CN104978580B - A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity - Google Patents

A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity Download PDF

Info

Publication number
CN104978580B
CN104978580B CN201510330413.0A CN201510330413A CN104978580B CN 104978580 B CN104978580 B CN 104978580B CN 201510330413 A CN201510330413 A CN 201510330413A CN 104978580 B CN104978580 B CN 104978580B
Authority
CN
China
Prior art keywords
mrow
msub
munderover
insulator
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510330413.0A
Other languages
Chinese (zh)
Other versions
CN104978580A (en
Inventor
刘越
王万国
刘俍
张晶晶
王滨海
张方正
雍军
慕世友
任杰
傅孟潮
魏传虎
李建祥
赵金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Intelligent Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
Shandong Luneng Intelligence Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd, Shandong Luneng Intelligence Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201510330413.0A priority Critical patent/CN104978580B/en
Publication of CN104978580A publication Critical patent/CN104978580A/en
Application granted granted Critical
Publication of CN104978580B publication Critical patent/CN104978580B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V30/00Character recognition; Recognising digital ink; Document-oriented image-based pattern recognition
    • G06V30/10Character recognition
    • G06V30/19Recognition using electronic means
    • G06V30/192Recognition using electronic means using simultaneous comparisons or correlations of the image signals with a plurality of references
    • G06V30/194References adjustable by an adaptive method, e.g. learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种高效的用于无人机巡检输电线路绝缘子识别方法,包括图像采集及处理:从输电线路绝缘子图像中提取用于训练的子图像并进行初步处理,形成训练数据集;对提取到的用于训练的子图像进行打包处理,添加图像对应的标签;利用深度学习中的卷积神经网络(CNN)算法对数据进行训练,得到针对绝缘子的检测模型;绝缘子目标区域检测:对输电线路图像进行检测,获取绝缘子目标的候选框;对候选框进行非极大值抑制,得到最终的绝缘子候选框;对得到的最终的绝缘子候选框进行直线拟合操作,获取中心点,候选框的角度和大小信息,最后在输电线路绝缘子图像上进行标注。本申请对巡检获得的图像进行筛选,减轻人工筛查的负担,有着广阔的应用前景。

The invention discloses an efficient identification method for transmission line insulators used in unmanned aerial vehicle inspections, including image acquisition and processing: extracting sub-images for training from transmission line insulator images and performing preliminary processing to form a training data set; Pack the sub-images extracted for training, and add the corresponding labels of the images; use the convolutional neural network (CNN) algorithm in deep learning to train the data, and obtain a detection model for insulators; insulator target area detection: Detect the transmission line image to obtain the candidate frame of the insulator target; perform non-maximum suppression on the candidate frame to obtain the final insulator candidate frame; perform a straight line fitting operation on the obtained final insulator candidate frame to obtain the center point, candidate The angle and size information of the box are finally marked on the image of the transmission line insulator. The application screens the images obtained by the patrol inspection to reduce the burden of manual screening, and has broad application prospects.

Description

一种用于无人机巡检输电线路的绝缘子识别方法An insulator identification method for UAV inspection of transmission lines

技术领域technical field

本发明涉及数字图像处理及模式识别技术在输电线路设备检测技术领域,尤其涉及一种高效的用于无人机巡检输电线路绝缘子的识别方法。The invention relates to digital image processing and pattern recognition technology in the technical field of transmission line equipment detection, in particular to an efficient identification method for unmanned aerial vehicle inspection of transmission line insulators.

背景技术Background technique

绝缘子是架空输电线路中重要的组成部分,用来支持和固定母线与带电导体、并使带电导体间或导体与大地之间有足够的距离和绝缘。由于架空输电线路长期暴露在自然环境中,受到自然或者人为因素的影响,存在线路老化和破坏等问题,如果不对这些问题进行定期检查和检修可能引起重大安全事故发生。Insulators are an important part of overhead transmission lines, used to support and fix busbars and live conductors, and to provide sufficient distance and insulation between live conductors or between conductors and the earth. Due to the long-term exposure of overhead transmission lines to the natural environment, affected by natural or human factors, there are problems such as line aging and damage. If these problems are not regularly inspected and repaired, major safety accidents may occur.

人工巡线检测效率低,而且危险性高。随着无人机技术的发展,通过无人机航拍技术采集高压线路图像并对这些图像信息进行处理,可以减少人员成本并保证施工人员的安全,同时可以提高工作效率。Manual line inspection is inefficient and dangerous. With the development of UAV technology, the use of UAV aerial photography technology to collect high-voltage line images and process these image information can reduce personnel costs and ensure the safety of construction personnel, while improving work efficiency.

由于输电线路杆塔所在位置地理环境复杂,导致获取的图像背景也相对复杂,这给后续目标的识别与定位造成了困难,而且基于航拍图像的输电线路状态检测技术尚处于起步阶段,可参考文献和研究成果较少。Due to the complex geographical environment of the location of the transmission line towers, the acquired image background is also relatively complex, which makes it difficult to identify and locate subsequent targets. Moreover, the state detection technology of transmission lines based on aerial images is still in its infancy. References and Research results are few.

现有技术中,一类方法是利用颜色信息,使用最大阈值法、最大类间方差法对彩色图像进行分割。存在的缺点:这类方法受光照的影响比较严重,而且输电线路所处自然环境复杂,有树木,河流、道路等复杂背景,使得这类方法检测准确率不高。In the prior art, one type of method utilizes color information to segment a color image by using a maximum threshold method and a maximum inter-class variance method. Disadvantages: This method is seriously affected by light, and the natural environment of the transmission line is complex, with complex backgrounds such as trees, rivers, roads, etc., which makes the detection accuracy of this method not high.

另一类方法是利用绝缘子的片状结构的椭圆信息,用Hough变换来检测椭圆。存在的缺点:由于拍摄角度的问题,片与片之间存在遮挡的情况,造成检测误差。Another method is to use the ellipse information of the sheet structure of the insulator and use the Hough transform to detect the ellipse. Disadvantages: Due to the problem of the shooting angle, there is occlusion between the slices, resulting in detection errors.

发明内容Contents of the invention

为解决现有技术存在的不足,本发明公开了一种高效的用于无人机巡检输电线路绝缘子识别方法,该技术利用深度学习方法通过对航拍到的输电线路图像资料进行学习,然后利用直线拟合方法计算绝缘子的角度信息,能够完成对无人机航拍巡线图像中绝缘子的识别定位技术要求,提高对绝缘子检测的准确性和鲁棒性。In order to solve the deficiencies in the existing technology, the present invention discloses an efficient identification method for transmission line insulators used in drone inspections. The straight line fitting method calculates the angle information of the insulator, which can meet the technical requirements for the identification and positioning of the insulator in the aerial line inspection image of the UAV, and improve the accuracy and robustness of the insulator detection.

为实现上述目的,本发明的具体方案如下:To achieve the above object, the specific scheme of the present invention is as follows:

一种用于无人机巡检输电线路的绝缘子识别方法,包括以下步骤:An insulator identification method for unmanned aerial vehicle inspection of transmission lines, comprising the following steps:

步骤一:图像采集及处理:从输电线路绝缘子图像中提取用于训练的子图像并进行初步处理,形成训练数据集;Step 1: Image acquisition and processing: Extract sub-images for training from the transmission line insulator images and perform preliminary processing to form a training data set;

步骤二:对提取到的用于训练的子图像进行打包处理,添加图像对应的标签;Step 2: Pack the sub-images extracted for training, and add labels corresponding to the images;

步骤三:利用深度学习中的卷积神经网络(CNN)算法对步骤一数据集中的数据进行训练,得到针对绝缘子的检测模型;Step 3: Use the convolutional neural network (CNN) algorithm in deep learning to train the data in the step 1 data set to obtain a detection model for insulators;

步骤四:绝缘子目标区域检测:对输电线路图像进行检测,获取绝缘子目标的候选框;Step 4: Insulator target area detection: detect the transmission line image, and obtain the candidate frame of the insulator target;

步骤五:对候选框进行非极大值抑制,得到最终的绝缘子候选框;Step 5: Perform non-maximum suppression on the candidate frame to obtain the final insulator candidate frame;

步骤六:对得到的最终的绝缘子候选框进行直线拟合操作,获取中心点,候选框的角度和大小信息,最后在输电线路绝缘子图像上进行标注。Step 6: Perform a straight line fitting operation on the obtained final insulator candidate frame, obtain the center point, angle and size information of the candidate frame, and finally mark on the transmission line insulator image.

所述步骤一中,图像采集及处理过程是:在输电线路绝缘子图像中提取绝缘子部件、杆塔和背景的区域图像,将提取到的图像进行缩放处理,对提取到的绝缘子进行角度的旋转操作。In the first step, the image acquisition and processing process is: extracting the regional images of insulator components, poles and backgrounds from the transmission line insulator image, performing scaling processing on the extracted image, and performing angle rotation operation on the extracted insulator.

所述步骤三中,用卷积神经网络算法进行模型训练时:In the third step, when using the convolutional neural network algorithm for model training:

首先设置初始训练使用的模板参数,其中包括卷积神经网络的层数,卷积核的大小,各个节点的初始权重,是否使用下采样处理,每层数据输入输出的个数,激活函数,每层卷积神经网络的梯度下降的学习效率。First, set the template parameters used for the initial training, including the number of layers of the convolutional neural network, the size of the convolution kernel, the initial weight of each node, whether to use downsampling, the number of data input and output for each layer, the activation function, and each Learning Efficiency of Gradient Descent for Multilayer Convolutional Neural Networks.

所述步骤三中,具体的基于卷积神经网络的绝缘子检测模型训练过程包括以下步骤:In said step three, the specific insulator detection model training process based on convolutional neural network includes the following steps:

3-1)前向传导(Feedforward Pass):将输入的彩色图像分RGB三通道提取像素信息,作为卷积神经网络的输入信息;3-1) Feedforward Pass: The input color image is divided into RGB three channels to extract pixel information, which is used as the input information of the convolutional neural network;

3-2)后向传导(BackPropagation Pass):优化前向传导得到的类别标签与样本实际标签间的损失函数。3-2) BackPropagation Pass: optimize the loss function between the category label obtained by the forward pass and the actual label of the sample.

所述步骤3-1)中,卷积神经网络的结构,使用六层的卷积神经网络结构训练模板;In the step 3-1), the structure of the convolutional neural network uses a six-layer convolutional neural network structure training template;

第一层是卷积层,第三层是卷积层,第五层是卷积层,卷积层用设定像素大小的卷积核与输入信息进行卷积操作得到特征向量;The first layer is a convolutional layer, the third layer is a convolutional layer, and the fifth layer is a convolutional layer. The convolutional layer uses a convolution kernel with a set pixel size and input information to perform a convolution operation to obtain a feature vector;

第二层是降采样层,第四层是降采样层,降采样层根据参数模板中的定义,进行降采样操作,采用的是在设定的像素大小的图像块内取最大值作为输出,通过降采样过程有效的在保存有用信息的基础上减少数据处理量;The second layer is the downsampling layer, and the fourth layer is the downsampling layer. The downsampling layer performs the downsampling operation according to the definition in the parameter template, and uses the maximum value in the image block of the set pixel size as the output. Through the down-sampling process, the amount of data processing can be effectively reduced on the basis of preserving useful information;

第六层为全连接层:将第五层得到的特征向量整合,形成一个长向量,将其传递给激活函数获得对输入样本类别的判断,选择最大的输出值作为输入样本的标签。The sixth layer is the fully connected layer: the feature vector obtained in the fifth layer is integrated to form a long vector, which is passed to the activation function to obtain the judgment of the input sample category, and the largest output value is selected as the label of the input sample.

所述步骤3-2)中,假设用于训练集形式是{(x(1),y(1)),(x(2),y(2)),...,(x(n),y(n))},x(i)表示第i个训练数据,y(i)表示数据x(i)对应的数据标签,训练数据集包含n个样本。In the step 3-2), it is assumed that the form of the training set is {(x (1) ,y (1) ),(x (2) ,y (2) ),...,(x (n) ,y (n) )}, x (i) represents the i-th training data, y (i) represents the data label corresponding to the data x (i) , and the training data set contains n samples.

对于单个样本(x,y),学习到的结果为hw,b(x),其损失函数为:For a single sample (x,y), the learned result is h w,b (x), and its loss function is:

所以整体损失函数J(W,b)为:So the overall loss function J(W,b) is:

公式(2)中,sl,sl+1表示第l层和l+1层神经元节点的数目,nl表示神经网络的层数,表示第l组权重参数中连接l层第i个节点和第l+1层第j个节点的权重系数,为第l层第i个节点的偏置,第一项J(W,b;x(i),y(i))是一个均方差项,第二项是正则化项,用来减小权重的幅度,防止过拟合,γ为控制系数。In formula (2), s l , s l+1 represent the number of neuron nodes in layer l and layer l+1, n l represents the number of layers of the neural network, Represents the weight coefficient connecting the i-th node of the l-th layer and the j-th node of the l+1-th layer in the l-th group of weight parameters, is the bias of the i-th node in layer l, the first item J(W,b; x (i) , y (i) ) is a mean square error item, and the second item is a regularization item, which is used to reduce the weight The magnitude of , to prevent over-fitting, γ is the control coefficient.

用梯度下降法对参数W和b进行更新:The parameters W and b are updated using the gradient descent method:

其中,公式(3)中的α是学习速率,用于控制梯度下降的速度。Among them, α in formula (3) is the learning rate, which is used to control the speed of gradient descent.

所述步骤四中,使用卷积神经网络进行绝缘子的检测,详细方法如下:In the fourth step, the convolutional neural network is used to detect the insulator, and the detailed method is as follows:

4-1)提取训练好的卷积神经网络模板,包括权重、偏置以及训练使用的网络结构;然后根据这些参数初始化测试程序;4-1) Extract the trained convolutional neural network template, including weights, biases and network structures used for training; then initialize the test program according to these parameters;

4-2)载入图像,由于无人机采集到的图像较大,对图像进行缩放以加速后续的运算,为了精确的定位绝缘子的位置,加入多尺度方法,在多个尺度上进行滑动框操作,获取具体的目标图像块;4-2) Load the image. Since the image collected by the UAV is large, the image is scaled to speed up the subsequent calculation. In order to accurately locate the position of the insulator, a multi-scale method is added to slide the frame on multiple scales. Operation, to obtain a specific target image block;

4-3)将目标图像块作为输入,进行前向传导操作,获取目标块的所属类别;4-3) The target image block is used as input, and a forward conduction operation is performed to obtain the category to which the target block belongs;

4-4)保存绝缘子类别的目标块信息,其中包括目标块的起点位置及长宽信息。4-4) Save the target block information of the insulation subcategory, including the starting position and length and width information of the target block.

所述步骤六中,使用直线拟合方法对绝缘子标注,具体过程如下:In the sixth step, use the straight line fitting method to mark the insulator, and the specific process is as follows:

6-1)获取步骤五中得到的t个类别的mi,i={1,...,t}个候选框信息,计算每个候选框的中心点位置,并保存;6-1) Obtain the m i , i={1,...,t} candidate frame information of the t categories obtained in step 5, calculate the center point position of each candidate frame, and save it;

6-2)中心点位置为(P,Q),可以用线性拟合的方式对每个类别的中心位置进行拟合,精确的定位每个绝缘子的位置,这里可以用一元线性拟合来解决这个问题:6-2) The position of the center point is (P, Q). The center position of each category can be fitted by linear fitting, and the position of each insulator can be accurately positioned. Here, one-element linear fitting can be used to solve the problem. this problem:

Y=kX+b' (4)Y=kX+b' (4)

6-3)用最小二乘拟合法,计算出一条最能反映X与Y关系的直线。6-3) Calculate a straight line that can best reflect the relationship between X and Y by using the least squares fitting method.

所述步骤6-3)中,定义损失函数为:In the step 6-3), the loss function is defined as:

其中,(pj,qj)为属于i类的第j个矩形框的中心点。Among them, (p j , q j ) is the center point of the jth rectangular frame belonging to class i.

通过对b'和k求偏导,来获取b'和k的最优解:The optimal solution of b' and k is obtained by taking partial derivatives of b' and k:

得到k和b'的最终解为The final solution to get k and b' is

其中,(pj,qj)为属于i类的第j个矩形框的中心点,mi表示第i类的矩形框的个数。Among them, (p j , q j ) is the center point of the jth rectangular frame belonging to the i class, and m i represents the number of the i class rectangular frame.

本发明的有益效果:Beneficial effects of the present invention:

本申请采用卷积层、降采样层和全链接层:经过三层卷积和两层降采样操作后,将所有的特征块进行全连接操作,这样就得到了对图像块的最终的特征描述。This application uses convolution layer, downsampling layer and full connection layer: after three layers of convolution and two layers of downsampling operations, all feature blocks are fully connected, so that the final feature description of the image block is obtained .

输电线路绝缘子的有效识别技术可以有效实现对巡检图像中的绝缘子目标的定位,为后续缺陷诊断提供基础。同时,这一技术也可对巡检获得的图像进行筛选,减轻人工筛查的负担,有着广阔的应用前景。The effective identification technology of transmission line insulators can effectively realize the positioning of insulator targets in inspection images, and provide a basis for subsequent defect diagnosis. At the same time, this technology can also screen the images obtained by inspections, reducing the burden of manual screening, and has broad application prospects.

附图说明Description of drawings

图1CNN结构图;Figure 1 CNN structure diagram;

图2卷积和降采样过程;Figure 2 Convolution and downsampling process;

图3无人机航拍输电线路图像;Figure 3 UAV aerial photography transmission line image;

图4候选框标注后的输电线路图像;Figure 4 The transmission line image after the candidate frame is marked;

图5最终绝缘子检测结果图像;Figure 5 The image of the final insulator inspection results;

图6训练流程图;Figure 6 training flow chart;

图7目标检测与定位流程图。Fig. 7 Target detection and localization flow chart.

具体实施方式:Detailed ways:

下面结合附图对本发明进行详细说明:The present invention is described in detail below in conjunction with accompanying drawing:

实验过程的训练流程图如图6所示,提取数据集,数据集打包,开始训练过程,在训练之前进行训练层次结构与初始化参数,训练时,向前训练,反向反馈,判断最大迭代次数/精度要求,如果是,则输出模板,否则,继续训练。The training flow chart of the experimental process is shown in Figure 6. The data set is extracted, the data set is packaged, and the training process is started. Before training, the training hierarchy and initialization parameters are performed. During training, forward training, reverse feedback, and judgment of the maximum number of iterations /Accuracy requirement, if yes, output template, otherwise, continue training.

目标识别与定位流程图如图7所示,输入图像,初始化检测模型,滑动窗提取子图,判断是否是绝缘子,如果不是,返回滑动窗提取子图过程,如果是,存储候选框,拟合候选框,在原图标记位置,输出。The flow chart of target recognition and positioning is shown in Figure 7. Input the image, initialize the detection model, and extract the subgraph through the sliding window to determine whether it is an insulator. If not, return to the process of extracting the subgraph through the sliding window. If yes, store the candidate frame and fit The candidate box is output at the position marked in the original image.

一种高效的用于无人机巡检输电线路绝缘子识别方法,具体步骤包括:An efficient method for identifying insulators of transmission lines by UAV inspections, the specific steps include:

1)训练集:从输电线路图像中提取用于训练的子图像,形成训练数据集。1) Training set: Extract sub-images for training from the transmission line image to form a training data set.

2)对提取到的绝缘子图像进行打包处理,添加对应图像的标签;2) pack the extracted insulator image, and add the label of the corresponding image;

3)利用深度学习中的卷积神经网络(CNN)算法对数据进行训练,得到针对绝缘子的检测模型;3) Use the convolutional neural network (CNN) algorithm in deep learning to train the data to obtain a detection model for insulators;

4)绝缘子目标区域检测:对输电线路图像进行检测,获取绝缘子目标的候选框;4) Insulator target area detection: detect the transmission line image, and obtain the candidate frame of the insulator target;

5)对候选框进行非极大值抑制,得到最终的绝缘子候选框。5) Perform non-maximum suppression on the candidate frame to obtain the final insulator candidate frame.

6)对得到的候选框进行直线拟合操作,获取中心点,框的角度和大小信息,最后在原图上进行标注。6) Perform a straight line fitting operation on the obtained candidate frame, obtain the center point, the angle and size information of the frame, and finally mark it on the original image.

所述步骤1)的图像采集过程是:在原图中提取绝缘子部件、杆塔和背景的区域图像,为了满足训练的要求,将提取到的图像进行缩放处理,尺寸大小缩放到64*64像素。在实际情况中,由于拍摄角度原因得到杆塔图像可能会存在倾斜的情况,为此对提取到的绝缘子进行小角度的旋转操作,来增加数据集的多样性,提高训练模型的鲁棒性。The image acquisition process of the step 1) is: extract the regional images of the insulator parts, towers and background in the original image, in order to meet the requirements of the training, the extracted images are scaled, and the size is scaled to 64*64 pixels. In actual situations, the image of the tower may be tilted due to the shooting angle. Therefore, the extracted insulators are rotated at a small angle to increase the diversity of the data set and improve the robustness of the training model.

所述步骤3)步中,用CNN算法进行模型训练的具体方法如下所示:Described step 3) in step, the concrete method that carries out model training with CNN algorithm is as follows:

(1)首先要设置初始的训练使用的模板参数,其中包括卷积神经网络的层数,卷积核的大小,各个节点的初始权重,是否使用下采样处理,每层数据输入输出的个数,激活函数等,还有对应模板的梯度下降的学习效率的设定。(1) First, set the template parameters used for the initial training, including the number of layers of the convolutional neural network, the size of the convolution kernel, the initial weight of each node, whether to use downsampling processing, and the number of data inputs and outputs for each layer , activation function, etc., as well as the setting of the learning efficiency of the gradient descent of the corresponding template.

(2)网络结构,这里我们使用六层的卷积神经网络结构训练模板。形式如图1中CNN结构图所示。(2) Network structure, here we use a six-layer convolutional neural network structure training template. The form is shown in the CNN structure diagram in Figure 1.

具体的基于CNN的绝缘子检测模型训练过程主要有以下两步:The specific CNN-based insulator detection model training process mainly has the following two steps:

A.前向传导:将输入的彩色图像分RGB三通道提取像素信息,作为卷积网络的输入信息,第一层是卷积层(Convolution),用5*5像素大小的卷积核与输入信息进行卷积操作。通过卷积操作可以使原信号增强,并且降低噪声的影响。第二层是降采样层,根据参数模板中的定义,进行降采样操作(SubSampling/Pooling),这里采用的是在2*2的图像块内取最大值作为输出。通过降采样过程可以有效的在保存有用信息的基础上减少数据处理量;第三层卷积层、第四层降采样层、第五层卷积层进行类似的操作;第六层为全连接层:将第五层得到的特征向量整合,形成一个长向量,将其传递给激活函数获得对输入样本类别的判断。如图2所示。A. Forward conduction: Divide the input color image into RGB three channels to extract pixel information as the input information of the convolutional network. The first layer is the convolutional layer (Convolution), which uses a 5*5 pixel-sized convolution kernel and input The information is convoluted. Through the convolution operation, the original signal can be enhanced and the influence of noise can be reduced. The second layer is the downsampling layer. According to the definition in the parameter template, the downsampling operation (SubSampling/Pooling) is performed. Here, the maximum value in the 2*2 image block is used as the output. The downsampling process can effectively reduce the amount of data processing on the basis of preserving useful information; the third convolutional layer, the fourth downsampling layer, and the fifth convolutional layer perform similar operations; the sixth layer is fully connected Layer: Integrate the feature vectors obtained in the fifth layer to form a long vector, which is passed to the activation function to obtain the judgment of the input sample category. as shown in picture 2.

下面对卷积层、降采样层和全链接层进一步进行描述:The convolutional layer, downsampling layer and full connection layer are further described below:

输入彩色图像,用一个可训练的滤波器fx与图像进行卷积运算,然后加上一个偏执bx,这就提取到了一个图像特征,得到卷积层的Cx;为了降低数据量,四邻域局部内像素取最大值变作为输出,然后通过ReLu激活函数完成对数据的非线性变换,非线性变换可以降低特征与特征之间的线性关系,增强特征的表述能力。而且,通过这样降采样层的处理后,得到的数据量仅为卷积层的四分之一。Input a color image, use a trainable filter fx to perform a convolution operation with the image, and then add a paranoid bx, which extracts an image feature and obtains the Cx of the convolutional layer; in order to reduce the amount of data, the four-neighborhood local The maximum value of the pixel is changed as the output, and then the nonlinear transformation of the data is completed through the ReLu activation function. The nonlinear transformation can reduce the linear relationship between features and enhance the expressive ability of features. Moreover, after the processing of such a downsampling layer, the amount of data obtained is only a quarter of that of the convolutional layer.

经过三层卷积和两层降采样操作后,将所有的特征块进行全连接操作,这样就得到了对图像块的最终的特征描述。为了预测图像的类别,将得到的特征描述子进行激活函数运算处理,选择最大的输出值作为图像块的标签。After three layers of convolution and two layers of downsampling operations, all feature blocks are fully connected, so that the final feature description of the image block is obtained. In order to predict the category of the image, the obtained feature descriptor is subjected to activation function operation processing, and the largest output value is selected as the label of the image block.

B.后向传导:通过Feedforward Pass得到的类别标签与样本实际标签来计算损失函数。假设我们用于训练集形式是{(x(1),y(1)),(x(2),y(2)),...,(x(n),y(n))},训练数据集包含n个样本,对于单个样本(x,y),学习到的结果为hw,b(x),其损失函数为:B. Backward conduction: Calculate the loss function through the category label obtained by Feedforward Pass and the actual label of the sample. Assume that the form we use for the training set is {(x (1) ,y (1) ),(x (2) ,y (2) ),...,(x (n) ,y (n) )}, The training data set contains n samples. For a single sample (x, y), the learned result is h w, b (x), and its loss function is:

所以整体损失函数为:So the overall loss function is:

公式(2)sl表示第l层中神经元的个数,表示第l组权重参数中连接l层第i个节点和第l+1层第j个节点的权重系数。第一项J(W,b;x(i),y(i))是一个均方差项,第二项是正则化项,用来减小权重的幅度,防止过拟合,γ为控制系数。用梯度下降法每次迭代更新对参数W和b进行更新:Formula (2) s l represents the number of neurons in layer l, Indicates the weight coefficient connecting the i-th node of layer l and the j-th node of layer l+1 in the l-th group of weight parameters. The first item J(W,b; x (i) , y (i) ) is a mean square error item, the second item is a regularization item, which is used to reduce the magnitude of the weight and prevent overfitting, and γ is the control coefficient . The parameters W and b are updated with each iteration update of the gradient descent method:

公式(3)中的α是学习速率,用于控制梯度下降的速度。α in formula (3) is the learning rate, which is used to control the speed of gradient descent.

在下面的伪代码中,ΔW(l)是一个与矩阵W(l)维度相同的矩阵,Δb(l)是一个与b(l)维度相同的向量。下面,给出实现梯度下降法中的一次迭代过程:In the following pseudocode, ΔW (l) is a matrix with the same dimensions as matrix W (l) , and Δb (l) is a vector with the same dimensions as b (l) . Below, an iterative process in implementing the gradient descent method is given:

1.对所有层l,令ΔW(l):=0,Δb(l):=0;1. For all layers l, let ΔW (l) :=0, Δb (l) :=0;

2.对i=1到n:2. For i=1 to n:

a.使用反向传播算法计算 a. Calculated using the backpropagation algorithm

b.计算 b. Calculate

c.计算 c. Calculate

3.更新权重参数:3. Update weight parameters:

如此,就可以重复的使用梯度下降法来迭代计算达到减小损失函数J(W,b)的值,进而求解整个神经网络。In this way, the gradient descent method can be used repeatedly to iteratively calculate the value to reduce the loss function J(W,b), and then solve the entire neural network.

所述步骤4)中,使用CNN进行绝缘子的检测,详细方法如下:In described step 4), use CNN to carry out the detection of insulator, detailed method is as follows:

(1)提取训练好的CNN模板,包括权重、偏置以及训练使用的网络结构;然后根据这些参数初始化测试程序框架;(1) Extract the trained CNN template, including weights, biases, and the network structure used for training; then initialize the test program framework according to these parameters;

(2)载入图像(如图3所示),由于无人机采集到的图像较大(5184*3456),对图像进行缩放以加速后续的运算。为了精确的定位绝缘子的位置,加入多尺度方法,在多个尺度上进行滑动框操作,获取具体的目标图像块。(2) Load the image (as shown in Figure 3). Since the image collected by the drone is large (5184*3456), the image is scaled to speed up subsequent calculations. In order to accurately locate the position of the insulator, a multi-scale method is added to perform sliding frame operations on multiple scales to obtain specific target image blocks.

(3)将目标图像块作为输入,进行CNN Feedforward Pass操作,获取目标块的所属类别。(4)保存绝缘子类别的目标块信息,其中包括目标块的起点位置及长宽信息,图4为经过标记出绝缘子的图像;(3) The target image block is used as input, and the CNN Feedforward Pass operation is performed to obtain the category of the target block. (4) Save the target block information of the insulator category, including the starting position and length and width information of the target block, and Fig. 4 is the image of the insulator through marking;

所述步骤6)中,使用拟合方法对绝缘子标注,具体过程如下:In the step 6), the fitting method is used to mark the insulator, and the specific process is as follows:

(1)获取步骤(5)得到的t个类别的mi,i={1,...,t}个候选框信息,计算每个框的中心点位(1) Obtain the m i , i={1,...,t} candidate frame information of t categories obtained in step (5), and calculate the center point of each frame

置,并保存。set, and save.

(2)中心点位置为(P,Q),可以用线性拟合的方式对每个类别的中心位置进行拟合,精确的定位每个绝缘子的位置。这里可以用一元线性拟合来解决这个问题:(2) The position of the center point is (P, Q), and the center position of each category can be fitted by a linear fitting method to accurately locate the position of each insulator. Here a unary linear fit can be used to solve this problem:

Y=kX+b' (4)Y=kX+b' (4)

(3)用最小二乘拟合法,计算出一条最能反映X与Y关系的直线:(3) Calculate a straight line that can best reflect the relationship between X and Y by using the least squares fitting method:

定义损失函数为:Define the loss function as:

通过对b'和k求偏导,来获取b'和k的最优解:The optimal solution of b' and k is obtained by taking partial derivatives of b' and k:

得到k和b'的最终解为The final solution to get k and b' is

这样就确定了绝缘子的角度信息,根据角度信息在原图上标记出绝缘子的具体位置。如图5为最终的绝缘子标记图像。In this way, the angle information of the insulator is determined, and the specific position of the insulator is marked on the original map according to the angle information. Figure 5 is the final insulator marking image.

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific implementation of the present invention has been described above in conjunction with the accompanying drawings, it does not limit the protection scope of the present invention. Those skilled in the art should understand that on the basis of the technical solution of the present invention, those skilled in the art do not need to pay creative work Various modifications or variations that can be made are still within the protection scope of the present invention.

Claims (10)

1.一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,包括以下步骤:1. An insulator identification method for unmanned aerial vehicle inspection transmission line, it is characterized in that, comprises the following steps: 步骤一:图像采集及处理:从输电线路绝缘子图像中提取用于训练的子图像并进行初步处理,形成训练数据集;Step 1: Image acquisition and processing: Extract sub-images for training from the transmission line insulator images and perform preliminary processing to form a training data set; 步骤二:对提取到的用于训练的子图像进行打包处理,添加对应图像的标签;Step 2: Pack the sub-images extracted for training, and add the labels of the corresponding images; 步骤三:利用深度学习中的卷积神经网络算法对步骤一数据集中的数据进行训练,得到针对绝缘子的检测模型;Step 3: Use the convolutional neural network algorithm in deep learning to train the data in the step 1 dataset to obtain a detection model for insulators; 步骤四:绝缘子目标区域检测:对输电线路图像进行检测,获取绝缘子目标的候选框;Step 4: Insulator target area detection: detect the transmission line image, and obtain the candidate frame of the insulator target; 步骤五:对候选框进行非极大值抑制,得到最终的绝缘子候选框;Step 5: Perform non-maximum suppression on the candidate frame to obtain the final insulator candidate frame; 步骤六:对得到的最终的绝缘子候选框进行直线拟合操作,获取中心点,候选框的角度和大小信息,最后在输电线路绝缘子图像上进行标注。Step 6: Perform a straight line fitting operation on the obtained final insulator candidate frame, obtain the center point, angle and size information of the candidate frame, and finally mark on the transmission line insulator image. 2.如权利要求1所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤一中,图像采集及处理过程是:在输电线路绝缘子图像中提取绝缘子部件、杆塔和背景的区域图像,将提取到的图像进行缩放处理,对提取到的绝缘子进行角度的旋转操作。2. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 1, it is characterized in that, in described step 1, image acquisition and processing process are: extract insulator in transmission line insulator image For the regional images of components, towers and backgrounds, the extracted images are scaled, and the angles of the extracted insulators are rotated. 3.如权利要求1所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤三中,用卷积神经网络算法进行模型训练时:3. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 1, it is characterized in that, in described step 3, when carrying out model training with convolutional neural network algorithm: 首先设置初始的训练使用的模板参数,其中包括卷积神经网络的层数,卷积核的大小,各个节点的初始权重,是否使用下采样处理,每层数据输入输出的个数,激活函数,每层卷积神经网络的梯度下降的学习效率。First set the template parameters used for initial training, including the number of layers of the convolutional neural network, the size of the convolution kernel, the initial weight of each node, whether to use downsampling processing, the number of data inputs and outputs for each layer, and the activation function. Learning Efficiency of Gradient Descent in Per-Layer Convolutional Neural Networks. 4.如权利要求1或3所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤三中,具体的基于卷积神经网络的绝缘子检测模型训练过程包括以下步骤:4. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 1 or 3, it is characterized in that, in described step 3, concrete insulator detection model training process based on convolutional neural network Include the following steps: 3-1)前向传导:将输入的彩色图像分RGB三通道提取像素信息,作为卷积神经网络的输入信息;3-1) Forward conduction: the input color image is divided into RGB three channels to extract pixel information, which is used as the input information of the convolutional neural network; 3-2)后向传导:通过前向传导得到的类别标签与样本实际标签来计算损失函数。3-2) Backward conduction: Calculate the loss function through the category label obtained by the forward conduction and the actual label of the sample. 5.如权利要求4所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤3-1)中,卷积神经网络的结构,使用六层的卷积神经网络结构训练模板,第一层是卷积层,第三层是卷积层,第五层是卷积层,卷积层用设定像素大小的卷积核与输入信息进行卷积操作得到特征向量;5. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 4, it is characterized in that, in described step 3-1), the structure of convolutional neural network, uses the volume of six layers Convolutional neural network structure training template, the first layer is a convolutional layer, the third layer is a convolutional layer, and the fifth layer is a convolutional layer. The convolutional layer uses a convolution kernel with a set pixel size to perform convolution operations with input information. Get the feature vector; 第二层是降采样层,第四层是降采样层,降采样层根据参数模板中的定义,进行降采样操作,采用的是在设定的像素大小的图像块内取最大值作为输出,通过降采样过程有效的在保存有用信息的基础上减少数据处理量;The second layer is the downsampling layer, and the fourth layer is the downsampling layer. The downsampling layer performs the downsampling operation according to the definition in the parameter template, and uses the maximum value in the image block of the set pixel size as the output. Through the down-sampling process, the amount of data processing can be effectively reduced on the basis of preserving useful information; 第六层为全连接层:将第五层得到的特征向量整合,形成一个长向量,将其传递给激活函数获得对输入样本类别的判断,选择最大的输出值作为图像块的标签。The sixth layer is the fully connected layer: the feature vector obtained in the fifth layer is integrated to form a long vector, which is passed to the activation function to obtain the judgment of the input sample category, and the largest output value is selected as the label of the image block. 6.如权利要求4所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤3-2)中,假设用于训练集形式是{(x(1),y(1)),(x(2),y(2)),...,(x(n),y(n))},x(i)表示第i个训练数据,y(i)表示数据x(i)对应的数据标签,训练数据集包含n个样本;6. a kind of insulator identification method that is used for unmanned aerial vehicle inspection transmission line as claimed in claim 4, is characterized in that, in described step 3-2), it is assumed that the training set form is {(x (1 ) ,y (1) ),(x (2) ,y (2) ),...,(x (n) ,y (n) )}, x (i) represents the i-th training data, y ( i) represents the data label corresponding to the data x (i) , and the training data set contains n samples; 对于单个样本(x,y),学习到的结果为hw,b(x),其损失函数为:For a single sample (x,y), the learned result is h w,b (x), and its loss function is: <mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>;</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>y</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>;</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>|</mo><mo>|</mo><msub><mi>h</mi><mrow><mi>w</mi><mo>,</mo><mi>b</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mi>y</mi><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 所以整体损失函数为:So the overall loss function is: <mrow> <mtable> <mtr> <mtd> <mrow> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>y</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfrac> <mi>&amp;gamma;</mi> <mn>2</mn> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>n</mi> <mi>l</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>s</mi> <mrow> <mi>l</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msubsup> <mi>W</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <mi>w</mi> <mo>,</mo> <mi>b</mi> </mrow> </msub> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> <mo>-</mo> <msup> <mi>y</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </msup> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mo>+</mo> <mfrac> <mi>&amp;gamma;</mi> <mn>2</mn> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <msub> <mi>n</mi> <mi>l</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>s</mi> <mi>l</mi> </msub> </munderover> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>s</mi> <mrow> <mi>l</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msubsup> <mi>W</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow><mo>=</mo><mo>&amp;lsqb;</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>y</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>)</mo></mrow><mo>&amp;rsqb;</mo><mo>+</mo><mfrac><mi>&amp;gamma;</mi><mn>2</mn></mfrac><munderover><mi>&amp;Sigma;</mi><mrow><mi>l</mi>mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mi>l</mi></msub><mo>-</mo><mn>1</mn></mrow></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>s</mi><mi>l</mi></msub></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>s</mi><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></munderover><msup><mrow><mo>(</mo><msubsup><mi>W</mi><mrow><mi>j</mi><mi>i</mi></mrow><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mo>&amp;lsqb;</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mrow><mo>(</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>|</mo><mo>|</mo><msub><mi>h</mi><mrow><mi>w</mi><mo>,</mo><mi>b</mi></mrow></msub><mo>(</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>)</mo><mo>-</mo><msup><mi>y</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></msup><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>)</mo></mrow><mo>&amp;rsqb;</mo><mo>+</mo><mo>+</mo><mfrac><mi>&amp;gamma;</mi><mn>2</mn></mfrac><munderover><mi>&amp;Sigma;</mi><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mrow><msub><mi>n</mi><mi>l</mi></msub><mo>-</mo><mn>1</mn></mrow></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>s</mi><mi>l</mi></msub></munderover><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>s</mi><mrow><mi>l</mi><mo>+</mo><mn>1</mn></mrow></msub></munderover><msup><mrow><mo>(</mo><msubsup><mi>W</mi><mrow><mi>j</mi><mi>i</mi></mrow><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>)</mo></mrow><mn>2</mn></msup></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 公式(2)sl表示第l层中神经元的个数,表示第l组权重参数中连接l层第i个节点和第l+1层第j个节点的权重系数,为第l层第i个节点的偏置,第一项J(W,b;x(i),y(i))是一个均方差项,第二项是正则化项,用来减小权重的幅度,防止过拟合,γ为控制系数。Formula (2) s l represents the number of neurons in layer l, Represents the weight coefficient connecting the i-th node of the l-th layer and the j-th node of the l+1-th layer in the l-th group of weight parameters, is the bias of the i-th node in layer l, the first item J(W,b; x (i) , y (i) ) is a mean square error item, and the second item is a regularization item, which is used to reduce the weight The magnitude of , to prevent over-fitting, γ is the control coefficient. 7.如权利要求6所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,用梯度下降法每次迭代更新对参数W和b进行更新:7. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 6, it is characterized in that, update parameter W and b with gradient descent method each iterative update: <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>W</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>W</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mi>&amp;alpha;</mi> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>W</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> </mrow> </mfrac> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>b</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mi>&amp;alpha;</mi> <mfrac> <mo>&amp;part;</mo> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>)</mo> </mrow> </msubsup> </mrow> </mfrac> <mi>J</mi> <mrow> <mo>(</mo> <mi>W</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msubsup><mi>W</mi><mrow><mi>j</mi><mi>i</mi></mrow><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>W</mi><mrow><mi>j</mi><mi>i</mi></mrow><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mi>&amp;alpha;</mi><mfrac><mo>&amp;part;</mo><mrow><mo>&amp;part;</mo><msubsup><mi>W</mi><mrow><mi>j</mi><mi>i</mi></mrow><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup></mrow></mfrac><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></mtd></mo>mtr><mtr><mtd><mrow><msubsup><mi>b</mi><mi>i</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msubsup><mi>b</mi><mi>i</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup><mo>-</mo><mi>&amp;alpha;</mi><mfrac><mo>&amp;part;</mo><mrow><mo>&amp;part;</mo><msubsup><mi>b</mi><mi>i</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow></msubsup></mrow></mfrac><mi>J</mi><mrow><mo>(</mo><mi>W</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 其中,公式(3)中的α是学习速率,用于控制梯度下降的速度。Among them, α in formula (3) is the learning rate, which is used to control the speed of gradient descent. 8.如权利要求1所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤四中,使用卷积神经网络进行绝缘子的检测,详细方法如下:8. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 1, it is characterized in that, in described step 4, use convolutional neural network to carry out the detection of insulator, detailed method is as follows: 4-1)提取训练好的卷积神经网络模板,包括权重、偏置以及训练使用的网络结构;然后根据这些参数初始化测试程序;4-1) Extract the trained convolutional neural network template, including weights, biases, and the network structure used for training; then initialize the test program according to these parameters; 4-2)载入图像,由于无人机采集到的图像尺度较大,对图像进行缩放以加速后续的运算,为了精确的定位绝缘子的位置,加入多尺度方法,在多个尺度上进行滑动框操作,获取具体的目标图像块;4-2) Load the image. Since the image collected by the drone is large in scale, the image is scaled to speed up subsequent calculations. In order to accurately locate the position of the insulator, a multi-scale method is added to slide on multiple scales Frame operation to obtain specific target image blocks; 4-3)将目标图像块作为输入,进行前向传导操作,获取目标块的所属类别;4-3) The target image block is used as input, and a forward conduction operation is performed to obtain the category to which the target block belongs; 4-4)保存绝缘子类别的目标块信息,其中包括目标块的起点位置及长宽信息。4-4) Save the target block information of the insulation subcategory, including the starting position and length and width information of the target block. 9.如权利要求1所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤六中,使用直线拟合方法对绝缘子标注,具体过程如下:9. A kind of insulator identification method for UAV inspection transmission line as claimed in claim 1, it is characterized in that, in described step 6, use straight line fitting method to mark insulator, specific process is as follows: 6-1)获取步骤五中得到的t个类别的mi,i={1,...,t}个候选框信息,计算每个候选框的中心点位置,并保存,mi表示第i类的矩形框的个数;6-1) Obtain the m i , i={1,...,t} candidate frame information of t categories obtained in step 5, calculate the position of the center point of each candidate frame, and save it, m i represents the The number of rectangular boxes of class i; 6-2)中心点位置为(P,Q),用线性拟合的方式对每个类别的中心位置进行拟合,精确的定位每个绝缘子的位置,用一元线性拟合来解决这个问题:6-2) The position of the center point is (P, Q), and the center position of each category is fitted by linear fitting, and the position of each insulator is accurately positioned, and this problem is solved by unary linear fitting: Y=kX+b' (4)Y=kX+b' (4) 6-3)用最小二乘拟合法,计算出一条最能反映X与Y关系的直线。6-3) Calculate a straight line that can best reflect the relationship between X and Y by using the least squares fitting method. 10.如权利要求9所述的一种用于无人机巡检输电线路的绝缘子识别方法,其特征是,所述步骤6-3)中,定义损失函数为:10. A kind of insulator identification method for unmanned aerial vehicle inspection transmission line as claimed in claim 9, it is characterized in that, in described step 6-3), define loss function as: <mrow> <mi>L</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mo>&amp;prime;</mo> </msup> <mo>+</mo> <msub> <mi>kp</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>L</mi><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msup><mrow><mo>(</mo><msub><mi>q</mi><mi>j</mi></msub><mo>-</mo><mo>(</mo><mrow><msup><mi>b</mi><mo>&amp;prime;</mo></msup><mo>+</mo><msub><mi>kp</mi><mi>j</mi></msub></mrow><mo>)</mo><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 通过对b'和k求偏导,来获取b'和k的最优解:The optimal solution of b' and k is obtained by taking partial derivatives of b' and k: <mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>L</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>b</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mfrac> <mo>=</mo> <mn>2</mn> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mo>&amp;prime;</mo> </msup> <mo>+</mo> <msub> <mi>kp</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>L</mi> </mrow> <mrow> <mo>&amp;part;</mo> <mi>k</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mn>2</mn> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>-</mo> <mo>(</mo> <mrow> <msup> <mi>b</mi> <mo>&amp;prime;</mo> </msup> <mo>+</mo> <msub> <mi>kp</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>j</mi> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><mfrac><mrow><mo>&amp;part;</mo><mi>L</mi></mrow><mrow><mo>&amp;part;</mo><msup><mi>b</mi><mo>&amp;prime;</mo></msup></mrow></mfrac><mo>=</mo><mn>2</mn><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><mrow><mo>(</mo><msub><mi>q</mi><mi>j</mi></msub><mo>-</mo><mo>(</mo><mrow><msup><mi>b</mi><mo>&amp;prime;</mo></msup><mo>+</mo><msub><mi>kp</mi><mi>j</mi></msub></mrow><mo>)</mo><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mfrac><mrow><mo>&amp;part;</mo><mi>L</mi></mrow><mrow><mo>&amp;part;</mo><mi>k</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mn>2</mn><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><mrow><mo>(</mo><msub><mi>q</mi><mi>j</mi></msub><mo>-</mo><mo>(</mo><mrow><msup><mi>b</mi><mo>&amp;prime;</mo></msup><mo>+</mo><msub><mi>kp</mi><mi>j</mi></msub></mrow><mo>)</mo><mo>)</mo></mrow><msub><mi>p</mi><mi>j</mi></msub></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 得到k和b'的最终解为The final solution to get k and b' is <mrow> <mtable> <mtr> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>*</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>p</mi> <mi>j</mi> </msub> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>p</mi> <mi>j</mi> </msub> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>q</mi> <mi>j</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>*</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msubsup> <mi>p</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msubsup> <mi>q</mi> <mi>j</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>b</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>*</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msubsup> <mi>p</mi> <mi>j</mi> <mn>2</mn> </msubsup> <msub> <mi>q</mi> <mi>j</mi> </msub> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>p</mi> <mi>j</mi> </msub> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msub> <mi>q</mi> <mi>j</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>*</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msubsup> <mi>p</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>m</mi> <mi>i</mi> </msub> </munderover> <msubsup> <mi>q</mi> <mi>j</mi> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> <mrow><mtable><mtr><mtd><mrow><mi>k</mi><mo>=</mo><mfrac><mrow><msub><mi>m</mi><mi>i</mi></msub><mo>*</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msub><mi>p</mi><mi>j</mi></msub><msub><mi>q</mi><mi>j</mi></msub><mo>-</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msub><mi>p</mi><mi>j</mi></msub><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msub><mi>q</mi><mi>j</mi></msub></mrow><mrow><msub><mi>m</mi><mi>i</mi></msub><mo>*</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msubsup><mi>p</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msubsup><mi>q</mi><mi>j</mi><mn>2</mn></msubsup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>b</mi><mo>&amp;prime;</mo></msup><mo>=</mo><mfrac><mrow><msub><mi>m</mi><mi>i</mi></msub><mo>*</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msubsup><mi>p</mi><mi>j</mi><mn>2</mn></msubsup><msub><mi>q</mi><mi>j</mi></msub><mo>-</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msub><mi>p</mi><mi>j</mi></msub><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msub><mi>q</mi><mi>j</mi></msub></mrow><mrow><msub><mi>m</mi><mi>i</mi></msub><mo>*</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msubsup><mi>p</mi><mi>j</mi><mn>2</mn></msubsup><mo>-</mo><munderover><mi>&amp;Sigma;</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>m</mi><mi>i</mi></msub></munderover><msubsup><mi>q</mi><mi>j</mi><mn>2</mn></msubsup></mrow></mfrac></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mo>;</mo></mrow> 其中,(pj,qj)为属于i类的第j个矩形框的中心点,mi表示第i类的矩形框的个数。Among them, (p j , q j ) is the center point of the jth rectangular frame belonging to the i class, and m i represents the number of the i class rectangular frame.
CN201510330413.0A 2015-06-15 2015-06-15 A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity Active CN104978580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510330413.0A CN104978580B (en) 2015-06-15 2015-06-15 A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510330413.0A CN104978580B (en) 2015-06-15 2015-06-15 A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity

Publications (2)

Publication Number Publication Date
CN104978580A CN104978580A (en) 2015-10-14
CN104978580B true CN104978580B (en) 2018-05-04

Family

ID=54275065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510330413.0A Active CN104978580B (en) 2015-06-15 2015-06-15 A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity

Country Status (1)

Country Link
CN (1) CN104978580B (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551036B (en) * 2015-12-10 2019-10-08 中国科学院深圳先进技术研究院 A kind of training method and device of deep learning network
CN105528595A (en) * 2016-02-01 2016-04-27 成都通甲优博科技有限责任公司 Method for identifying and positioning power transmission line insulators in unmanned aerial vehicle aerial images
CN105844627B (en) * 2016-03-21 2019-02-05 华中科技大学 A background suppression method of sea surface target image based on convolutional neural network
CN106228158A (en) * 2016-07-25 2016-12-14 北京小米移动软件有限公司 The method and apparatus of picture detection
CN106503742B (en) * 2016-11-01 2019-04-26 广东电网有限责任公司电力科学研究院 A kind of visible images insulator recognition methods
CN108154072A (en) * 2016-12-02 2018-06-12 天津工业大学 Insulator breakdown of taking photo by plane based on depth convolutional neural networks detects automatically
CN106682592B (en) * 2016-12-08 2023-10-27 北京泛化智能科技有限公司 Image automatic identification system and method based on neural network method
CN106774389A (en) * 2016-12-09 2017-05-31 武汉科技大学 A kind of four rotor wing unmanned aerial vehicles electricity tower method for inspecting based on motor learning
CN106595551B (en) * 2016-12-13 2019-01-04 武汉大学 Ice covering thickness detection method in powerline ice-covering image based on deep learning
CN106934346B (en) * 2017-01-24 2019-03-15 北京大学 A kind of method of target detection performance optimization
CN106895824A (en) * 2017-01-24 2017-06-27 国网四川省电力公司检修公司 Unmanned plane localization method based on computer vision
CN106980365A (en) * 2017-02-21 2017-07-25 华南理工大学 The first visual angle dynamic gesture identification method based on depth convolutional neural networks framework
CN106934418B (en) * 2017-03-09 2021-05-14 国家电网公司 Insulator infrared diagnosis method based on convolution recursive network
CN106874890A (en) * 2017-03-16 2017-06-20 天津大学 A kind of method of insulator missing in identification transmission line of electricity based on Aerial Images
CN107133943B (en) * 2017-04-26 2018-07-06 贵州电网有限责任公司输电运行检修分公司 A kind of visible detection method of stockbridge damper defects detection
CN107145846B (en) * 2017-04-26 2018-10-19 贵州电网有限责任公司输电运行检修分公司 A kind of insulator recognition methods based on deep learning
CN107230205A (en) * 2017-05-27 2017-10-03 国网上海市电力公司 A kind of transmission line of electricity bolt detection method based on convolutional neural networks
WO2018218481A1 (en) * 2017-05-31 2018-12-06 深圳市大疆创新科技有限公司 Neural network training method and device, computer system and mobile device
CN107316004A (en) * 2017-06-06 2017-11-03 西北工业大学 Space Target Recognition based on deep learning
CN107479368B (en) 2017-06-30 2021-09-21 北京百度网讯科技有限公司 Method and system for training unmanned aerial vehicle control model based on artificial intelligence
CN107369291A (en) * 2017-07-13 2017-11-21 南京理工大学 The anti-external force damage alarm system and method for high-tension line based on deep learning
CN107292885A (en) * 2017-08-08 2017-10-24 广东工业大学 A kind of product defects classifying identification method and device based on autocoder
CN107729808B (en) * 2017-09-08 2020-05-01 国网山东省电力公司电力科学研究院 An image intelligent acquisition system and method for unmanned aerial vehicle inspection of transmission lines
CN108037133B (en) * 2017-12-27 2021-01-26 武汉市智勤创亿信息技术股份有限公司 Intelligent electric power equipment defect identification method and system based on unmanned aerial vehicle inspection image
CN108229587B (en) * 2018-02-06 2021-04-06 贵州电网有限责任公司 Autonomous transmission tower scanning method based on hovering state of aircraft
CN108648169B (en) * 2018-03-20 2020-11-10 中国科学院自动化研究所 Method and device for automatic identification of insulator defects in high-voltage transmission towers
CN108881841A (en) * 2018-07-03 2018-11-23 国网通用航空有限公司 Power transmission line intelligent identifying system and method based on helicopter platform
CN109118479B (en) * 2018-07-26 2022-07-19 中睿能源(北京)有限公司 Capsule network-based insulator defect identification and positioning device and method
CN109242801B (en) * 2018-09-26 2021-07-02 北京字节跳动网络技术有限公司 Image processing method and device
CN109118456B (en) * 2018-09-26 2021-07-23 北京字节跳动网络技术有限公司 Image processing method and device
CN109389160A (en) * 2018-09-27 2019-02-26 南京理工大学 Electric insulation terminal defect inspection method based on deep learning
CN109685762A (en) * 2018-11-09 2019-04-26 五邑大学 A kind of Downtilt measurement method based on multiple dimensioned deep semantic segmentation network
CN109813276B (en) * 2018-12-19 2021-01-26 五邑大学 Base station antenna downward inclination angle measuring method and system
CN110133443B (en) * 2019-05-31 2020-06-16 中国科学院自动化研究所 Method, system and device for detection of power transmission line components based on parallel vision
CN110309865A (en) * 2019-06-19 2019-10-08 上海交通大学 A Classified Image Recognition Method for Pin Defects in UAV Patrolling Transmission Lines
CN110503029A (en) * 2019-08-21 2019-11-26 云南电网有限责任公司电力科学研究院 A method for detecting the state of glass insulators in transmission lines
CN110367239A (en) * 2019-08-26 2019-10-25 华北电力大学(保定) A kind of bird trouble on transmission line control method based on Internet of Things
CN110688925B (en) * 2019-09-19 2022-11-15 国网智能科技股份有限公司 Cascade target identification method and system based on deep learning
CN110866548A (en) * 2019-10-31 2020-03-06 国网江苏省电力有限公司电力科学研究院 Infrared intelligent matching identification and distance measurement positioning method and system for insulator of power transmission line
CN110794861A (en) * 2019-11-14 2020-02-14 国网山东省电力公司电力科学研究院 A method and system for autonomous string-dropping of a flying-on-off-line insulator string detection robot
CN110956176B (en) * 2019-11-14 2023-06-16 国网山西省电力公司大同供电公司 Method and detection device for fitting transmission line between tower bases
CN111507958B (en) * 2020-04-15 2023-05-26 全球能源互联网研究院有限公司 Target detection method, training method of detection model and electronic equipment
CN111598872A (en) * 2020-05-15 2020-08-28 山东万腾智能科技有限公司 Insulator crack detection method and system
CN113273173A (en) * 2020-06-16 2021-08-17 深圳市大疆创新科技有限公司 Inspection method and device for movable platform, movable platform and storage medium
CN112200178B (en) * 2020-09-01 2022-10-11 广西大学 Transformer substation insulator infrared image detection method based on artificial intelligence
CN113487541B (en) * 2021-06-15 2022-05-03 三峡大学 Insulator detection method and device
CN114359541B (en) * 2021-11-24 2024-09-27 上海电力大学 Fault insulator detection method based on candidate frame generation and attention coordination mechanism
CN114359156A (en) * 2021-12-07 2022-04-15 国网湖北省电力有限公司宜昌供电公司 Insulator string-dropping fault detection method based on image recognition
CN115061490B (en) * 2022-05-30 2024-04-05 广州中科云图智能科技有限公司 Unmanned aerial vehicle-based reservoir inspection method, unmanned aerial vehicle-based reservoir inspection device, unmanned aerial vehicle-based reservoir inspection equipment and storage medium
CN115588139B (en) * 2022-11-22 2023-02-28 东北电力大学 A grid security intelligent cruise detection method
CN116843909B (en) * 2023-05-12 2024-03-08 国家电网有限公司华东分部 Power line extraction method and device, storage medium and computer equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149353B2 (en) * 2003-09-23 2006-12-12 Amazon.Com, Inc. Method and system for suppression of features in digital images of content
CN103440495A (en) * 2013-07-31 2013-12-11 华北电力大学(保定) Method for automatically identifying hydrophobic grades of composite insulators
CN103488801A (en) * 2013-10-17 2014-01-01 中国电子科技集团公司第五十四研究所 Geographical information space database-based airport target detection method
WO2014060001A1 (en) * 2012-09-13 2014-04-24 FRENKEL, Christina Multitransmitter model of the neural network with an internal feedback
CN104112263A (en) * 2014-06-28 2014-10-22 南京理工大学 Method for fusing full-color image and multispectral image based on deep neural network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7149353B2 (en) * 2003-09-23 2006-12-12 Amazon.Com, Inc. Method and system for suppression of features in digital images of content
WO2014060001A1 (en) * 2012-09-13 2014-04-24 FRENKEL, Christina Multitransmitter model of the neural network with an internal feedback
CN103440495A (en) * 2013-07-31 2013-12-11 华北电力大学(保定) Method for automatically identifying hydrophobic grades of composite insulators
CN103488801A (en) * 2013-10-17 2014-01-01 中国电子科技集团公司第五十四研究所 Geographical information space database-based airport target detection method
CN104112263A (en) * 2014-06-28 2014-10-22 南京理工大学 Method for fusing full-color image and multispectral image based on deep neural network

Also Published As

Publication number Publication date
CN104978580A (en) 2015-10-14

Similar Documents

Publication Publication Date Title
CN104978580B (en) A kind of insulator recognition methods for unmanned plane inspection transmission line of electricity
CN108647742B (en) A fast target detection method based on lightweight neural network
CN106127204B (en) A multi-directional water meter reading area detection algorithm based on fully convolutional neural network
CN112200178B (en) Transformer substation insulator infrared image detection method based on artificial intelligence
CN107274451A (en) Isolator detecting method and device based on shared convolutional neural networks
CN109446925A (en) A kind of electric device maintenance algorithm based on convolutional neural networks
CN112183667A (en) A collaborative deep learning method for insulator fault detection
CN108647655A (en) Low latitude aerial images power line foreign matter detecting method based on light-duty convolutional neural networks
CN108108764A (en) A kind of vision SLAM winding detection methods based on random forest
CN111178206A (en) A detection method and system for building embedded parts based on improved YOLO
CN108154072A (en) Insulator breakdown of taking photo by plane based on depth convolutional neural networks detects automatically
CN112381060B (en) A deep learning-based classification method for building earthquake damage levels
CN107230205A (en) A kind of transmission line of electricity bolt detection method based on convolutional neural networks
CN114863348B (en) Video target segmentation method based on self-supervision
CN106295503A (en) The high-resolution remote sensing image Ship Target extracting method of region convolutional neural networks
CN108288269A (en) Bridge pad disease automatic identifying method based on unmanned plane and convolutional neural networks
CN113297915A (en) Insulator recognition target detection method based on unmanned aerial vehicle inspection
CN114596500A (en) Remote sensing image semantic segmentation method based on channel-space attention and DeeplabV3plus
Golovko et al. Development of solar panels detector
Li et al. Dam surface crack detection based on deep learning
CN117115177A (en) Lightning channel segmentation method based on dynamic channel diagram convolution and multi-scale attention
CN116152254A (en) Industrial leakage target gas detection model training method, detection method and electronic equipment
CN111667461B (en) A Method for Detection of Abnormal Objects on Transmission Lines
Chen et al. BARS: a benchmark for airport runway segmentation
Wang et al. High-Voltage transmission line foreign object and power component defect detection based on improved YOLOv5

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Wang Yue Central Road Ji'nan City, Shandong province 250002 City No. 2000

Co-patentee after: National Network Intelligent Technology Co., Ltd.

Patentee after: Electric Power Research Institute of State Grid Shandong Electric Power Company

Co-patentee after: State Grid Corporation of China

Address before: Wang Yue Central Road Ji'nan City, Shandong province 250002 City No. 2000

Co-patentee before: Shandong Luneng Intelligent Technology Co., Ltd.

Patentee before: Electric Power Research Institute of State Grid Shandong Electric Power Company

Co-patentee before: State Grid Corporation of China

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20201030

Address after: 250101 Electric Power Intelligent Robot Production Project 101 in Jinan City, Shandong Province, South of Feiyue Avenue and East of No. 26 Road (ICT Industrial Park)

Patentee after: National Network Intelligent Technology Co.,Ltd.

Address before: Wang Yue Central Road Ji'nan City, Shandong province 250002 City No. 2000

Patentee before: ELECTRIC POWER RESEARCH INSTITUTE OF STATE GRID SHANDONG ELECTRIC POWER Co.

Patentee before: National Network Intelligent Technology Co.,Ltd.

Patentee before: STATE GRID CORPORATION OF CHINA

TR01 Transfer of patent right