 2015-07-08 2015-07-08 Multi-service resource dispatching method and device

Publications (2)

Publication Number Publication Date
CN104980934A true CN104980934A (en) 2015-10-14
CN104980934B CN104980934B (en) 2018-08-21

Family

ID=54276906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510397535.1A Active CN104980934B (en) 2015-07-08 2015-07-08 Multi-service resource dispatching method and device

Country Status (1)

Country Link
CN (1) CN104980934B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074520A1 (en) * 2014-11-13 2016-05-19 中兴通讯股份有限公司 Resource allocation method and device
WO2017054393A1 (en) * 2015-09-28 2017-04-06 中兴通讯股份有限公司 Carrier selection method and device
CN106714324A (en) * 2017-01-19 2017-05-24 中国联合网络通信集团有限公司 Resource scheduling method and device
CN107094320A (en) * 2017-05-05 2017-08-25 华信咨询设计研究院有限公司 LTE dispatching methods based on traffic measurement
CN108541067A (en) * 2017-03-06 2018-09-14 大唐移动通信设备有限公司 A kind of resource regulating method and device
CN108605016A (en) * 2016-08-12 2018-09-28 华为技术有限公司 Method, the network equipment and the terminal device of business data transmission
CN109068353A (en) * 2018-07-13 2018-12-21 中国移动通信集团江苏有限公司 Dispatching method, device, equipment and the medium of terminal
WO2020118944A1 (en) * 2018-12-09 2020-06-18 江苏华存电子科技有限公司 Alternate module design capable of automatically and dynamically modulating weights online
CN111372315A (en) * 2018-12-25 2020-07-03 中国移动通信集团浙江有限公司 User perception-based uplink and downlink scheduling method and device
WO2021103947A1 (en) * 2019-11-29 2021-06-03 华为技术有限公司 Scheduling method and device
CN118426936A (en) * 2024-07-04 2024-08-02 浪潮通用软件有限公司 Container cluster application resource scheduling method, device and medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612093A (en) * 2012-03-30 2012-07-25 西安交通大学 Carrier-aggregation-based method for scheduling upstream cross-layer resources in LTE-Advanced system
CN103037528A (en) * 2013-01-17 2013-04-10 西安电子科技大学 Resource dispatching method based on carrier weight in multi-carrier system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612093A (en) * 2012-03-30 2012-07-25 西安交通大学 Carrier-aggregation-based method for scheduling upstream cross-layer resources in LTE-Advanced system
CN103037528A (en) * 2013-01-17 2013-04-10 西安电子科技大学 Resource dispatching method based on carrier weight in multi-carrier system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEIHONG FU .ET AL: "A Resource Scheduling Algorithm Based on Carrier Weight in LTE-advanced System with Carrier Aggregation", 《22ND WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC)》 *
YUANYE WANG .ET AL: "Resource Allocation Considerations for Multi-Carrier LTE-Advanced Systems Operating in Backward Compatible Mode", 《20TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC)》 *
ZHAO JI-HONG .ET AL: "A SPF-PF crossing Component Carrier joint scheduling algorithm", 《14TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT)》 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074520A1 (en) * 2014-11-13 2016-05-19 中兴通讯股份有限公司 Resource allocation method and device
WO2017054393A1 (en) * 2015-09-28 2017-04-06 中兴通讯股份有限公司 Carrier selection method and device
US11140701B2 (en) 2016-08-12 2021-10-05 Huawei Technologies Co., Ltd. Service data transmission method, network device, and terminal device
CN108605016A (en) * 2016-08-12 2018-09-28 华为技术有限公司 Method, the network equipment and the terminal device of business data transmission
CN108605016B (en) * 2016-08-12 2021-03-23 华为技术有限公司 Service data transmission method, network equipment and terminal equipment
CN106714324B (en) * 2017-01-19 2019-10-08 中国联合网络通信集团有限公司 A kind of method and device of scheduling of resource
CN106714324A (en) * 2017-01-19 2017-05-24 中国联合网络通信集团有限公司 Resource scheduling method and device
CN108541067A (en) * 2017-03-06 2018-09-14 大唐移动通信设备有限公司 A kind of resource regulating method and device
CN107094320A (en) * 2017-05-05 2017-08-25 华信咨询设计研究院有限公司 LTE dispatching methods based on traffic measurement
CN109068353A (en) * 2018-07-13 2018-12-21 中国移动通信集团江苏有限公司 Dispatching method, device, equipment and the medium of terminal
CN109068353B (en) * 2018-07-13 2022-01-25 中国移动通信集团江苏有限公司 Terminal scheduling method, device, equipment and medium
WO2020118944A1 (en) * 2018-12-09 2020-06-18 江苏华存电子科技有限公司 Alternate module design capable of automatically and dynamically modulating weights online
CN111372315A (en) * 2018-12-25 2020-07-03 中国移动通信集团浙江有限公司 User perception-based uplink and downlink scheduling method and device
WO2021103947A1 (en) * 2019-11-29 2021-06-03 华为技术有限公司 Scheduling method and device
CN118426936A (en) * 2024-07-04 2024-08-02 浪潮通用软件有限公司 Container cluster application resource scheduling method, device and medium
CN118426936B (en) * 2024-07-04 2024-09-10 浪潮通用软件有限公司 Container cluster application resource scheduling method, device and medium

Also Published As

Publication number Publication date
CN104980934B (en) 2018-08-21

Similar Documents

Publication Publication Date Title
CN104980934B (en) Multi-service resource dispatching method and device
Alfayly et al. QoE-based performance evaluation of scheduling algorithms over LTE
Capozzi et al. Downlink packet scheduling in LTE cellular networks: Key design issues and a survey
KR100798854B1 (en) Method for Adaptive Delay Threshold-based Priority Queueing Scheme for Packet Scheduling in Mobile Broadband Wireless Access System
Afroz et al. Performance analysis of PF, M-LWDF and EXP/PF packet scheduling algorithms in 3GPP LTE downlink
Biernacki et al. Comparative performance study of LTE downlink schedulers
Ali et al. A capacity and minimum guarantee-based service class-oriented scheduler for LTE networks
Chuck et al. Bandwidth recycling in IEEE 802.16 networks
Uyan et al. QoS‐aware LTE‐A downlink scheduling algorithm: A case study on edge users
JP5651236B2 (en) Base station and resource allocation method in mobile communication system
Afroz et al. Performance analysis of FLS, EXP, LOG and M-LWDF packet scheduling algorithms in downlink 3GPP LTE system
CN105141404A (en) Method for wireless resource allocation based on QoE (Quality of Experience) in LTE-A (Long Term Evolution-Advanced) system
Nguyen et al. E-mqs-a new downlink scheduler for real-time flows in lte network
Ramli Performance of maximum-largest weighted delay first algorithm in long term evolution-advanced with carrier aggregation
Zain et al. Performance analysis of scheduling policies for VoIP traffic in LTE-Advanced network
Wang et al. QoS-provisioning downlink resource management in 4G cellular systems
Ismail et al. Performance analysis of uplink scheduling algorithms in LTE networks
Benchaabene et al. Comparative analysis of downlink scheduling algorithms for LTE femtocells networks
Ahmad et al. Resource allocation algorithms in LTE: A comparative analysis
Ramli et al. Novel scheduling algorithm for optimizing real-time multimedia performance in Long Term Evolution-Advanced
Nguyen et al. Performance evaluation of E-MQS scheduler with Mobility in LTE heterogeneous network
Puttonen et al. Mixed traffic packet scheduling in UTRAN long term evolution downlink
Ahmed et al. Design of a unified multimedia-aware framework for resource allocation in lte femtocells
de Oliveira et al. Enhanced PF scheduling algorithm for LTE networks
Ben Hassen et al. A Gain‐Computation Enhancements Resource Allocation for Heterogeneous Service Flows in IEEE 802.16 m Mobile Networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant