CN104978440A - 一种心脏模型建立、配准及多平面重建的方法 - Google Patents

一种心脏模型建立、配准及多平面重建的方法 Download PDF

Info

Publication number
CN104978440A
CN104978440A CN201410134502.3A CN201410134502A CN104978440A CN 104978440 A CN104978440 A CN 104978440A CN 201410134502 A CN201410134502 A CN 201410134502A CN 104978440 A CN104978440 A CN 104978440A
Authority
CN
China
Prior art keywords
cardiac
registration
heart
module
dot information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410134502.3A
Other languages
English (en)
Other versions
CN104978440B (zh
Inventor
王立龙
王潚崧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201410134502.3A priority Critical patent/CN104978440B/zh
Publication of CN104978440A publication Critical patent/CN104978440A/zh
Application granted granted Critical
Publication of CN104978440B publication Critical patent/CN104978440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供一种心脏模型建立方法,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型。本发明还提供一种心脏模型配准方法及心脏模型多平面重建方法。本发明通过建立心脏模型库,将其中一个心脏模型与输入心脏图像计算得到的点集配准,然后根据配准得到的变换关系由所述心脏模型的关键点位置映射求得输入图像中心脏对应的关键点位置,然后根据求得的关键点位置计算出长轴和短轴方向。本发明提出了一种新的框架和方法,能够快速有效地实现断层心脏图像的多平面自动重建。

Description

一种心脏模型建立、配准及多平面重建的方法
技术领域
本发明涉及医学图像处理领域,尤其涉及一种心脏模型建立、配准及多平面重建的方法。
背景技术
心脏在人体胸腔中的位置个体差异性很大,不能使用躯体标准的正交轴平面如横切面、冠状面和矢状面进行断层成像显示。为了对心脏有一个统一的解剖描述,如参考文献1:Manuel D.Cerqueira,Neil J.Weissman,et al.Standardized myocardial segmentation and nomenclature for tomographicimaging of the heart[J].Journal of American Heart Association,2002,105:539-542.中所述,美国心脏协会(American Heart Association,AHA)于2002年定义了心脏断层成像视角和方向的标准。短轴、垂直长轴和水平长轴被用于描述三个心脏视角平面。具体地如图1所示,分别具体定义了在SPECT、PET、CT和CMR等断层成像模态中心脏的标准显示方向,并分别对应命名为短轴、垂直长轴和水平长轴方向。为了使获得的心脏断层图像与上述标准一致,临床应用需要对心脏断层图像进行多平面自动重建来获得标准心脏显示视图。
对心脏进行多平面重建的关键在于确定心脏的方向,即找到心脏长轴和短轴的位置。现有的心脏多平面重建方法主要可以分为基于人机交互的方法和基于模型拟合的方法两类。
基于人机交互的方法主要通过手工调整图像来确定心脏的长轴和短轴位置或者心脏的一些关键点的位置,操作过程比较费时,且易受到人的主观因素干扰而造成偏差,不能满足现代临床应用的需要。上述方法具体地可参考参考文献2:Borrello JA,Clinthorne NH,et al.Oblique-angle tomography:a reconstructing algorithm from transaxial tomographic data[J].J.Nucl.Med.,1981,26:1445-1455.;参考文献3:He ZX,Maublant JC,CauvinJC,Veyre A.Reorientation of the left ventricular long axis onmyocardial transaxial tomography by a linear fitting method[J].J.Nucl.Med.,1991,32:1794-1800.;参考文献4:Sheckhar.R andZagrodsky.V.Cine MPR:interactive multiplanar reformatting offour-dimensional cardiac data using hardware-accelerated texturemapping[J].IEEE Trans.on Information Technology in Biomedicine,2003,7(4):394-393.。
进一步地,如参考文献5:G.Germano,P.B.Kavanagh,et al.Automaticreorientation of three-dimensional.transaxial myocardial perfusionSPECT images[J].J.Nucl.Med.,1995,36(6):1107-1114.中所描述,Germano等人提出了一种自动确定长轴的方法是将椭球模型与数据进行拟合,并使用用于重取向的对称轴。然而这种椭球的数学模型不能反映心脏的非对称性以及个体解剖结构的差异,并且如果存在大量的摄入缺失,常常不能定位所述长轴。
如参考文献6:Mullick Rakesh Mullick,Norberto F.Ezquerra.Automatic Determination of LV Orientation from SPECT Data[J].IEEETrans.On Medical Imaging,1995,14(1):88-99.中所描述,Mullick等人提出了一种复杂的3D网格模型,通过迭代过程不断地约束所述网格模型改变形状并将所述网格模型拉成输入心脏的形状,并根据拟合的3D网格模型来估计心脏的方向。这种方法的缺点在于其使用的网格模型复杂度较高,存在运算量过大的问题。
发明内容
本发明解决的问题是提供一种心脏模型建立、配准及多平面重建的方法多平面重建的方法,用以对心脏断层图像进行多平面自动重建来获得标准心脏显示视图。
为了解决上述问题,本发明提供一种心脏模型建立方法,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型。
可选的,所述心脏图像的点信息包括心脏关键点的点信息,所述关键点分别为:左心室中心、二尖瓣中心、心尖、右心房中心、右心室中心和三尖瓣中心的之一或组合。
可选的,所述心脏图像的点信息包括用于配准的稀疏的左心室轮廓点信息。
可选的,获取所述心脏断层图像的点信息前包括:对所述心脏断层图像进行心脏分区的标定,并根据所述标定的分区掩模计算所述点信息。
本发明还提供一种心脏模型配准方法,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型;输入待配准的心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,以获取与所述待配准的心脏断层模型图像对应配准成功的心脏模型。
可选的,所述配准为迭代最近点配准。
可选的,所述配准前还包括在所述待配准的心脏断层图像中提取左心室壁区域。
可选的,所述提取左心室壁区域包括:提取输入图像中灰度值极大值点,并以所述灰度值极大值点为种子点,通过区域增长的方法生成左心室壁目标点集。
可选的,将所述左心室壁目标点集与所述心脏模型库中的心脏模型逐一进行配准,直至配准成功。
可选的,还包括获取所述配准对应的变换矩阵,基于所述变换矩阵及心脏模型中的点信息,获取所述待配准心脏断层图像对应的心脏的点信息及方向特征信息。
可选的,所述获取所述待配准心脏断层图像对应的心脏的点信息及方向特征信息包括:基于所述变换矩阵及心脏模型中的点信息,获取所述待配准心脏断层图像中对应的点信息,并以此确定所述待配准心脏断层图像的心脏长轴方向和第一短轴方向;再根据所述长轴方向和第一短轴方向,通过施密特正交方法求得对应的第二短轴方向。
本发明还提供一种心脏的多平面重建的方法,提供心脏断层图像,并基于其的点信息建立对应的心脏模型;输入待配准心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,获取与所述输入的心脏断层模型图像对应配准的心脏模型;基于配准后的心脏模型,对待配准的心脏断层图像进行多平面图像的重建,获取对应的心脏标准视角图像。
可选的,所述多平面图像的重建包括:以所述配准后的心脏模型的左心室中心为中心,所述心脏模型的长轴,第一短轴和第二短轴分别对应为三维坐标轴,进行所述多平面重建。
本发明提出了一种新的框架和方法,能够快速有效地实现断层心脏图像的多平面自动重建。与现有技术相比,本发明具有以下优点:
通过建立心脏模型库,将其中一个心脏模型与输入心脏图像计算得到的点集进行配准,然后根据配准得到的变换关系由所述心脏模型的关键点位置映射求得输入图像中心脏对应的关键点位置,然后根据求得的关键点位置计算出长轴和短轴方向。
进一步地,所述心脏模型库包含多个模型,可以保证在配准时找到与输入心脏图像匹配精度较高的模型,提升了本方法的鲁棒性。
通过使用快速分割的方法提取左心室壁建立目标点集,并基于迭代最近点算法(Iterative Closest Point,ICP)实现了目标点集和模型的快速配准,使本方法有处理速度上的明显优势。
附图说明
图1所示为现有技术的断层成像模态中心脏的标准显示方向示意图;
图2所示为本发明一个实施例的多平面重建方法示意图;
图3所示为根据上述的心脏模型建立方法建立的心脏模型;
图4所示为本发明一个实施例的多平面重建方法的结果对比示意图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施的限制。
其次,本发明利用示意图进行详细描述,在详述本发明实施例时,为便于说明,所述示意图只是实例,其在此不应限制本发明保护的范围。
本发明提供一种心脏模型建立方法,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型。其中,所述心脏断层图像为CT心脏断层图像或者MR心脏断层图像。所述点信息包括心脏关键点的点信息,分别为:左心室中心、二尖瓣中心、心尖、右心房中心、右心室中心和三尖瓣中心的之一或组合。
进一步地,所述心脏图像点信息包括用于配准的稀疏的左心室轮廓点信息。所述左心室轮廓点数目范围为50~200。较佳地,所述左心室轮廓点数目为57。
进一步所述获取所述心脏断层图像的点信息包括:在获取所述对所述心脏断层图像进行心脏分区的标定,并根据所述标定的分区掩模计算所述点信息,所述点信息包括关键点信息和左心室轮廓点信息。
本发明提供一种心脏模型配准方法,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型;输入待配准的心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,以获取与所述待配准的心脏断层模型图像对应配准的心脏模型。所述待配准的心脏断层图像为PET心脏断层图像。所述配准为将所述待配准的心脏断层图像与一个或一个以上数目的心脏模型进行配准,直至配准成功。
进一步地,包括在所述输入的待配准的心脏断层图像中提取左心室壁区域。所述提取左心室壁区域包括:提取输入图像中灰度值极大值点,并以所述灰度值极大值点为种子点,通过区域增长的方法生成左心室壁的点集。
提取所述左心室壁区域后,将所述左心室壁目标点集与所述心脏模型库中的心脏模型逐一进行配准。所述配准为迭代最近点(IterativeClosestPoint)的ICP配准。
进一步地,还包括,获取所述配准对应的变换矩阵,基于所述变换矩阵及心脏模型中的点信息,获取所述待配准心脏断层图像对应的心脏的特征信息。所述特征信息包括心脏的长轴、第一短轴方向及第二短轴方向。
进一步地,根据变换矩阵及用于配准的心脏模型中的点信息,计算所述待配准心脏断层图像中相应点的点信息,并以此确定所述待配准心脏断层图像的心脏的长轴和第一短轴方向;再根据已求出的长轴方向和第一短轴方向,通过施密特正交方法求得心脏的第二短轴方向。
本发明还提供了一种心脏的多平面重建的方法,提供心脏断层图像,并基于其的点信息建立对应的心脏模型;输入待配准心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,获取与所述输入的心脏断层模型图像对应配准的心脏模型;并基于配准后的心脏模型,对待配准的心脏断层图像进行多平面图像的重建,最终获取对应的心脏标准视角图像。所述多平面图像的重建包括:以所述配准后的心脏模型的左心室中心为中心,所述心脏模型的长轴,第一短轴和第二短轴分别对应为三维坐标轴,进行所述多平面重建。
下面结合附图对本发明的进行详细描述。如图2所示为本发明一个实施例的多平面重建方法示意图,结合所述多平面重建方法的说明,还包括了包含其中的心脏模型建立方法及配准方法。
首先,执行步骤S1建立心脏模型库,包括由预先手工标定过的CT或MR医学图像,或者CT和MR医学图像建立心脏模型库,每个心脏模型包含用于确定长轴和短轴位置的6个心脏关键点位置和用于配准的稀疏的左心室壁轮廓点位置。其中,这6个心脏关键点分别是:左心室中心、二尖瓣中心、心尖、右心房中心、右心室中心和三尖瓣中心。
如图3所示为根据上述的心脏模型建立方法建立的心脏模型。其中,所示出的为三维空间图,坐标轴对应为其体素点对应位置;作为其他实施例,还可以为二维空间图,坐标轴则对应为其像素点对应位置。
另外的,执行步骤S11,输入心脏图像。所述输入的心脏图像为心脏断层图像,具体的为输入PET心脏断层图像。
接着执行步骤S12,提取左心室壁区域。具体包括:首先提取输入心脏断层图像中灰度值极大值点,通常这个点都会位于新陈代谢最为强烈的左心室心肌区域,然后通过区域增长的方法生成左心室壁的点集。
执行步骤S13,ICP方法配准目标点集与心脏模型库。即将上述提取的左心室壁目标点集与预先建立的心脏模型库中的心脏模型逐一进行ICP快速配准,直到找到与目标点集匹配度高的一个模型为止。由于心脏的个体差异性较大,为了保证配准的正确性,本方法使用了多个心脏模型来降低本方法的特异性。
作为一个实施例,所述一个心脏模型具有57个左心室壁轮廓点集P0,并且当前心脏图像的左心室壁分割掩模M,初始化变化矩阵H0为:
1 / spaceX 0 0 t x 0 1 / spaceY 0 t y 0 0 1 / spaceZ t z
其中,spaceX,spaceY,spaceZ为当前PET图像的空间分辨率,tx,ty,tz为将点集的中心平移到模型中左心室中心的三个分量。
建立所述初始化变化矩阵后,开始迭代过程,其中第i次迭代后包括:心脏模型经映射变换后,Pi=Pi-1*Hi-1,点集Pi上的点属于当前心脏图像的左心室壁分割掩模M占的比例为r,同时找到M上距离Pi最近的点来更新Pi,然后根据最小二乘法由Pi和P0可以算出变换矩阵Hi
进一步地,如果比例r大于设定的阈值或迭代次数超过设定的阈值,则迭代终止;否则重复上述的迭代过程,直至满足迭代条件终止。
迭代结束后,完成配准求出变换矩阵H,可作用于配准的心脏模型中的关键点的位置,从而计算出其在输入心脏图像中相应的位置,并以此确定心脏的长轴和第一短轴方向。再根据已求出的长轴方向和第一短轴方向,通过施密特正交方法求得心脏的第二短轴方向。
最后以左心室中心为中心,长轴,第一短轴和第二短轴为三维坐标轴,对原断层图像进行多平面图像的重建,最终得到心脏标准视角图像。如图4所示,为本发明一个实施例的多平面重建方法的结果对比示意图,上图为原始输入的待配准的图像;下图为经过配准后的图像。
本发明提出了一种新的框架和方法,能够快速有效地实现断层心脏图像的多平面自动重建。与现有技术相比,本发明具有以下优点:
通过建立心脏模型库,将其中一个心脏模型与输入心脏图像计算得到的点集进行配准,然后根据配准得到的变换关系由所述心脏模型的关键点位置映射求得输入图像中心脏对应的关键点位置,然后根据求得的关键点位置计算出长轴和短轴方向。
进一步地,所述心脏模型库包含多个模型,可以保证在配准时找到与输入心脏图像匹配精度较高的模型,提升了本方法的鲁棒性。
通过使用快速分割的方法提取左心室壁建立目标点集,并基于迭代最近点算法(Iterative Closest Point,ICP)实现了目标点集和模型的快速配准,使本方法有处理速度上的明显优势。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

1.一种心脏模型建立方法,其特征在于,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型。
2.如权利要求1所述的心脏模型建立方法,其特征在于,所述心脏图像的点信息包括心脏关键点的点信息,所述关键点分别为:左心室中心、二尖瓣中心、心尖、右心房中心、右心室中心和三尖瓣中心的之一或组合。
3.如权利要求1所述的心脏模型建立方法,其特征在于,所述心脏图像的点信息包括用于配准的稀疏的左心室轮廓点信息。
4.如权利要求1所述的心脏模型建立方法,其特征在于,获取所述心脏断层图像的点信息前包括:对所述心脏断层图像进行心脏分区的标定,并根据所述标定的分区掩模计算所述点信息。
5.一种心脏模型配准方法,其特征在于,包括:提供心脏断层图像,获取所述心脏断层图像的点信息,并基于所述点信息建立所述心脏断层图像对应的心脏模型;输入待配准的心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,以获取与所述待配准的心脏断层模型图像对应配准成功的心脏模型。
6.如权利要求5所述的心脏模型配准方法,其特征在于,所述配准为迭代最近点配准。
7.如权利要求5所述的心脏模型配准方法,其特征在于,所述配准前还包括在所述待配准的心脏断层图像中提取左心室壁区域。
8.如权利要求7所述的心脏模型配准方法,其特征在于,所述提取左心室壁区域包括:提取输入图像中灰度值极大值点,并以所述灰度值极大值点为种子点,通过区域增长的方法生成左心室壁目标点集。
9.如权利要求8所述的心脏模型配准方法,其特征在于,将所述左心室壁目标点集与所述心脏模型库中的心脏模型逐一进行配准,直至配准成功。
10.如权利要求5所述的心脏模型配准方法,其特征在于,还包括获取所述配准对应的变换矩阵,基于所述变换矩阵及心脏模型中的点信息,获取所述待配准心脏断层图像对应的心脏的点信息及方向特征信息。
11.如权利要求10所述的心脏模型配准方法,其特征在于,所述获取所述待配准心脏断层图像对应的心脏的点信息及方向特征信息包括:基于所述变换矩阵及心脏模型中的点信息,获取所述待配准心脏断层图像中对应的点信息,并以此确定所述待配准心脏断层图像的心脏长轴方向和第一短轴方向;再根据所述长轴方向和第一短轴方向,通过施密特正交方法求得对应的第二短轴方向。
12.一种心脏的多平面重建的方法,其特征在于,提供心脏断层图像,并基于其的点信息建立对应的心脏模型;输入待配准心脏断层图像,将所述心脏模型与所述待配准的心脏断层图像进行配准,获取与所述输入的心脏断层模型图像对应配准的心脏模型;基于配准后的心脏模型,对待配准的心脏断层图像进行多平面图像的重建,获取对应的心脏标准视角图像。
13.如权利要求12所述的心脏的多平面重建的方法,其特征在于,所述多平面图像的重建包括:以所述配准后的心脏模型的左心室中心为中心,所述心脏模型的长轴,第一短轴和第二短轴分别对应为三维坐标轴,进行所述多平面重建。
CN201410134502.3A 2014-04-03 2014-04-03 一种心脏模型建立、配准及多平面重建的方法 Active CN104978440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410134502.3A CN104978440B (zh) 2014-04-03 2014-04-03 一种心脏模型建立、配准及多平面重建的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410134502.3A CN104978440B (zh) 2014-04-03 2014-04-03 一种心脏模型建立、配准及多平面重建的方法

Publications (2)

Publication Number Publication Date
CN104978440A true CN104978440A (zh) 2015-10-14
CN104978440B CN104978440B (zh) 2020-02-07

Family

ID=54274943

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410134502.3A Active CN104978440B (zh) 2014-04-03 2014-04-03 一种心脏模型建立、配准及多平面重建的方法

Country Status (1)

Country Link
CN (1) CN104978440B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761304A (zh) * 2016-02-02 2016-07-13 飞依诺科技(苏州)有限公司 三维脏器模型构造方法和装置
CN106600596A (zh) * 2016-12-21 2017-04-26 南昌航空大学 一种心脏腔室动态显示方法及系统
CN107330888A (zh) * 2017-07-11 2017-11-07 中国人民解放军第三军医大学 基于cta图像的动态心脏各腔室分割方法
CN109712163A (zh) * 2018-12-05 2019-05-03 上海联影医疗科技有限公司 冠脉提取方法、装置、图像处理工作站和可读存储介质
CN110858412A (zh) * 2018-08-24 2020-03-03 南京邮电大学 基于图像配准的心脏冠脉cta模型建立方法
CN111402421A (zh) * 2020-03-17 2020-07-10 上海志唐健康科技有限公司 肝脏三维重建方法、装置、计算机设备和存储介质
CN113838068A (zh) * 2021-09-27 2021-12-24 深圳科亚医疗科技有限公司 心肌节段的自动分割方法、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106938A (zh) * 2005-01-26 2008-01-16 独立行政法人科学技术振兴机构 模型化装置、程序和计算机可读记录介质以及对应方法
CN101249019A (zh) * 2008-03-11 2008-08-27 微创医疗器械(上海)有限公司 一种重建人体器官三维表面的方法及系统
CN101681507A (zh) * 2007-05-10 2010-03-24 皇家飞利浦电子股份有限公司 基于模型的spect心脏取向估计
US20100254583A1 (en) * 2007-12-18 2010-10-07 Koninklijke Philips Electronics N.V. System for multimodality fusion of imaging data based on statistical models of anatomy
CN102999937A (zh) * 2011-09-08 2013-03-27 上海翰攀信息科技有限公司 心脏散乱点云数据曲面重建的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106938A (zh) * 2005-01-26 2008-01-16 独立行政法人科学技术振兴机构 模型化装置、程序和计算机可读记录介质以及对应方法
CN101681507A (zh) * 2007-05-10 2010-03-24 皇家飞利浦电子股份有限公司 基于模型的spect心脏取向估计
US20100254583A1 (en) * 2007-12-18 2010-10-07 Koninklijke Philips Electronics N.V. System for multimodality fusion of imaging data based on statistical models of anatomy
CN101249019A (zh) * 2008-03-11 2008-08-27 微创医疗器械(上海)有限公司 一种重建人体器官三维表面的方法及系统
CN102999937A (zh) * 2011-09-08 2013-03-27 上海翰攀信息科技有限公司 心脏散乱点云数据曲面重建的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
仝鑫龙: "基于分区统计可变模型的颅骨特征点匹配算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
祁伟丽: "基于断层图像的三维重建理论和算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
黄芳等: "面向心脏表面断层数据的三角网格重构方法", 《计算机系统应用》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105761304A (zh) * 2016-02-02 2016-07-13 飞依诺科技(苏州)有限公司 三维脏器模型构造方法和装置
CN105761304B (zh) * 2016-02-02 2018-07-20 飞依诺科技(苏州)有限公司 三维脏器模型构造方法和装置
CN106600596A (zh) * 2016-12-21 2017-04-26 南昌航空大学 一种心脏腔室动态显示方法及系统
CN106600596B (zh) * 2016-12-21 2019-07-12 南昌航空大学 一种心脏腔室动态显示方法及系统
CN107330888A (zh) * 2017-07-11 2017-11-07 中国人民解放军第三军医大学 基于cta图像的动态心脏各腔室分割方法
CN110858412A (zh) * 2018-08-24 2020-03-03 南京邮电大学 基于图像配准的心脏冠脉cta模型建立方法
CN110858412B (zh) * 2018-08-24 2023-04-21 南京邮电大学 基于图像配准的心脏冠脉cta模型建立方法
CN109712163A (zh) * 2018-12-05 2019-05-03 上海联影医疗科技有限公司 冠脉提取方法、装置、图像处理工作站和可读存储介质
CN111402421A (zh) * 2020-03-17 2020-07-10 上海志唐健康科技有限公司 肝脏三维重建方法、装置、计算机设备和存储介质
CN111402421B (zh) * 2020-03-17 2021-12-28 上海志唐健康科技有限公司 肝脏三维重建方法、装置、计算机设备和存储介质
CN113838068A (zh) * 2021-09-27 2021-12-24 深圳科亚医疗科技有限公司 心肌节段的自动分割方法、装置和存储介质

Also Published As

Publication number Publication date
CN104978440B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN104978440A (zh) 一种心脏模型建立、配准及多平面重建的方法
CN107798682B (zh) 图像分割系统、方法、装置和计算机可读存储介质
CN101796544B (zh) 体素数据的可视化方法和系统
CN106600683B (zh) 一种面向骨骼ct序列图像的网格模型自适应重建方法
US6362821B1 (en) Surface model generation for visualizing three-dimensional objects using multiple elastic surface nets
CN107563378A (zh) 体数据中提取感兴趣区域的方法及其系统
CN109598728A (zh) 图像分割方法、装置、诊断系统及存储介质
WO2016082797A1 (zh) 一种基于单幅图像的三维场景结构建模与注册方法
Banerjee et al. Fast and robust 3D ultrasound registration–block and game theoretic matching
CN102222357B (zh) 基于图像分割和网格细分的脚型三维表面重建方法
CN109191510B (zh) 一种病理切片的3d重建方法及其装置
CN103942772A (zh) 一种多模态多维度的血管融合方法及系统
CN104881858B (zh) 一种乳房内增强背景组织的提取方法和装置
CN103035009A (zh) 一种基于ct影像的肺结节边缘重建与分割方法
CN107507212B (zh) 数字脑可视化方法、装置、计算设备及存储介质
US20170256090A1 (en) Cinematic rendering of unfolded 3d volumes
CN110458859A (zh) 一种基于多序列mri的多发性骨髓瘤病灶的分割系统
CN107610219A (zh) 一种三维场景重构中几何线索感知的像素级点云稠密化方法
CN107004269A (zh) 对解剖结构的基于模型的分割
TW201123076A (en) Three-dimensional display method of medical images
WO2023216057A1 (en) System and method for medical imaging
CN114549540A (zh) 一种口扫牙齿数据与cbct数据自动融合的方法及其应用
Banerjee et al. Automated 3D whole-heart mesh reconstruction from 2D cine MR slices using statistical shape model
CN108597589B (zh) 模型生成方法、目标检测方法及医学成像系统
CN107292351B (zh) 一种结节的匹配方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201815 No. 1180 Xingxian Road, Jiading Industrial Zone, Jiading District, Shanghai

Patentee after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201815 No. 1180 Xingxian Road, Jiading Industrial Zone, Jiading District, Shanghai

Patentee before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP02 Change in the address of a patent holder

Address after: 201807 2258 Chengbei Road, Jiading District, Shanghai

Patentee after: Shanghai Lianying Medical Technology Co.,Ltd.

Address before: 201815 No. 1180 Xingxian Road, Jiading Industrial Zone, Jiading District, Shanghai

Patentee before: Shanghai Lianying Medical Technology Co.,Ltd.

CP02 Change in the address of a patent holder