CN104980751A - Image data processing apparatus and image data processing method - Google Patents

Image data processing apparatus and image data processing method Download PDF

Info

Publication number
CN104980751A
CN104980751A CN 201410134470 CN201410134470A CN104980751A CN 104980751 A CN104980751 A CN 104980751A CN 201410134470 CN201410134470 CN 201410134470 CN 201410134470 A CN201410134470 A CN 201410134470A CN 104980751 A CN104980751 A CN 104980751A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
block
pixel
value
image
data
Prior art date
Application number
CN 201410134470
Other languages
Chinese (zh)
Other versions
CN104980751B (en )
Inventor
钱为
Original Assignee
扬智科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides an image data processing apparatus and an image data processing method. The method comprises the following steps of obtaining at least one image block which comprises multiple pixels; performing block predictive coding of the image block to obtain first block data, and performing linear predictive coding of the image block to obtain second block data; and comparing the data bulk of the first block data with the data bulk of the second block data, and defining the first block data or the second block data whose data bulk is smaller as coded block data corresponding to the image block. Therefore, the image data processing apparatus provided by the invention effectively improves the efficiency of a video engine and a display engine for storing image data in a memory, and reduces the bandwidth required for motion compensation and display of images.

Description

图像数据处理装置及图像数据处理的方法 The method of processing the image data and the image data processing apparatus

技术领域 FIELD

[0001] 本发明是有关于一种数据处理的技术,且特别是有关于一种图像数据处理装置及图像数据处理的方法。 [0001] The present invention relates to a data processing technique, and more particularly to a method of processing image data and an image data processing apparatus.

背景技术 Background technique

[0002] 随着数字科技的发展,在动态影像、电脑视讯、数字电视等应用中,使用者对图像解析度的要求愈来愈高。 [0002] With the development of digital technology, motion picture, computer video, digital television and other applications, user requirements for image resolution higher and higher. 在4K分辨率(4K resolut1n)的高清解析度标准下,各种数字影像处理的技术也跟着大量产出。 In the 4K resolution (4K resolut1n) HD resolution standard, a variety of digital image processing technology along with a large number of outputs. 此外,高解析度的图像或视讯内容通常具备庞大的数据量,因此,为了在存储器中有效的存放图像数据,通常会对图像进行压缩。 In addition, high-resolution image or video content usually have a large amount of data, therefore, effective for the image data stored in a memory, the image will typically be compressed. 常见的视讯压缩标准例如有H.264/MPEG-4高阶视讯编码标准及音视讯编码标准(Aud1 Video codingStandard, AVS)。 Common video compression standard for example H.264 / MPEG-4 video coding standard and high-order audio video coding standard (Aud1 Video codingStandard, AVS).

[0003] H.264/MPEG-4视讯压缩标准在进行图像压缩时,是以区块(block)为基础,通过视频引擎(video engine)来进行块状的数据处理。 When the [0003] H.264 / MPEG-4 video compression standard image compression is performed, based on block (block) basis, data processing is performed block by video engine (video engine). 而显示引擎(display engine)要显示图像或视讯内容时,则是以显示线(display line)为基础来进行线状扫描,从而显示出图像或视讯内容。 When the display engine (display engine) to display the image or video content, are displayed line (display line) performed on the basis of the linear scan, thereby displaying an image or video content.

[0004]目前来说,在视频引擎进行如运动补偿的图像处理时,需从存储器中读出区块状的压缩图像数据以进行图像编解码;在显示引擎进行图像或视讯内容的显示处理时,则须从存储器中读出线状的压缩图像数据以进行图像编解码。 When displaying an image or a video processing content in a display engine; [0004] Currently, in the video image processing engine motion compensation, to be read from the memory block of the compressed image data in an area for image encoding and decoding shall be read out from the memory in a linear compressed image data for image encoding and decoding. 因此,目前并没有针对存储器存取不便且需消耗高频宽来读取大量数据以进行图像编解码的问题提出有效的解决方案。 Thus, there is no inconvenience for a memory access and high bandwidth consumption required to read large amounts of data for encoding and decoding an image problem proposed effective solution.

发明内容 SUMMARY

[0005] 本发明提供一种图像数据处理装置及图像数据处理的方法,其可有效地提升视频引擎及显示引擎对存储器中的图像数据存取效率,且能降低对图像进行运动补偿及显示时所需消耗的频宽。 When [0005] The present invention provides an image data processing apparatus and method for processing image data, which can effectively improve the video display engine to engine and image data memory access efficiency, and can reduce the image display and the motion compensated the required bandwidth consumption.

[0006] 本发明提出一种图像数据处理的方法。 [0006] The present invention proposes a method of processing image data. 所述方法包括下列步骤。 The method comprises the following steps. 获得至少一个图像区块(image block),其中图像区块包括多个像素(pixels)。 Obtaining at least one image block (image block), wherein the image comprises a plurality of blocks of pixels (pixels). 对图像区块进行区块预测编码(block-based encoding)以获得第一区块数据,并对图像区块进行线性预测编码(line-based encoding)以获得第二区块数据。 Image blocks for predictive coding block (block-based encoding) to obtain a first block of data, and the image block for linear predictive coding (line-based encoding) to obtain a second block of data. 比较第一区块数据与第二区块数据的数据量,并将其中具备较小数据量的第一区块数据或第二区块数据定义为对应到图像区块的已编码区块数据。 Comparing the first data block and the second block data amount of data, and wherein the first data block includes a small amount of data or the second data block is defined as corresponding to the coded block data of the image block.

[0007] 于另一观点而言,本发明提出一种图像数据处理装置。 [0007] in another aspect, the present invention provides an image data processing apparatus. 此图像数据处理装置包括第一图形缓冲器以及编码单元。 This image data processing apparatus includes a first encoding unit and a graphics buffer. 第一图形缓冲器中暂存至少一个图像区块,其中图像区块包括多个像素。 A first buffer temporarily storing at least one graphic image block, wherein the block includes a plurality of image pixels. 编码单元耦接至第一图形缓冲器。 Encoding means coupled to the first graphics buffer. 编码单元将所述图像区块进行编码。 Encoding means for encoding the image block. 编码单元包括线编码模块、区块编码模块及比较模块。 Line coding unit includes an encoding module, a block encoding module and a comparison module. 线编码模块对图像区块进行线性预测编码以获得第一区块数据,且区块编码模块对图像区块进行区块预测编码以获得第二区块数据。 Image block line encoding module for linear predictive coding to obtain a first data block, and a block encoding module block prediction for the image block to obtain a second block of encoded data. 比较模块用以比较所述第一区块数据与所述第二区块数据的数据量,并将其中具备较小数据量的第一区块数据或第二区块数据定义为图像区块相对应的已编码区块数据。 A comparison module for comparing a first block of data with an amount of data of the second data block, and wherein a small amount of data comprising a first data block and second data block is defined as an image block relative corresponding coded block data.

[0008] 基于上述,本发明所述的图像数据处理装置及其图像数据处理的方法可利用区块预测编码技术及线性预测编码技术来分别对图像区块进行编码,并比较编码后的数据量来决定采用两种预测编码技术其中之一所产生的已编码区块数据。 The amount of data [0008] block described above can be used, the image data processing method and apparatus according to the present invention, the image data processing based on the predictive coding technique and a linear predictive coding technique to encode each block of the image, and comparing the encoded to determine which one of the two data blocks coded predictive coding technique wherein the generated. 由于本发明实施例所述的预测编码技术分别针对视频引擎的块状存取特性及显示引擎的线状存取特性来进行编解码上的优化,因此能够大幅降低储存在存储器中的区块数据,便可直觉性地降低对图像进行运动补偿及显示时所需消耗的频宽,并有效地提升视频引擎及显示引擎对存储器中的图像数据存取效率。 Since the predictive coding technique described in the embodiment of the present invention, respectively, for the engine block and access characteristics of the video display line access characteristics of the engine to optimize the codecs, it is possible to significantly reduce the data blocks stored in the memory , intuition can be reduced bandwidth consumption required for image motion compensation and a display, and a video engine and effectively improve the efficiency of the image display engine access data in the memory.

[0009] 为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。 [0009] In order to make the above features and advantages of the present invention can be more fully understood, the following non-limiting embodiment, and the accompanying figures are described in detail below.

附图说明 BRIEF DESCRIPTION

[0010] 图1是依据本发明一实施例说明一种图像数据处理装置的方块示意图。 [0010] Figure 1 is an embodiment of the present invention is illustrated schematic block diagram of an image data processing apparatus.

图2是依据本发明一实施例说明一种图像数据处理装置的方块示意图。 2 is a schematic block diagram according to an embodiment of the present invention illustrates an image data processing apparatus.

图3是依据本发明一实施例说明一种图像数据处理方法的流程图。 FIG 3 is a flowchart of an embodiment of the present invention illustrates an image data processing method in accordance with.

图4是依据本发明一实施例说明对图像区块进行区块预测编码的流程图。 FIG 4 is a flowchart illustrates an embodiment of the present invention is an image prediction encoding block for the block basis.

图5是依据本发明一实施例说明图4的图像数据处理方法的细部流程图。 FIG 5 is a detailed flowchart of an image data processing method according to an embodiment of FIG. 4 of the present invention is illustrated.

图6是依据本发明一实施例说明在区块预测编码下,对图像区块中的像素进行预测的示意图。 FIG 6 is a schematic view of a embodiment of the present invention is illustrated in the block predictive coding, the image pixels in the prediction block basis.

图7A〜7D是依据本发明一实施例说明扫描模式的示意图。 FIG 7A~7D is a schematic diagram of the present invention is illustrated an embodiment according to the scan mode.

图8是依据本发明一实施例说明图4的图像数据处理方法的细部流程图。 FIG 8 is a flowchart showing a detailed embodiment of the present invention is illustrated in FIG. 4 the image data processing method according to the.

图9是依据本发明一实施例说明对图像区块进行线性预测编码的流程图。 FIG 9 is a flowchart illustrates an embodiment of the present invention, an image block based on linear prediction coding.

图10是依据本发明一实施例说明在线性预测编码下,对图像区块中的像素进行预测的示意图。 FIG 10 is a linear predictive coding, a block diagram showing an image prediction of the pixels in accordance with a described embodiment of the present invention.

图1lA〜IlB是依据本发明一实施例说明将已编码区块记录于第二图形缓冲器的示意图。 FIG 1lA~IlB present invention is based on the embodiment described a schematic embodiment of the second coded block pattern is recorded in the buffer.

【符号说明】 【Symbol Description】

100,200:图像数据处理装置110,210:第一图形缓冲器120,220:编码单元122、222:线编码模块124、224:区块编码模块126、226:比较模块130,230:图形处理器132,232:运动补偿模块140,240:第二图形缓冲器150:第一解码单元250:第一解码单元260:显示引擎602〜610、1002〜1010:预测方向1110〜1130:已编码区块1140〜1150:保留比特Rl:横行Cl:直列 100, 200: image data processing apparatus 110, 210: a first graphic buffer 120, 220: a coding unit 122, 222: line encoding module 124, 224: Block encoding module 126, 226: a comparison module 130, 230: a graphics processor 132, 232: a motion compensation module 140, 240: The second pattern buffer 150: first decoding unit 250: first decoding unit 260: display engine 602~610,1002~1010: 1110~1130 prediction direction: coded block 1140~1150: reserved bits Rl: transverse Cl: in-line

LI〜L4:线区块 LI~L4: Block Line

S310 〜S340、S410 〜S440、S510 〜S550:步骤S810 〜S890、S910 〜S930:步骤 S310 ~S340, S410 ~S440, S510 ~S550: step S810 ~S890, S910 ~S930: Step

具体实施方式 detailed description

[0011] 为了方便视频引擎及显示引擎对存储器中图像数据的存取,本发明实施例将会同时考量视频引擎的块状存取特性及显示引擎的线状存取特性,选择适当的图像区块尺寸为压缩单元来进行图像数据的处理。 [0011] In order to facilitate access to the video display engine to engine and image data in the memory, embodiments of the invention will also consider the characteristics of the video block access to the engine and the linear display engine access characteristics, selecting an appropriate image area block size unit performs compression processing of image data. 本实施例的显示引擎可从内部存储器总线(internalmemory bus)中以爆发模式(burst mode)—次读出最多32个像素,且可在一个请求中执行连续4次的爆发模式。 The display engine of this embodiment may be from an internal memory bus (internalmemory bus) to burst mode (burst mode) - up to 32 times the readout pixel, and may be performed for four consecutive times in a burst mode request. 视频引擎则以4乘4 (4*4)像素的尺寸进行图像压缩。 Video engine 4 by 4 places (4 * 4) pixels in size image compression. 在上述情况下,本发明实施例选用尺寸为32乘4 (32*4)像素的图像区块进行本发明实施例的图像数据处理方法。 In such cases, embodiments of the present invention by selection of the size 4 to 32 (32 * 4) pixels in an image block of the present invention carried out an image data processing method of the embodiment. 也就是说,下述实施例均以尺寸为32*4像素的图像区块为例进行说明。 That is, for example, are the size of 32 * 4 blocks of pixels of the image will be described below as an example embodiment. 应用本实施例也可依照其需求而调整图像区块的尺寸,例如当内部存储器总线以爆发模式一次读出最多64个像素,且视频引擎则以8*8像素的尺寸进行图像压缩,则可选用尺寸为64*8像素的图像区块来实现下述的图像数据处理技术。 Application of the present embodiment also may be adjusted in accordance with the size of the image block their needs, for example, when the internal memory bus burst mode read out once in a maximum of 64 pixels, and the size of video engine places 8 * 8 pixel image compression, may be selection size of 64 * 8 blocks of pixels of the image data to achieve the following image processing technique.

[0012] 图1是依据本发明一实施例说明一种图像数据处理装置的方块示意图。 [0012] Figure 1 is an embodiment of the present invention is illustrated schematic block diagram of an image data processing apparatus. 图像数据处理装置100包括第一图形缓冲器110、编码单元120、图形处理器(Graphics ProcessingUnit, GPU) 130、第二图形缓冲器140及第一解码单元150。 The image data processing apparatus 100 includes a first graphic buffer 110, encoding unit 120, a graphics processor (Graphics ProcessingUnit, GPU) 130, a second buffer 140 and the graphic decoding unit 150 first. 第一图形缓冲器110例如是静态随机存取存储器(SRAM)或相似的元件,以储存图像区块,而第二图形缓冲器140例如是动态随机存取存储器(DRAM)或相似的元件,以储存将原始图像区块进行编码后的已编码区块。 The first graphic buffer 110, for example, static random access memory (SRAM) or similar elements to store the image block buffer 140 and the second pattern is, for example, a dynamic random access memory (DRAM) or similar elements to storing the coded block after encoding the original image block.

[0013] 在进行图像数据处理时,经图像处理器130处理后的图像区块会暂时储存在第一图形缓冲器110。 [0013] During image data processing, the image processor block 130 processes the image temporarily stored in the first buffer pattern 110. 编码单元120从第一图形缓冲器110接收此图像区块并对其进行编码,且将编码后的已编码区块存于第二图形缓冲器140中。 Encoding unit 120 receives the block image from the first graphics buffer 110 and encoded, and the encoded coded block pattern stored in the second buffer 140. 特别说明的是,本实施例中的编码单元120包括线编码模块122、区块编码模块124及比较模块126。 Particularly noted that the embodiment of the encoding unit 120 of the present embodiment includes a line encoding module 122, the block comparison module 124 and encoding module 126. 线编码模块122是用来对图像区块进行线性预测编码,而区块编码模块124则是用来对图像区块进行区块预测编码。 Line encoding module 122 is used to perform linear predictive coding image block, and a block encoding module 124 is used for the image block predictive coding blocks. 比较模块126用以比较经由此两种编码预测产生的第一区块数据及第二区块数据,以选出具备较小数据量的区块数据,且将此区块数据作为已编码区块的数据。 The comparison module 126 for a first data block and a second block of data by comparing two encoding prediction generated thereby to select a block of data includes a small amount of data, and this data blocks as encoded blocks The data. 编码单元120将已编码区块的数据储存在第二图形缓冲器140中。 Encoding unit 120 of the coded block pattern data stored in the second buffer 140.

[0014] 图形处理器130主要作用是对输入的图像信号进行处理。 The main role of [0014] Graphics processor 130 is for processing an input image signal. 详细来说,图形处理器130会将对图像信号中的帧画面分割为多个图像区块,并将这些图像区块储存到第一图形缓冲器110。 In detail, the graphics processor 130 will signal the image frames into a plurality of image blocks, image blocks and stores them into the buffer 110 of the first pattern. 图形处理器130包括运动补偿模块132。 Graphics processor 130 includes a motion compensation module 132. 运动补偿模块132在进行运动补偿(mot1n compensat1n,MC)时会控制第二图形缓冲器140将储存于其中的已编码区块送至第一解码单元150进行解码,以还原出图像区块来构建帧画面,进行运动补偿的后续操作。 The motion compensation module 132 performing motion compensation (mot1n compensat1n, MC) controls the second pattern is stored in the buffer 140 where coded block is supplied to a first decoding unit 150 decodes the image block to restore constructed frames, motion compensation of subsequent operations.

[0015] 图2是依据本发明一实施例说明一种图像数据处理装置的方块示意图。 [0015] FIG. 2 is a block schematic diagram of a embodiment according to the present invention illustrates an image data processing apparatus. 请参照图2,图像数据处理装置200包括第一图形缓冲器210、编码单元220、图形处理器230、第二图形缓冲器240、第二解码单元250及显示引擎260。 Referring to FIG. 2, the image data processing apparatus 200 includes a first graphic buffer 210, an encoding unit 220, a graphics processor 230, a second graphic buffer 240, second decoding unit 250, and display engine 260. 在此说明的是,第一图形缓冲器210、编码单元220、第二图形缓冲器240、图形处理器230及其中的运动补偿模块232的功能与前述实施例中相同名称的元件相似,故其细节请参考前述。 In this description, the first graphic buffer 210, the coding unit 220, the second graphic buffer 240, a graphics processor 230 and motion compensation module 232 functions similar to the previous embodiment the same element names embodiment, so the For details, see above.

[0016] 与前述实施例的差异在于,本实施例的图像数据处理装置在进行显示处理时,显示引擎260通过第二解码单元250来对储存于第二图形缓冲器240中的已编码区块进行解码,并将解码后的图像区块提供给外部屏幕或显示设备以显示画面。 [0016] The difference between the preceding embodiment in that the image data processing apparatus according to the present embodiment performing the display process, the display engine 260 by the second decoding unit 250 of the coded block pattern stored in the second buffer 240 of decoding, and supplies the decoded image blocks to the external screen of the display device or to display a picture.

[0017] 图3是依据本发明一实施例说明一种图像数据处理方法的流程图。 [0017] FIG. 3 is a flowchart of an image data processing method according to an embodiment of the present invention is illustrated. 请参照图3,本实施例的方法可适用于图1的图像数据处理装置100或图2的图像数据处理装置200。 The image data processing apparatus. Please refer to FIG. 3, the present embodiment is applicable to the embodiment of FIG. 1 or 100 of image data processing apparatus 200 of FIG. 以下配合图1与图3来说明本实施例方法的详细流程。 With the following Figures 1 and 3 will be described with a detailed example of the method of the present embodiment.

[0018] 于步骤S310中,第一图形缓冲器110会从图像处理器130获得对帧画面进行分割处理后的至少一个图像区块,其中此图像区块包括多个像素。 [0018] in step S310, the graphic buffer 110 will first obtain at least one image block of the frame picture dividing processor 130 from the image processing, wherein the image comprises a plurality of blocks of pixels. 举例来说,图形处理器130将帧画面切割为多个尺寸为32*4的图像区块,而第一图形缓冲器110可以取得至少一个包括32*4的图像区块。 For example, graphics processor 130 will cut into a plurality of frames of the image block size of 32 * 4, and the first graphic image buffer 110 may obtain at least one block comprising 32 * 4.

[0019] 于步骤S320中,编码单元120中的区块编码模块124会对取得的图像区块进行区块预测编码以获得第一区块数据。 [0019] In step S320, the image encoding unit block encoding module block 120,124 will be made to obtain a first block prediction encoding of data blocks. 区块编码模块124对图像区块进行区块预测编码的详细步骤绘示于图4〜图8中,以下将依序进行说明。 Step detailed block coding unit 124 for the image block prediction coding block shown in FIG. 4 ~ FIG. 8, will be described in sequence.

[0020] 请参照图4,区块编码模块124对图像区块进行区块预测编码的流程,包括预测(predict1n)、差值计算(differentiat1n)及自定义编码(tailor-made coding)三个主要步骤。 [0020] Referring to FIG 4, a block encoding module 124 processes the image block for the block predictive coding, it includes a prediction (predict1n), difference calculation (differentiat1n) and custom code (tailor-made coding) three main step. 在预测及差值计算时,于步骤S410中,区块编码模块124会通过图像区块的初始参考像素来预测图像区块中每个像素的数值,以产生像素的预测值,并依据像素的实际值与预测值的差异,产生对应到图像区块的差值矩阵。 And calculating the difference in predicting, in step S410, the block encoding module 124 will be predicted by the original reference value of each pixel of the image block pixels in the image block to generate a prediction value for the pixel, and based on the pixel the actual value and the predicted value, difference matrix to generate a corresponding image block. 初始参考像素是将图像进行原样压缩的数据,以作为参考数据。 It is the initial reference image as pixel data compressed to as reference data. 像素数值的预测可以通过中值滤波器(median filter)、边缘滤波器(edge filter)、权重滤波器(weighted filter)或具有相似功能的组件来达成。 Predicted pixel values ​​can be achieved through a median filter (median filter), an edge filter (edge ​​filter), the filter weights (weighted filter), or components having similar functions.

[0021] 步骤S410的详细流程请参照图5。 Detailed flow [0021] Please refer to step S410 of FIG. 值得注意的是,本实施例所述的「当前像素」表示区块编码模块124目前要预测的像素,其会以邻近且已得到预测值的像素作为参考像素来产生当前像素的预测值。 Notably, the present embodiment is described in the "current pixel" indicates that the current pixel block to be predicted coding unit 124, which will be generated at the current predicted value of a pixel adjacent to and has been predicted value of a pixel as reference pixels. 于步骤S510中,区块编码模块124会依据当前像素的参考像素来预测当前像素的数值,以产生当前像素的预测值。 In step S510, the block encoding module 124 to predict the current pixel value of the current pixel based on reference pixels to generate a prediction value of the current pixel. 在得到当前像素的预测值后,便从步骤S510进入步骤S520,区块编码模块124会将当前像素的实际值减去预测值,以产生当前像素对应的差值。 After obtaining the prediction value of the current pixel, step S510 begins entering step S520, the block encoding module 124 sets the current predicted actual value of the pixel value is subtracted, to produce a difference value corresponding to the current pixel. 于步骤S540中,区块编码模块124依序将下一个像素作为当前像素,以对下一个像素进行步骤S510及S520操作,直到图像区块中的最后一个像素也预测且计算完差值(步骤S530)。 In step S540, the block encoding module 124 sequentially the next pixel as the current pixel, the steps S510 and S520 to the operation performed on the next pixel until the image of the last pixel block prediction and also calculating the difference End (step S530). 于步骤S550中,依据图像区块中所有像素对应的差值来产生差值矩阵。 In step S550, the block according to the image pixels corresponding to all the difference values ​​to generate a difference matrix.

[0022] 在一实施例中,区块编码模块124会将图像区块的首像素设定为初始参考像素,并以此首像素为基准,依序对邻近的像素进行预测,得到图像区块中所有像素的预测值,且依据所有像素的实际值与预测值的差异,产生对应到图像区块的差值矩阵。 [0022] In one embodiment, the first pixel block image block encoding module 124 will be set as the initial reference pixel, and thus the first reference pixel, sequentially for adjacent pixel prediction, the image blocks to obtain All predicted value of a pixel, and based on difference between the actual and predicted values ​​of all the pixels, the image block to produce a corresponding difference matrix. 以图6所示的图像区块为例,在本实施例中仅绘示尺寸为32*4的图像区块中的前8*4像素,首先区块编码模块124将图像区块的首像素A设定为初始参考像素,接着位于同一横行Rl的下一个像素B,会将前一个邻近的像素A作为参考像素来预测其数值(例如,箭头602)。 The image blocks shown in FIG. 6 as an example, in the embodiment shown only as an image block size of 32 * 4 8 * 4 pixels before the first block of the image encoding module 124 of the first pixel block a set as the initial reference pixel, then pixel B located in a same transverse Rl, the former will be a pixel adjacent to the pixel a as a reference to predict its value (e.g., arrow 602). 同理,依序可完成位于Rl中所有像素(例如像素C、D等)的预测。 Similarly, the sequence can be located Rl completion prediction all pixels (e.g., pixels C, D, etc.). 而与像素A位于同一直列Cl的下一个像素E,也会将上方邻近的像素A作为参考像素来预测其数值(例如,箭头604),同理,依序可完成位于Cl中所有像素(例如像素1、M等)的预测。 A pixel with the Cl in the same line of the next pixel E, will be above the adjacent pixels as reference pixels A to predict its value (e.g., arrow 604), Similarly, the sequence can be completed in all pixels located Cl (e.g. predicted pixel 1, M, etc.). 对于不位于Rl或Cl的像素F,其会将前一个邻近的像素E、斜上方邻近的像素A及上方邻近的像素B作为参考像素来预测其数值(例如,箭头606、608、610),同理,依序可完成其余像素(例如像素G、H、J、K、L等)的预测值。 For a pixel not located Rl F or Cl, which will be the front of a neighboring pixel E, obliquely upward above the adjacent pixels A and B neighboring pixels as reference pixels used to predict its value (e.g., arrow 606, 608), Similarly, the rest can be done sequentially predicted pixel value (e.g. pixels G, H, J, K, L, etc.).

[0023] 回到图4的流程图,产生出差值矩阵后,于步骤S420中,区块编码模块124会依照预设子区块尺寸将差值矩阵分成多个差值子区块。 [0023] Back to the flowchart of FIG. 4, the difference value is generated after the matrix, in step S420, the block encoding module 124 in accordance with a predetermined sub-block size of the difference between the difference matrix into a plurality of sub-blocks. 举例来说,若预设子区块尺寸为4*4,则区块编码模块124会将对应到尺寸为32*4的图像区块的差值矩阵,分为8个尺寸为4*4的差值子区块。 For example, if a predetermined sub-block size of 4 * 4, the block encoding module 124 will correspond to the size of the difference image block matrix of 4 * 32, into a size of 4 * 8 4 value sub-blocks.

[0024] 于步骤S430中,区块编码模块124依据扫描条件从多个像素扫描模式中选择各个差值子区块对应的设定扫描模式。 [0024] in step S430, the block encoding module 124 based on the scan conditions are selected to set the scanning mode of each sub-block difference value from the plurality of pixels corresponding to the scan mode. 具体来说,区块编码模块124会对每个尺寸为4*4的差值子区块进行扫描检视,其中扫描模式如图7A〜7D所示,依序为Z型扫描(zigzag)、右上扫描(upright)、水平扫描(horizontal)及垂直扫描(vertical)。 Specifically, a block encoding module 124 each have a size of 4 * 4 sub-block difference of view is scanned, wherein the scanning pattern shown in FIG 7A~7D sequentially scanning the Z (zigzag), upper right scanning (upright), the horizontal scanning (horizontal) and vertical scanning (vertical). 图7A〜7D中O〜15的数字分别表示在上述不同的扫描模式中对差值子区块的各个像素进行扫描的顺序。 7A~7D in FIG O~15 digital pixel difference values, respectively for each sub-block in said sequential scans different scan modes. 区块编码模块124会以计算所述差值子区块在每一扫描模式中由后到前的像素值为零的像素数量作为扫描条件。 The number of pixel block encoding module 124 to calculate the difference value in each sub-block scan mode to zero by the pixel value before a scan condition. 换句话说,区块编码模块124通过由15到O的逆顺序在每一扫描模式中计算像素值连续为零的数量,并以具有最多连续个零像素所对应的扫描模式作为此差值子区块的设定扫描模式。 In other words, the block 15 by the encoding module 124 in the reverse order to the O number of pixel values ​​is calculated in each consecutive zero scan mode, scan mode and to have a maximum of zero as a consecutive pixels corresponding to this value sub scan mode set block. 值得注意的是,在此种扫描条件下,选择差值子区块后端连续零像素较多的扫描模式,在后续自定义编码的步骤中,可以减少编码的数量。 Notably, in such a scanning condition, the rear end of the sub-block selected successive zero difference pixels more scanning mode, in a subsequent step custom coding, it is possible to reduce the number of coding.

[0025] 当在步骤S430中选择各个差值子区块对应的设定扫描模式之后,便进入到区块预测编码流程中的自定义编码及其中的各个步骤。 [0025] After selecting the scan mode is set corresponding to each sub-block difference in step S430, it proceeds to block predictive coding to customize various steps in the process and the. 于步骤S440中,区块编码模块124会依据步骤S430中选择的设定扫描模式,对每一个差值子区块设定多种旗标,并依照这些旗标分别对每一个差值子区块进行编码以产生第一区块数据。 In step S440, set the scan mode block encoding module 124 will be selected according to step S430, various setting a flag for each sub-block difference value, and the flags are each in accordance with the difference of the sub-region block is encoded to generate a first block of data.

[0026] 步骤S440的详细流程请参照图8。 Detailed flow [0026] Please refer to step S440 of FIG. 8. 值得注意的是,本说明书中的当前差值子区块用以表示区块编码模块124目前要设定旗标的差值子区块。 Notably, the difference between the current sub-block in this specification to represent the current block encoding module 124 to set the flag value sub-blocks. 于本实施例中,区块编码模块124会对每一个差值子区块进行这些旗标的设定,直到所有的差值子区块的旗标都设定完成。 In this embodiment, the block encoding module 124 will each sub-block difference flag is set for these, a difference sub-block until all the flags are set up. 在选择好当前差值子区块对应的设定扫描模式后,于步骤S810中,区块编码模块124会判断当前差值子区块的每一个数值是否皆为零。 After selecting the current scanning mode is set corresponding to the difference between the sub-blocks, in step S810, the block coding unit 124 judges whether the current value of each sub-block if the difference value are both zero. 于步骤S820中,在当前差值子区块的每一个数值皆为零时,区块编码模块124会将当前差值子区块的子区块零旗标(cbf)设定为0,而不需对此当前差值子区块进行其它的编码。 In step S820, the difference in the current value of each sub-block are all zero, block encoding module 124 sets the current value sub-block sub-block zero flag (CBF) is set to 0, and without regard for other difference between the current sub-block encoding. 相反地,于步骤S830中,在当前差值子区块具有非零的数值时,区块编码模块124会将当前差值子区块的cbf设定为1,以进行接下来的编码步骤。 On the contrary, in step S830, the current value has a nonzero value sub-blocks, block encoding module 124 sets the current value sub-block cbf set to 1 for the next encoding step.

[0027] 于步骤S840中,区块编码模块124依据当前差值子区块对应的设定扫描模式设定扫描模式旗标(scan_mode)以及非零扫描旗标(last_nonzero_x及last_nonzero_y),而在设定扫描模式中位于非零扫描旗标以后的像素数值皆为零。 [0027] In step S840, the block encoding module 124 sets the scanning mode flag (scan_mode) depending on the current value sub-block and the scan pattern corresponding to a set of non-zero scan flag (last_nonzero_x and last_nonzero_y), provided in given scan mode value is in a non-zero pixels after the scan flag are both zero. 于步骤S850中,区块编码模块124在设定扫描模式中对位于非零扫描旗标以前的每个像素设定对应的数值旗标(nonzeroflag),其中数值旗标用以表示对应的像素的像素值是否为零。 In step S850, the block encoding module 124 sets a corresponding flag value (nonzeroflag) located non-zero for each pixel in the previous scan flag is set in the scan mode, where the value for the flag indicates that the corresponding pixel the pixel value is zero.

[0028] 举例来说,若当前差值子区块对应的设定扫描模式为图7A所示的Z型扫描,而在Z型扫描中,位于数字8的数值是从数字15倒数至O遇到的第一个非零的值,也就是说位于数字9〜15的数值皆为零,则区块编码模块124会将非零扫描旗标设定成数字8在当前差值子区块的位置。 [0028] For example, if the difference between the current sub-block corresponding to the Z-scan scan pattern setting as shown in Figures 7A, while the scanning in Z, is located in value of the digital number from 8 to 15 countdown case O the first non-zero value, that is the numeric value of 9~15 are zero, block encoding module 124 will be non-zero digital scan flag is set to 8 sub-block in the current difference position. 具体来说,数字8在图7A绘示的二维空间是位于X轴为2且y轴为I的坐标上,因此,可以利用2比特(bits)的二进位码(binary code)分别设定非零扫描旗标,以代表数字8在X轴及y轴上的坐标,例如last_nonzero_x=10及last_nonzero_y=01。 Specifically, in the digital 8 two-dimensional space shown in FIG. 7A is located on the X-axis is 2 and the y-axis coordinates on the I, therefore, can use 2 bits (bits) binary code (binary code) are set nonzero scanning flag to the ordinate represents the number 8 in the X-axis and the y-axis, e.g. last_nonzero_x = 10 and last_nonzero_y = 01. 设定完对应到数字8所在位置的非零扫描旗标后,依据位于数字8以前的数字O〜8的像素数值对数字O〜8中的非零数值设定nonzero flag。 After setting the number 8 corresponds to the location of non-zero scanning flag, based on the numeric value of the pixel of the previous figure 8 O~8 nonzero flag is set in the digital O~8 non-zero value.

[0029] 于步骤S860中,对于具备nonzero flag的像素设定符号旗标(sign flag), signflag是用来表示像素数值的正负号。 [0029] In step S860, for setting the pixels have nonzero flag sign flag (sign flag), signflag sign is used to represent a pixel value. 于步骤S870中,判断具备符号旗标的像素的数值绝对值是否大于第一值,当像素的数值绝对值大于第一值时,设定第一绝对值旗标(largerthanlflag)。 In step S870, the target pixel value includes determining the sign flag whether the absolute value is greater than a first value, when the value is greater than the absolute value of a first pixel value, the absolute value of the first flag is set (largerthanlflag). 于步骤S880中,判断具备第一绝对值旗标的像素的数值绝对值是否大于第二值,当像素的数值绝对值大于第二值时,设定第二绝对值旗标(larger_than2flag)。 In step S880, the value includes determining a first absolute value of the flag whether the absolute value is greater than the second pixel value, the pixel value when the absolute value greater than a second value, the absolute value of the second flag is set (larger_than2flag). 于步骤S890中,将具备第二绝对值旗标的像素的数值减去第三值,并依据特定编码对此减去第三值后的数值(minus3)进行编码,以产生第一区块数据,其中上述第三值大于第二值,且第二值大于第一值。 In step S890, the absolute value of the second flag value includes subtracting a third pixel value, and encoded according to the numerical (minus3) after this particular coding subtracting the third value to generate a first data block, wherein said third value is greater than the second value and the second value is greater than the first value.

[0030] 在一实施例中,上述第一值、第二值及第三值可以分别为1、2及3。 [0030] In one embodiment, the first value, the second value and the third value can be 1, 2, and 3, respectively. 以前述的实施例来说,区块编码模块124对位于数字O〜8的像素中具有nonzero flag的像素,设定符号旗标sign flag。 In the foregoing embodiment, the block coding unit 124 having a nonzero flag of the pixel of the pixels located in the digital O~8, set the flag symbol sign flag. 且区块编码模块124对此8个像素中,数值绝对值大于I的像素设定larger_thanlflag,并从具有larger_thanlflag的像素中,选出数值绝对值大于2的像素设定larger_than2flag。 A block encoding module 124 and this eight pixels, the absolute value greater than the value I set larger_thanlflag pixel, and pixels having larger_thanlflag from, a selected value greater than the absolute value of the pixel 2 is set larger_than2flag. 再将具有larger_than2f lag的像素的数值减去3,并依据此经减去3后的数值选择合适的编码以产生第一区块数据。 Then the pixel values ​​having larger_than2f lag minus 3, and according to this value obtained by subtracting 3 select the appropriate coding to produce a first block of data. 上述合适的编码可以用经减去3后的最大数值为依据,以从常用的编码中,选择此最大数值可以使用的最小编码长度所对应的编码,其中,常用的编码包括莱斯码(Rice coding)、格伦布编码(Golomb coding)等。 Suitable described above may be encoded by subtracting the maximum value after 3 as the basis for the common coding, select the minimum code length of this maximum value may be used in the corresponding coding, wherein the common coding comprises code Rice (Rice coding), Golomb coding (Golomb coding) and the like.

[0031] 回到图3的流程图,于步骤S330中,编码单元120中的线编码模块122会对图像区块进行线性预测编码以获得第二区块数据。 [0031] Back to the flowchart of FIG. 3, in step S330, the line encoding module 122 will block the image coding unit 120 to obtain a second linear predictive coding block data. 线编码模块122对图像区块进行线性预测编码的详细步骤绘示于图9〜图10中,以下将依序进行说明。 Detailed steps image line encoding module 122 linear predictive coding block shown in FIG. 9~ 10, will be described in sequence.

[0032] 请参照图9,线编码模块122对图像区块进行线性预测编码的流程与区块预测编码的流程相似,也是包括预测、差值计算及自定义编码三个主要步骤。 [0032] Referring to FIG 9, the line encoding module 122 processes the image blocks for the linear predictive coding process similar to the block predictive coding, also including prediction, and calculates a difference from the three major steps define the encoding. 在预测及差值计算时,于步骤S910中,线编码模块122将图像区块分为多个线区块,通过图像区块的初始参考像素来预测线区块中各个像素的数值,以产生像素的预测值。 And calculating the difference in predicting, in step S910, the line encoding module 122 is divided into a plurality of blocks of the image lines block to predict the value of each pixel by an initial reference block line pixel of the image block to produce the predicted value of the pixel. 于步骤S920中,线编码模块122依据像素的实际值与预测值的差异,产生对应到线区块的线性差值矩阵。 In step S920, the line encoding module 122 based on difference between the actual and predicted values ​​of the pixel block line to generate a corresponding linear difference matrix. 上述步骤S910〜S920与步骤S410〜S420相同或相似,故其细节请参照前述。 Same as the above steps S910~S920 step S410~S420 or similar, and the details are shown in the above.

[0033] 在本实施例中,线编码模块122会将图像区块分为多个线区块,接着以线区块为单位进行预测及差值计算。 [0033] In the present embodiment, the line encoding module 122 will be divided into a plurality of blocks of an image line sections, followed by the line units of blocks and prediction value calculation. 以图10所示的图像区块为例,在本实施例中仅绘示32*4图像区块的前8*4像素,线编码模块122会将32*4图像区块分为4个尺寸为32*1的线区块,例如图10中位于第一行〜第四行的4个线区块LI〜L4。 The image block shown in FIG. 10 as an example, shows only 32 * 4 * 8 image block of 4 pixels before in the present embodiment, the line encoding module 122 will be 32 * 4 image size is divided into four blocks 1 is a line block 32 *, for example, in FIG. 4 line 10 is the first line of the fourth block row ~ LI~L4. 线编码模块122会将LI的首像素A设定为初始参考像素,而同样位于LI的下一个像素B,会将前一个邻近的像素A作为参考像素来预测其数值(例如,箭头1002),同理,依序可完成位于LI中所有像素(例如像素C、D等)的预测。 LI line encoding module 122 will be the first pixel A is set as the initial reference pixel, and a pixel located in the same LI B, the former will be a pixel adjacent to the pixel A as a reference to predict its value (e.g., arrow 1002), Similarly, the sequence can be located LI completion prediction all pixels (e.g., pixels C, D, etc.).

[0034] 线区块L2〜L4可以选择两种方法并以整个线区块为单位进行预测。 [0034] L2~L4 line sections can select two methods and the entire line prediction in units of blocks. 第一种方法是用前一行线区块的对应像素作为参考像素;第二种方法则是用同一行线区块中已预测的前一个像素作为参考像素。 The first method is to use the previous line corresponding to the pixel line as the reference pixel block; second method is to use a prior pixel block in the same row line as the predicted reference pixel. 关于选择用哪一种方法进行线区块预测的资讯可以标示在线区块标头中。 Information about the selected line block prediction performed by the method which can mark line block header. 在此实施例中,L2的线区块标头是选择上述第一种方法,用LI中的对应像素作为参考像素。 In this embodiment, L2 is a line block header to select the first method, a corresponding LI pixels as reference pixels. 例如,像素E以像素A为参考像素(例如,箭头1004),像素F以像素B为参考像素(例如,箭头1006),藉以预测L2的每一个像素。 For example, pixel A of pixel E to the reference pixel (e.g., arrow 1004), the pixel B to F pixels as a reference pixel (e.g., arrow 1006), whereby each of the predicted pixel L2. 而L3的线区块标头则是选择第二种方法,用同样位于L3的前一个像素作为参考像素。 And a block header line L3 is the second selection method, a pixel located at the front with the same L3 as a reference pixel. 例如,像素J以像素I为参考像素(例如,箭头1008)、像素K以像素J为参考像素(例如,箭头1010),藉以预测L3的每一个像素。 For example, the pixel to pixel I J reference pixel (e.g., arrow 1008), the pixel to pixel K J reference pixel (e.g., arrow 1010), whereby each pixel prediction L3. 需注意的是,选用此第二种方法时,首像素I也需设定为初始参考像素,以作为L3的参考像素。 It should be noted that the selection of this second method, the first pixel I also need to set as the initial reference pixel, the reference pixel as L3.

[0035] 在此说明如何依据像素的实际值与预测值的差异,从而产生对应到线区块的线性差值矩阵并进入到线性预测编码流程中的自定义编码及其中的各个步骤。 [0035] Here's how the basis difference between the actual and predicted values ​​of the pixel, to thereby produce a corresponding line block of linear interpolation matrix and proceeds to the steps custom encoding linear prediction coding process and the. 于步骤S930中,线编码模块122对线性差值矩阵设定旗标,并依照这些旗标分别对每一个线性差值矩阵进行编码以产生第二区块数据。 In step S930, the line encoding module 122 to set a flag linear interpolation matrix and to generate in accordance with the flags are each a linear interpolation matrix for encoding a second data block. 上述步骤S930与步骤S440相同或相似,故其细节请参照前述。 The same as the above-described step S930 and step S440 or similar, and the details are shown in the above.

[0036] 与前述区块编码模块122所执行的步骤不同的是,在本实施例中,线编码模块122在子区块零旗标(cbf)设定完成之后,不会进行扫描模式旗标(scanjnode)以及非零扫描旗标(last_nonzero_x及last_nonzero_y)的设定动作,而是直接进入设定数值旗标(nonzero flag)、符号旗标(sign flag)的步骤,并依据第一值、第二值和第三值来设定第一绝对值旗标(Iarger_thanIf Iag)和第二绝对值旗标(larger_than2f lag),最后,对减去第三值后的数值(minus3)进行编码,以产生第二区块数据。 [0036] Step 122 executed by the block encoding module is different, in the present embodiment, the line encoding module 122 in the zero sub-block flag (CBF) After completion of the setting, not scanned mode flag (scanjnode) scanning and zero flag (last_nonzero_x and last_nonzero_y) in the setting operation, but directly into a flag set value (nonzero flag), the step sign flag (sign flag) and according to the first value, the first the third binary value and the absolute value of the first flag is set (Iarger_thanIf Iag) and the absolute value of the second flag (larger_than2f lag), and finally, the value of (minus3) subtracting the third value after the encoding, to generate The second block of data.

[0037] 回到图3的流程图,在编码单元120中获得第一区块数据及第二数据区块数据,而比较模块126会比较得到的第一区块数据及第二数据区块数据,从其中选出具备较小数据量的数据,作为编码区块对应的已编码区块的数据。 [0037] Back to the flowchart of FIG. 3, to obtain a first data block and second data block in the data encoding unit 120, and the first data block comparison module 126 compares the obtained data and the second data block , from which the data comprising a smaller amount of data is selected as encoded data block corresponding to a coded block. 编码单元120将此已编码区块数据记录于第二图形缓冲器140中,以便于后续进行运动补偿或显示图像的操作。 This encoding unit 120 coded block pattern data is recorded in the second buffer 140, a motion compensation or for displaying images in a subsequent operation. 值得注意的是,在第一区块数据与第二区块数据的数据量皆大于图像区块的原始数据量时,本发明的图像数据处理装置可以不对个图像区块进行处理,而将图像区块的原有数据直接记录于第二图形缓冲器140。 Notably, when the first data block and the second block data amount of the image data are greater than the data amount of the original block, the image data processing apparatus according to the present invention may not perform image processing blocks, and the image original recording block data directly to the buffer 140 of the second pattern.

[0038] 图1lA及IlB绘示将已编码区块记录于图1及图2中第二图形缓冲器140及240的实施例。 [0038] FIG. 1lA and IlB shows the recorded coded block in FIG. 1 and FIG. 2 in a second embodiment of the graphics buffer 140 and 240. 先参照图11A,以YCbCr色彩空间举例来说,左边为尺寸32*4的已编码区块1110,将此已编码区块1110对于Y空间、Cb空间和Cr空间的编码依序记录于右图16*16比特组(bytes)的第二图形缓冲器中。 First 11A, the YCbCr color space, for example to the left coded block size is 4 * 32 1110, 1110 for this coded block Y space, encoding Cb and Cr spaces is recorded sequentially in the right space 16 * 16-bit groups (bytes) of the second graphics buffer. 在已编码区块中可能具有未编码的保留比特(例如已编码区块1110中的reserved比特)。 It may have uncoded bits reserved (e.g., reserved bit coded block 1110) in the coded block. 参照图11B,在多个已编码区块1120、1130记录于第二图形缓冲器时,每一已编码区块中没有使用到的保留比特(例如已编码区块1120中的保留比特1140及已编码区块1130中的保留比特1150),会对第二图形缓冲器的记忆空间造成浪费,因此本发明提出的第二图形缓冲器会将每一已编码区块中的保留比特删除,以提升存储器的储存效能。 11B, the coded block when the plurality of recording the second pattern buffer 1120, 1130, each coded block is not used in the reserved bits (e.g. coded blocks 1120 and 1140 have been reserved bits reserved bits coded block 1130 in 1150), will have a second graphics buffer memory space of wasteful, so the second graphics buffer will each coded block proposed by the invention of the reserved bits removed to enhance memory storage performance.

[0039] 综上所述,本发明实施例的图像数据处理装置及其图像数据处理的方法,同时考量到视频引擎的块状存取特性及显示引擎的线状存取特性,可有效地提升视频引擎及显示引擎对存储器中的图像数据进行存取的效率。 [0039] As described above, the image data processing method of image data processing apparatus and an embodiment of the present invention, while taking into consideration the characteristics of the video block access to the engine and the linear display engine access characteristics, can effectively improve the engine video image data and the display engine in the efficiency of memory access. 此外,本发明的图像数据处理的方法同时考量区块预测编码及线性预测编码两种编码方式,并从中选出数据量较小的编码方式,而能有效降低编码的数据量,进而减少对图像进行运动补偿及显示时所需消耗的频宽。 Further, the method of the present invention, the image data processing block while considering predictive coding and linear predictive coding two encoding, and to choose a smaller amount of data encoding, and can reduce the amount of encoded data, thereby reducing the image the bandwidth consumed when the desired motion compensation and a display.

[0040] 虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视后附的权利要求所界定者为准。 [0040] Although the present invention has been disclosed in the above embodiments, they are not intended to limit the present invention, any of ordinary skill in the art, without departing from the spirit and scope of the present invention, may make various modifications and variations, therefore, the scope of the present invention as defined by the appended claims and their equivalents.

Claims (19)

  1. 1.一种图像数据处理的方法,其特征在于,包括: 获得至少一个图像区块,其中该至少一个图像区块包括多个像素; 对该至少一个图像区块进行区块预测编码以获得第一区块数据; 对该至少一个图像区块进行线性预测编码以获得第二区块数据;以及比较该第一区块数据与该第二区块数据的数据量,并将其中具备较小数据量的该第一区块数据或该第二区块数据定义为该至少一个图像区块相对应的已编码区块数据。 A method of processing image data, characterized by comprising: obtaining at least one image block, wherein the at least one image block includes a plurality of pixels; predictive-coded blocks for the at least one image to obtain a first block a data block; linear predictive coding the at least one block of image data to obtain a second block; and comparing the data size of the first block and the second block of data, and wherein the smaller data comprising the amount of the first data block or the second block is defined as at least one image data block corresponding to the coded block data.
  2. 2.如权利要求1所述的方法,其特征在于,获得至少一个区块包括: 对一图像信号中的帧画面进行分割处理以产生该至少一个图像区块,其中该些图像区块用以组成该图像信号中的图像帧;以及将该至少一个图像区块暂存于一第一图形缓冲器。 2. The method according to claim 1, characterized in that, to obtain at least one block comprising: a frame picture image signal dividing process to generate the at least one image block, wherein the plurality of image blocks for composition image frame of the image signal; and the at least one image is temporarily stored in a first block of graphics buffer.
  3. 3.如权利要求1所述的方法,其特征在于,对该至少一个图像区块进行区块预测编码以获得该第一区块数据包括下列步骤: 通过该至少一个图像区块的一初始参考像素来预测该图像区块中每个像素的数值,从而产生每个像素的预测值,并依据每个像素的实际值与该预测值以产生对应该图像区块的差值矩阵; 依照一预设子区块尺寸而将该差值矩阵区分为多个差值子区块; 依据一扫描条件而从多个像素扫描模式中选择各个差值子区块对应的一设定扫描模式;以及依据该设定扫描模式以对各个差值子区块设定多个旗标,并依照该些旗标对各个差值子区块进行编码以产生该第一区块数据。 3. The method according to claim 1, wherein, for the block prediction encoding to obtain at least one block of image data of the first block comprises the steps of: the at least one initial reference image block a predicting the pixel value of each pixel of the image block, thereby generating a prediction value for each pixel, and based on the actual value of each pixel and the prediction value to generate a difference image block matrix should; in accordance with a pre- the sub-block size setting difference matrix into a plurality of sub-blocks of the difference; selecting a scan pattern is set corresponding to each sub-block difference value from the plurality of pixel scanning modes according to a scan condition; and based on the scan mode is set to the difference between the respective plurality of sub-block flag setting and flag in accordance with the plurality of subblocks for each difference value to generate the first encoded data block.
  4. 4.如权利要求3所述的方法,其特征在于,将该至少一个图像区块的首像素定义为该图像区块的该初始参考像素,并且, 通过该初始参考像素来预测该图像区块中每个像素的数值,从而产生每个像素的该预测值,并依据每个像素的该实际值与该预测值以产生对应该至少一个图像区块的差值矩阵包括: 依据一当前像素的一参考像素,预测该当前像素的数值,以产生为该当前像素的该预测值; 将该当前像素的该实际值减去该预测值,以产生该当前像素对应的一差值; 重复以上步骤,依序产生对应该图像区块中各个像素的该差值,以产生对应该图像区块的该差值矩阵。 4. The method according to claim 3, wherein the at least one image block of the first image pixel is defined as the initial reference pixel block, and to predict the image block pixels by the primary reference the value of each pixel to produce the predicted value for each pixel, and based on the actual value of each pixel and the prediction value to generate a difference matrix should be at least one image block comprising: a current pixel based on a reference pixel, the prediction value of the current pixel to produce the predicted value for the current pixel; the actual value of the current pixel by subtracting the predicted values ​​to generate the pixel current corresponding to a difference value; the above steps are repeated sequentially generating the difference block to be the image of each pixel, to generate the difference image block matrix should be.
  5. 5.如权利要求4所述的方法,其特征在于,预测该至少一个图像区块中该当前像素的数值包括: 当该当前像素为该图像区块的首像素时,记录该当前像素,并将其定义为该图像区块的该初始参考像素; 当该当前像素位于该图像区块的第一横行时,将位于该当前像素已预测的前个邻近像素定义为该当前像素的该参考像素,来预测该当前像素的该预测值; 当该当前像素位于该图像区块的第一直列时,将位于该当前像素已预测的上方邻近像素定义为该当前像素的该参考像素,来预测该当前像素的该预测值;以及当该当前像素不位于该图像区块的该第一横行以及该第一直列时,将位于该当前像素已预测的该前个邻近像素、该上方邻近像素以及斜上方邻近像素定义为该当前像素的该参考像素,来预测该当前像素的该预测值。 5. The method according to claim 4, characterized in that the current value of a prediction pixel block of the at least one image comprising: a first pixel when the current pixel for the image block, to record the current pixel, and which is defined as the initial reference image pixel blocks; when the current pixel is located in a first image of the transverse block, will be located in front of the adjacent pixels is defined for the current pixel is predicted with reference to the current pixel pixel , to predict the current value of the predicted pixel; when the current pixel is in the first line of the image block, located adjacent to the pixel above the current pixel has been defined for the prediction of the current pixel of the reference pixel to predict the prediction value of the current pixel; and when the first pixel is not located transverse to the current block of the image and the first line, the former will be located adjacent pixels to the current pixel is predicted, the upper neighboring pixel and neighboring pixels obliquely above the current pixel is defined as the reference pixel to the predicted prediction value of the current pixel.
  6. 6.如权利要求3所述的方法,其特征在于,其中该扫描条件是,计算各个差值子区块在各个像素扫描模式中从后至前的像素值为零的像素数量,且将该像素数量中最大所对应的该些像素扫描模式其中之一选择为该设定扫描模式。 6. The method according to claim 3, characterized in that, wherein the scanning condition is calculated for each sub-block difference in the scan mode, each pixel from the pixel value before the number of pixels to zero, and the one of the plurality of pixel scanning mode wherein the number of pixels corresponding to the maximum setting for the selected scan mode.
  7. 7.如权利要求3所述的方法,其特征在于,依据该设定扫描模式以对对应的各个差值子区块设定多个旗标包括下列步骤: 当一当前差值子区块的各个数值为零时,对该当前差值子区块设定一子区块零旗标; 依据该当前差值子区块对应的该设定扫描模式而设定一扫描模式旗标以及一非零扫描旗标,其中在该设定扫描模式中位于该非零扫描旗标以后的像素数值皆为零; 将在该设定扫描模式中位于该非零扫描旗标以前的每个像素设定对应的数值旗标,其中该数值旗标用以表示对应的每个像素的像素值是否为零;以及对于具备该数值旗标的对应的每个像素设定一符号旗标。 When a difference between the current sub-block: A method as claimed in claim 3, wherein the scan mode is set according to the setting of the value sub-blocks corresponding to each of the plurality of flags comprises the steps of when the respective values ​​are zero, one sub-block to set the zero flag of the difference between the current sub-block; according to the difference between the current sub-block corresponding to the scanning mode setting set a scan mode and a non-flag scanning the zero flag, wherein the pixel value after the flag is located in a non-zero scanning the scan mode are set to zero; each of the pixels located at the zero scan flag is set before the scan mode setting corresponding flag values, wherein the flag is used to represent a pixel value corresponding to each pixel value is zero; and for each pixel provided with the flag value corresponding to a sign flag is set.
  8. 8.如权利要求7所述的方法,其特征在于,依据该设定扫描模式以对对应的各个差值子区块设定多个旗标更包括: 判断具备该符号旗标的每个像素的数值绝对值是否大于一第一值,并当对应的每个像素的数值绝对值大于该第一值时设定一第一绝对值旗标; 判断具备该第一绝对值旗标的每个像素的数值绝对值是否大于一第二值,并当对应的每个像素的数值绝对值大于该第二值时设定一第二绝对值旗标;以及将具备该第二绝对值旗标的每个像素的数值减去一第三值,并依据一特定编码以对具备该第二绝对值旗标的每个像素经减去该第三值后的数值来进行编码,以产生该第一区块数据,其中该第三值大于该第二值,且该第二值大于该第一值。 8. The method according to claim 7, characterized in that, to set a plurality of flags corresponding to the difference between the respective sub-blocks according to the scanning mode setting further comprising: determining the sign flag provided for each pixel Numerical whether an absolute value greater than a first value, and setting a first flag if the absolute value of each pixel value corresponding to the absolute value greater than a first value; includes determining the absolute value of the first flag for each pixel whether the absolute value is greater than a second numerical value, and sets a second flag if the absolute value of each pixel value corresponding to an absolute value greater than the second value; and the second absolute value of the flag provided for each pixel subtracting the value of a third value, and according to a specific coding for the value of the flag provided to the second absolute value for each pixel by subtracting the third value for encoding, to generate the first data block, wherein the third value is larger than the second value and the second value is greater than the first value.
  9. 9.如权利要求1所述的方法,其特征在于,对该至少一个图像区块进行线性预测编码以获得该第二区块数据包括下列步骤: 将该至少一个图像区块区分为多个线区块,并预测每个线区块中各个像素的数值,从而产生每个像素的预测值; 依据每个线区块中每个像素的实际值与该预测值以产生对应每个线区块的线形差值矩阵;以及对各个线形差值矩阵设定多个旗标,并依照该些旗标对各个线性差值矩阵进行编码以产生该第二区块数据。 9. The method according to claim 1, wherein the at least one image block to obtain a linear predictive coding the second block data comprising the steps of: the at least one image into a plurality of blocks of lines blocks, and the predicted value of each pixel in each line block, thereby generating a prediction value of each pixel; each line based on the actual value of each pixel block and the predicted values ​​to generate a corresponding each of the line sections linear difference matrix; and setting a flag for each of a plurality of linear difference matrix, and in accordance with the plurality of linear interpolation flag for each encoding matrix to generate the second data block.
  10. 10.如权利要求9所述的方法,其特征在于,预测每个线区块中各个像素的数值,从而产生每个像素的该预测值包括下列步骤: 将第一个线区块的首像素作为一初始参考像素;以及依据各个线区块对应的一线区块标头来决定是将已预测的前一个线区块的对应像素或是各个线区块中已预测的前一个像素定义为一当前像素的一参考像素,来预测该当前像素的该预测值。 10. The method according to claim 9, wherein the value of each pixel in each line of the prediction block to generate the predicted values ​​for each pixel comprises the steps of: a first line of the first pixel block as an initial reference pixel; and the preceding pixel line defined in terms of decision block headers corresponding to each block line is a line before the predicted block of pixels corresponding to each of the line or the predicted block is a a reference pixel of the current pixel, predicting a prediction value of the current of the pixel.
  11. 11.如权利要求10所述的方法,其特征在于,依据每个线区块中每个像素的该实际值与该预测值以产生对应每个线区块的线性差值矩阵包括下列步骤: 将该当前像素的该实际值减去该预测值,以产生该当前像素对应的一差值;以及重复以上步骤,依序产生对应每个线区块中各个像素的该差值,以产生对应每个线区块的该线形差值矩阵。 11. The method according to claim 10, wherein each line block according to the actual value of each pixel and the prediction value to generate a linear interpolation matrix corresponds to each tile line comprises the steps of: the actual value of the current pixel by subtracting the predicted values ​​to generate the pixel current corresponding to a difference value; and repeating the above steps, sequentially generating the difference value corresponding to each pixel in each line block, to produce a corresponding the linear matrix value for each line block.
  12. 12.如权利要求9所述的方法,其特征在于,对各个线形差值矩阵设定多个旗标包括下列步骤: 当一当前线形差值矩阵的各个数值为零时,对该当前线形差值矩阵设定一子区块零旗标; 将该当前线形差值矩阵中每个像素设定对应的数值旗标,其中该数值旗标用以表示对应的每个像素的像素值是否为零;以及对于具备该数值旗标的对应的每个像素设定一符号旗标。 12. The method according to claim 9, wherein each of the plurality of linear difference matrix setting a flag comprising the steps of: when the respective values ​​of a line current zero difference matrix, the difference between the current linear value of one sub-block matrix setting a zero flag; the linear current difference matrix corresponding to each pixel value set flag, wherein the flag is used to represent a pixel value corresponding to each pixel value is zero ; and for each pixel provided with the flag value corresponding to a sign flag is set.
  13. 13.如权利要求12所述的方法,其特征在于,对各个线形差值矩阵设定多个旗标更包括下列步骤: 判断具备该符号旗标的每个像素的数值绝对值是否大于一第一值,并当对应的每个像素的数值绝对值大于该第一值时设定一第一绝对值旗标; 判断具备该第一绝对值旗标的每个像素的数值绝对值是否大于一第二值,并当对应的每个像素的数值绝对值大于该第二值时设定一第二绝对值旗标;以及将具备该第二绝对值旗标的每个像素的数值减去一第三值,并依据一特定编码以对具备该第二绝对值旗标的每个像素经减去该第三值后的数值来进行编码,以产生该第二区块数据,其中该第三值大于该第二值,且该第二值大于该第一值。 13. The method of claim 12, wherein each of the plurality of linear difference matrix setting a flag further comprising the steps of: determining whether the value of the symbol includes a flag for each pixel is greater than the absolute value of a first value, and sets a flag when the first absolute value of each pixel corresponding to the absolute value greater than a first value; value includes determining the absolute value of the first flag whether the absolute value of each pixel is greater than a second value, and sets a second flag if the absolute value of each pixel value corresponding to an absolute value greater than the second value; and a second absolute value includes the flag value of each pixel value by subtracting a third and according to a specific coding of the absolute value of the second flag including the value of the third value of each pixel by subtracting the encoded data to generate the second block, wherein the third value is greater than the first binary, and the second value is greater than the first value.
  14. 14.如权利要求1所述的方法,其特征在于,更包括下列步骤: 当第一区块数据与该第二区块数据的数据量皆大于该至少一个图像区块的数据量时,不对该至少一个图像区块进行处理,并将该至少一个图像区块的原有数据记录于一第二图形缓冲器。 14. The method according to claim 1, characterized in that, further comprising the steps of: when the first block of data with an amount of data of the second data block are greater than the amount of data when the at least one image block, not the at least one image processing block, and the at least one block of original image data is recorded in a second graphics buffer.
  15. 15.如权利要求1所述的方法,其特征在于,该至少一个图像区块的尺寸为32乘4个像素。 15. The method according to claim 1, wherein the at least one image block size of 32 pixels by four.
  16. 16.一种图像数据处理装置,其特征在于,包括: 第一图形缓冲器,暂存至少一个图像区块,其中该至少一个图像区块包括多个像素; 编码单元,耦接该第一图形缓冲器,将该至少一个图像区块进行编码, 其中该编码单元包括: 线编码模块,对该至少一个图像区块进行线性预测编码以获得第一区块数据; 区块编码模块,对该至少一个图像区块进行区块预测编码以获得第二区块数据;以及比较模块,比较该第一区块数据与该第二区块数据的数据量,并将其中具备较小数据量的该第一区块数据或该第二区块数据定义为该至少一个图像区块相对应的已编码区块数据。 An image data processing apparatus, characterized by comprising: a first graphics buffer for temporarily storing at least one image block, wherein the at least one image block includes a plurality of pixels; encoding means, coupled to the first contact pattern buffer, the at least one image block is encoded, wherein the coding unit comprises: a line encoding module, the at least one image block of linear predictive coding to obtain a first data block; block encoding module, the at least a block for block prediction image to obtain a second encoded data block; and a comparison module, comparing the data size of the first block and the second block of data, and wherein the second comprising a small data amount a data block or the second block is defined as at least one image data block corresponding to the coded block data.
  17. 17.如权利要求16所述的图像数据处理装置,其特征在于,更包括: 图像处理器,对一图像信号中的帧画面进行分割处理以产生该至少一个图像区块,其中该些图像区块用以组成该图像信号中的图像帧;以及第二图形缓冲器,耦接该编码单元以储存该至少一个图像区块相对应的已编码区块。 17. The image data processing apparatus according to claim 16, characterized in that, further comprising: an image processor, an image signal of the frames dividing process to generate the at least one image block, wherein the plurality of image areas block so as to constitute an image frame of the image signal; and a second graphics buffer, coupled to the encoding unit to store at least one image block corresponding to a coded block.
  18. 18.如权利要求17所述的图像数据处理装置,其特征在于,该图像处理器包括一运动补偿模块,并且, 该图像数据处理装置更包括: 第一解码单元,耦接该运动补偿模块,其中该运动补偿模块控制该第二图形缓冲器以获得该至少一个图像区块相对应的该已编码区块,该第一解码单元对该已编码区块进行解码,并将该至少一个图像区块传送至该运动补偿模块。 18. The image data processing apparatus according to claim 17, wherein the image processor includes a motion compensation module, and the image data processing apparatus further comprising: a first decoding unit, coupled to the motion compensation module, wherein the motion compensation module to control the second graphics buffer to obtain at least one image block of the coded block corresponding to the first decoding unit decodes the coded block and the at least one image area block transmitted to the motion compensation module.
  19. 19.如权利要求17所述的图像数据处理装置,其特征在于,更包括: 显示引擎;以及第二解码单元,其中该显示引擎控制该第二图形缓冲器以获得该至少一个图像区块相对应的该已编码区块,该第二解码单元对该已编码区块进行解码,并将该至少一个图像区块传送至该显示引擎,该显示引擎将该至少一个图像区块进行显示。 19. The image data processing apparatus according to claim 17, characterized in that, further comprising: a display engine; and a second decoding unit, wherein the display engine to control the second graphics buffer to obtain at least one image block with corresponding to the encoded block, the second decoding unit decodes the coded block and the block of the at least one image transmitted to the display engine, the engine of the display at least one image tile for display.
CN 201410134470 2014-04-02 2014-04-02 The method of processing the image data and the image data processing apparatus CN104980751B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201410134470 CN104980751B (en) 2014-04-02 2014-04-02 The method of processing the image data and the image data processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201410134470 CN104980751B (en) 2014-04-02 2014-04-02 The method of processing the image data and the image data processing apparatus

Publications (2)

Publication Number Publication Date
CN104980751A true true CN104980751A (en) 2015-10-14
CN104980751B CN104980751B (en) 2018-06-15

Family

ID=54276773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201410134470 CN104980751B (en) 2014-04-02 2014-04-02 The method of processing the image data and the image data processing apparatus

Country Status (1)

Country Link
CN (1) CN104980751B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122615A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Image decoder
CN1685732A (en) * 2002-11-01 2005-10-19 松下电器产业株式会社 Motion picture encoding method and motion picture decoding method
CN1980393A (en) * 2005-12-09 2007-06-13 松下电器产业株式会社 Image coding device, method and computer program
CN102930871A (en) * 2009-03-11 2013-02-13 华为技术有限公司 Linear predication analysis method, device and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122615A (en) * 1997-10-20 1999-04-30 Hitachi Ltd Image decoder
CN1685732A (en) * 2002-11-01 2005-10-19 松下电器产业株式会社 Motion picture encoding method and motion picture decoding method
CN1980393A (en) * 2005-12-09 2007-06-13 松下电器产业株式会社 Image coding device, method and computer program
CN102930871A (en) * 2009-03-11 2013-02-13 华为技术有限公司 Linear predication analysis method, device and system

Also Published As

Publication number Publication date Type
CN104980751B (en) 2018-06-15 grant

Similar Documents

Publication Publication Date Title
US20050259887A1 (en) Video deblocking method and apparatus
US6614942B1 (en) Constant bitrate algorithm for block based image compression
US20090110077A1 (en) Image coding device, image coding method, and image coding integrated circuit
US6205181B1 (en) Interleaved strip data storage system for video processing
US20090274382A1 (en) Entropy decoding circuit, entropy decoding method, and entropy decoding method using pipeline manner
US20060222080A1 (en) Reference data buffer for intra-prediction of digital video
JP2006094494A (en) Accelerating video encoding using graphics processor unit
US20090129478A1 (en) Deblocking filter
US20130021350A1 (en) Apparatus and method for decoding using coefficient compression
EP0828238A2 (en) Image memory storage system and method for a block oriented image processing system
US8363969B1 (en) Systems and methods for image coding and processing
US20130176211A1 (en) Image processing device for displaying moving image and image processing method thereof
US20070071101A1 (en) Systolic-array based systems and methods for performing block matching in motion compensation
JPH1188700A (en) Coding method of color image signal, and decoding method and color image processor thereof
US20050047502A1 (en) Method and apparatus for the efficient representation of interpolated video frames for motion-compensated coding
US20080284788A1 (en) Method and apparatus for processing information
US6707853B1 (en) Interface for performing motion compensation
CN1589028A (en) Predicting device and method based on pixel flowing frame
CN101483788A (en) Method and apparatus for converting plane video into tridimensional video
WO2009087783A1 (en) Data generator for coding, method of generating data for coding, decoder and decoding method
US20080056381A1 (en) Image compression and decompression with fast storage device accessing
US7567723B2 (en) Resolution changing method and apparatus
JP2009089267A (en) Method and device for intra predictive coding, and program
US20060227876A1 (en) System, method, and apparatus for AC coefficient prediction
CN1874516A (en) Implementation device in VLSI of filter for removing blocking effect based on AVS

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination