CN104969641A - 用于动态tdd中的复合动态子帧的测量过程的方法和子帧 - Google Patents

用于动态tdd中的复合动态子帧的测量过程的方法和子帧 Download PDF

Info

Publication number
CN104969641A
CN104969641A CN201380072370.XA CN201380072370A CN104969641A CN 104969641 A CN104969641 A CN 104969641A CN 201380072370 A CN201380072370 A CN 201380072370A CN 104969641 A CN104969641 A CN 104969641A
Authority
CN
China
Prior art keywords
carrier wave
tdd carrier
subframe
wireless device
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380072370.XA
Other languages
English (en)
Other versions
CN104969641B (zh
Inventor
I·拉曼
M·卡兹米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of CN104969641A publication Critical patent/CN104969641A/zh
Application granted granted Critical
Publication of CN104969641B publication Critical patent/CN104969641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information

Abstract

根据这里的教导的一个方面,一种基站(20)、无线设备(12)或其它网络节点(36)确定用于时分双工TDD载频的复合动态子帧CDS信息,该TDD载频用于从无线通信网络(10)中的相应小区(18)传输一个或多个感兴趣的TDD载波(22)。CDS信息标识或指示TDD载波(22)中的一个或多个TDD载波中的一个或多个子帧是具有动态可改变的上行链路或者下行链路方向的动态子帧。根据CDS信息适配无线设备(12)的测量配置,例如通过避免对动态子帧的测量、增加进行的测量数目或者增加测量间隔,从而设备(12)关于一个或多个TDD载波(22)执行的无线电测量考虑了动态子帧。

Description

用于动态TDD中的复合动态子帧的测量过程的方法和子帧
技术领域
本发明大体上涉及无线通信网络,并且具体地涉及使用动态时分双工或者TDD的无线通信网络。
背景技术
在基于由第三代伙伴项目或者3GPP发布的长期演进LTE标准的通信网络中,支持两个无线电帧结构;即适用于频分双工FDD的“类型1”结构和适用于时分双工TDD的“类型2”结构。在两个帧结构类型中,10ms的每个无线电帧被划分成5ms的两个半帧,而每个半帧包括长度为1ms的五个子帧。
另外,在帧结构类型2中,每个子帧是下行链路子帧、上行链路子帧或者特殊子帧,从而产生不同的TDD配置。在图1的表中示出了这样的配置。在3GPP技术标准TS 36.221的表4.2-2中定义了这些配置。
在图1中在描绘LTE TDD中支持的上行链路-下行链路配置,其中对于无线电帧中的每个子帧,“D”表示保留子帧用于下行链路传输,“U”表示保留子帧用于上行链路传输,而“S”表示具有三个字段的特殊子帧:DwPTS、GP和UpPTS。DwPTS和UpPTS的长度由图1的表给定,其受DwPTS、GP和UpPTS的总长度等于1ms制约。每个子帧由各自长度为0.5ms的两个时隙构成。
支持具有有5ms和10ms的下行链路到上行链路切换点周期的上行链路-下行链路配置。在5ms的下行链路到上行链路切换点周期的情况下,特殊子帧存在于两个半帧中。
在10ms的下行链路到上行链路切换点周期的情况下,特殊子帧仅存在于第一个半帧中。无论切换点周期如何,总是保留子帧0和5以及DwPTS用于下行链路传输。总是保留UpPTS和紧接地跟随特殊子帧的子帧用于上行链路传输。
在无线通信内的TDD小区中,TDD配置以上行链路-下行链路配置和特殊子帧配置两者为特征。因此,下文使用的术语“TDD配置”是指在TDD小区中配置的上行链路-下行链路配置(如在图1的表中描绘的配置之一)与特殊子帧配置(例如在图2的表中描绘的配置之一)一起的组合。上行链路-下行链路配置和特殊子帧配置的选择未必相互有关。当然,将理解这些是示例配置并且可以在将来引入附加TDD配置,而这里的教导不限于这些示例配置。
动态TDD、例如动态可变的TDD配置,可以用来更好地适应可变的网络部署和使用。例如,设想在将来将有越来越多的本地化的流量,其中多数网络用户将在热点中或者在室内区域中或者在住宅区域中。这些用户将聚集地设置,并且将在不同时间产生不同UL和DL流量。这一境况实质上意味着将在将来本地小区中需要动态特征,以用于调整UL和DL资源适应瞬时(或者接近瞬时)流量变化。TDD具有潜在特征,其中可用频带可以在不同时间隙中被配置成UL或者DL。它允许不对称UL/DL分配,该不对称UL/DL分配是TDD专属性质而在FDD中是不可能的。在LTE中有七个不同UL/DL分配从而提供如图1的表中所示40%-90%DL资源。在图3中也示出不同的TDD配置。
在当前网络中,UL/DL配置被半静态地配置,因此它可能不匹配瞬时流量情形。这一不匹配尤其在有少量用户的小区中造成在UL和DL二者中的低效率资源利用。动态TDD通过动态地配置TDDUL/DL不对称性以更好地匹配当前流量情形并且由此解决或者至少改善用户体验来解决这一问题。参见3GPP TS 36.828 V2.0.0(2012-06)。也可以利用动态TDD方式来减少网络能量消耗。
因此,应当理解,固定的TDD配置在现有TDD网络中的典型使用——该典型使用固定哪些子帧是上行链路子帧而哪些子帧是下行链路子帧——限制了用于解决可变流量情形所产生的可变上行链路/下行链路不对称性的能力。一种用于至少在一些场景中增加TDD配置灵活性的方式基于每个子帧(或者子帧的部分)属于三个不同类型之一这样的思想:
-下行链路子帧(存在于Rel-8中)用于响应于上行链路传输活动而传输下行链路数据、系统信息、控制信令和混合ARQ返回(以及其它使用)。UE如Rel-8中那样监控PDCCH、即它可以接收调度指派和调度授权。特殊子帧与下行子帧相似,除了它们除了下行链路部分之外还包括防护时段以及在子帧的末尾中的将用于随机接入或者探测的小上行链路部分。
-上行链路子帧(存在于Rel-8中)用于响应于下行链路数据传输活动而传输上行链路数据、上行链路控制信令(信道状态报告)和混合ARQ反馈(以及其它使用)。在上行链路子帧中的PUSCH上的数据传输由在更早的子帧中的PDCCH上接收的上行链路调度授权控制。
-可以称为“DKWTA子帧”的灵活子帧(未存在于Rel-8中)可以如调度指派/授权所确定的那样用于上行链路或者下行链路传输。
如图3中所示,半静态配置用来指派每个子帧作为上行链路或者作为下行链路子帧。可以由物理下行控制信道或者PDCCH上的介质访问控制MAC、控制单元或者CE或者无线电资源控制(RRC)或者特殊无线电网络临时标识符或者RNTI实现子帧类型的半静态配置。配置信息可以如Rel-8中那样是系统信息的部分。在动态TDD中,添加如图4中所示标注为“DKWTA”子帧的附加子帧类型。可以用不同方式、例如通过显性地指示“UL”、“DL”或者“DKWTA”或者通过使用Rel-8信令消息用信令发送“DL”和“UL”并且随后使用仅仅是新的终端可理解的额外的信令(其中一些UL子帧被改变成灵活子帧)来向终端用信令发送动态TDD配置信息。
从具有动态TDD功能的UE角度来看,以与DL子帧相似的方式对待灵活子帧,除非UE已经被指示在特定的灵活子帧中传输。换而言之,未被指派用于来自特定UE的上行链路传输的灵活子帧从PDCCH观点来看作为DL子帧来对待。因此,UE监控灵活子帧中的若干候选PDCCH。如果控制信令指示UE将在物理下行共享信道(PDSCH)上接收下行链路数据传输,则UE将如DL子帧中那样接收和处理PDSCH。相似地,如果控制信令包含对于以后子帧有效的上行调度授权,则UE将相应地在上行链路中传输。
可互换地使用术语动态TDD、灵活TDD、灵活UL/DL分配、自适应TDD、可重配置TDD,但是它们都是指相同概念。通过动态TDD,能够在可以属于相同载波或者不同载波的不同小区中在不同传输方向(即UL与DL)上使用一个或者多个“动态”或者“灵活”子帧。另外,可以随时间、例如如每个无线电帧一样快地改变灵活子帧在特定小区中的方向。控制无线电网络节点可以独立地或者根据在一个或者多个邻近TDD小区中使用的TDD配置确定是否和何时改变灵活子帧的方向。在原理上,未与“特殊子帧”相邻的任何子帧可以被配置为灵活子帧。例如在TDD配置0中,如图1中所示,子帧3、4、8和9中的任何子帧可以被配置为灵活子帧。
尽管动态UL/DL分配在理论上应当提供分配的资源与瞬时流量的良好匹配,但是邻近小区中的不同UL和DL传输也引起与UE的切换、HO、测量有关的问题。
在LTE中,如TS 36.423 Release 8中定义的那样,每个eNB通过X2接口向邻近eNB发送eNB中的每个小区的小区配置信息。该信息也包含TDD有关信息、例如UL DL配置、特殊子帧配置等。在原理上,Release 8然后提供对动态更新的TDD配置的使用。然而,在实际中,主要地由于缺乏为了减轻动态TDD配置的使用所引起的干扰而需要的干扰缓解技术而尚未使用动态TDD配置。例如参见3GPP TR 36.828 V2.0.0(2012-06)。然而,关于有关过程的工作正在进行中。例如参见RP-121772“Further Enhancements to LTE TDDfor DL-UL Interference Management and Traffic Adaptation”,WIDapproved at 3GPP RAN#58。
UE对来自与它们的服务小区邻近的小区的信号执行一个或者多个测量。这样的测量支持多种功能、比如用于小区选择/重选、切换、RRC重建、具有重定向的连接释放、最小化路测、自组织网络SON、定位等的移动性有关功能。UE必须在进行这样的测量之前标识小区并且确定它的物理小区标识PCI。就这一点而言,PCI确定本身可以视为一种测量类型。
为了执行请求的测量,UE可以接收由涉及到的网络节点发送的测量配置信息或者辅助数据、比如消息或者信元IE。节点可以例如是服务eNB或者定位节点或者网络中的某个其它节点。向UE提供的信息可以包含与载频、无线电接入技术或者RAT、测量类型、更高层时域滤波、测量带宽有关参数等有关的信息。一种测量类型是参考符号接收功率或者RSRP。
这样的测量由UE在已知的参考符号或者导频序列之上对服务小区以及对邻近小区完成。可以对频率内载波上以及RAT间载波上的小区执行测量(根据UE支持其它RAT的能力)。
网络配置测量间隙以使UE能够进行频率间和RAT间测量。为LTE定义均具有测量间隙长度为6ms的两个周期性测量间隙模式:
-具有重复周期40ms的测量间隙模式#0
-具有重复周期80ms的测量间隙模式#1
在高速分组接入或者HSPA中,在压缩的模式间隙中执行频率间和RAT间测量,这些间隙也是网络配置的一种测量间隙的类型。一些测量也可以要求UE测量UE在上行链路中传输的信号。测量由在RRC连接状态中或者在CELL_DCH状态中(在HSPA中)以及在低活动RRC状态(例如在HSPA中的空闲状态、CELL_FACH状态、在HSPA中的URA PCH和CELL_PCH状态等)中的UE完成。在多载波或者载波聚合CA场景中,UE可以对在主分量载波PCC上的小区以及对在一个或者多个次分量载波或者SCC上的小区执行测量。
通常在更长持续时间内(例如在数个100ms到数秒的级别中)执行这样的测量。在单载波和CA中适用相同的测量。然而,CA情境可以涉及到不同的测量要求。对于在CA场景中的测量周期可以根据SCC是否被激活而更宽松或者更严格。该要求也可以依赖于UE能力、比如UE是否能够对SCC执行测量而无间隙。
除了更早标识的RSRP测量之外,参考符号接收质量或者RSRQ也用作在LTE中进行的移动性测量的另一示例。HSPA中的示例移动性测量包括公共导频信道接收信号码功率或者CPICH RSCP和CPICH Ec/No(该Ec/No也是基于噪声的比值)。在GSM/GERAN的情境中的更多的移动性测量示例包括GSM载波接收信号强度信息或者RSSI,而在CDMA200的情境中包括用于CDMA20001xRTT的导频强度和用于高速分组数据或者HRPD的导频强度。
如指出的那样,移动性测量大体上包括检测/标识可以属于LTE、HSPA、CDMA2000、GSM等的小区。小区检测包括至少标识PCI并且随后执行对所标识的小区的信号测量(例如RSRP)。UE也可以必须获取小区全局ID或者CGI。在HSPA和LTE中,服务小区可以请求UE获取目标小区的系统信息SI。更具体地,UE从SI获取目标小区的CGI。也可以请求UE从目标小区获取其它信息、比如闭合用户组CSG信息、CSG邻近检测。
LTE中的示例定位测量包括参考信号时间差或者RSTD测量和UE接收(RX)/发送(TX)时间差测量。后一种测量要求UE对下行参考信号以及对它的上行传输的信号执行测量。
可用于无线电链路维护、最小化路测时间、SON等的其它测量的示例包括控制信道失败率或者质量估计测量、例如确定寻呼信道失败率和/或广播信道失败率。测量也可以提供对物理层问题的检测、比如检测UE是否同步或者失去同步以及无线电链路监视和/或故障检测。
进而另外,UE执行的信道状态信息或者CSI测量用于例如由网络实施的调度、链路适配等。CSI测量的示例包括确定信道质量信息CQI,该CQI可以包括指示在UE处的信噪比SNR或者信噪干比SINR的值,预编码器矩阵指示符PMI(该PMI可以编索引到多天线传输预编码器的已知码簿中或标识被建议用于在向UE传输时使用的预编码器矩阵)以及秩指示符RI,该RI指示UE能够在给定的测量信道条件下支持的传输等级或者空间复用层数目。
UE执行的无线电测量中的至少一些无线电测量由UE用于一个或多个无线电操作任务。这样的任务的示例是向网络报告测量,该网络又可以转而使用它们用于各种任务。例如在RRC连接状态中,UE向服务节点报告无线电测量。响应于报告的UE测量,服务网络节点做出某些判决、例如它可以向UE发送移动性命令用于发起小区改变。小区改变的示例是切换、RRC连接重建、具有重定向的RRC连接释放、CA中的主或P小区改变等。小区重选表示在UE在空闲或者低活动状态中时的小区改变的示例。作为另一示例,UE本身可以使用无线电测量用于执行任务、比如小区选择、小区重选等。
当然,无线电网络节点、比如WCDMA网络中的节点B和LTE网络中的eNB进行某些无线电测量以支持移动性、定位、链路适配、调度、负荷平衡、准入控制、干扰管理和/或缓解等。可以对无线电网络节点传输的信号和/或对无线电网络节点接收的信号执行这些测量,并且示例测量包括SNR或者SNR确定、接收干扰功率或者RIP测量、误码率BLER估计、传播延迟测量、发送载波功率、一个或多个其它信号的、例如参考信号的发送功率以及用于定位的测量。将理解这里的教导为适用于这些和先前讨论的测量类型。
作为进一步考虑,LTE的Release 10指定用于在缓解所谓异构网络中的干扰时使用的时域增强小区间干扰协调或eICIC。这样的网络包括高功率和低功率节点的混合。例如异构网络可以包括多个有时称为“宏”基站的eNB或者其它高功率基站,每个基站在一个或多个“宏”小区中提供服务,这些“宏”小区可以视为包括网络的“宏”层。这些宏小区中的一个或多个宏小区被由低功率基站或者接入点服务的更小的“微”或“微微”小区或者热点重叠。这样的低功率节点常称为微、微微或毫微微基站或者节点。给定的宏节点可以包括家庭eNB、HeNB或可以简单地包括用来延伸或者增强宏小区内的覆盖的一个或者多个低功率基站。
根据时域eICIC方案,低干扰子帧的时域模式也称为“低功率模式”或几乎空白子帧ABS模式。在干扰者节点中配置低干扰子帧,该干扰者节点可以是宏eNB。更具体地,在干扰者小区中配置ABS模式以保护在接收强小区间干扰的受害者小区中的子帧中的资源。受害者小区可以是重叠干扰者小区或者在干扰者小区附近的微微小区。
ABS子帧通常被配置具有减少的发送功率或无发送功率和/或在物理信道中的一些物理信道上具有减少的活动。在ABS子帧中,传输基本公共物理信道、比如公共参考信号CRS、主同步信号PSS、次同步信号SSS、主广播信道PBCH和系统信息块1或SIB1以保证传统的UE的正常运行。
ABS模式也可以被分类为非MBSFN和MBSFN,其中“MBSFN”表示多播/广播单频网络。在非MBSFN ABS模式中,可以在包括MBSFN或者非MBSFN可配置子帧的任何子帧中配置ABS。在MBSFN ABS模式中,可以仅在MBSFN可配置子帧、即在FDD中的子帧1、2、3、6、7和8和在TDD中的子帧3、4、7、8和9中配置ABS。
服务eNB(例如微微eNB)用信令发送一个或多个测量模式(也称为测量资源限制模式)以向UE通知UE应当用于对目标受害者小区(例如服务微微小区和/或邻近微微小区)执行测量的资源或子帧。模式可以对于服务小区测量、邻近小区测量等而不同。UE将对其完成测量的资源或者子帧与干扰者小区中的ABS子帧重叠。这样,保护测量模式内的这些资源或者子帧免于干扰者小区干扰,并且这些资源或者子帧也可互换地称为“受保护子帧”或者“受限制子帧”。
服务eNB保证每个测量模式在每个无线电帧中包含至少某个数目的受保护子帧——例如一个到两个——以有助于UE的测量的性能。在未包括受保护子帧时,当UE被配置具有与异构网络中的操作有关的测量模式时,UE一般地不能满足预定义的测量要求。
转向更早引用的多载波或者CA,这样的技术提供了用于增强峰速率的机会。使用LTE作为示例情况,能够在UL中和/或在DL上聚合多个20MHz载波或者甚至更小的载波(例如5MHz)。将多载波或CA系统中的每个载波一般地称为分量载波CC或有时简称为“小区”。无论如何,每个CC代表多载波系统中的单个载波。CA的使用也可以称为“多载波系统”、“多小区操作”、“多载波操作”或者“多载波”发送和/或接收。
CA可以用于在上行链路和/或下行链路方向上传输信令和数据。CA中的CC之一作为PCC或简单地作为主载波或甚至作为锚定载波操作。如这里更早提到的那样,其余载波是SCC或简单地是次载波或甚至是补充载波。一般而言,主或者锚定CC输送实质的UE专属信令。主CC(即PCC或者P小区)存在于CA中的上行链路和下行链路方向二者上。在有单个UL CC的情况下,P小区在该CC上。网络可以向在相同扇区或者小区中操作的不同UE指派不同的主载波。
因此,UE在下行链路中和/或在上行链路中具有多于一个服务小区:分别在PCC和SCC上运行的一个主服务小区和一个或多个次服务小区。服务小区可互换地称为主小区、P小区或主服务小区PSC。相似地,次服务小区可互换地称为次小区、S小区或次服务小区。无论术语如何,P小区和S小区使得UE能够接收和/或发送数据。更具体地,P小区和S小区存在于DL和UL中用于UE接收和发送数据。PCC和SCC上的其余的非服务小区称为邻近小区。
属于CA的CC可以属于相同的频率频带(即频带内CA)或不同频率频带(频带间CA)或其任何组合(例如频带A中的2个CC和频带B中的1个CC)。频带间CA包括分布在LTE中的在两个频带之上的载波。另外,频带内CA中的CC可以在频域中相邻或非相邻(即频带内非相邻CA)。包括频带内相邻、频带内非相邻和频带间的混合CA也是可能的。使用在不同技术的载波之间的载波聚合也称为“多RAT载波聚合”或者“多RAT多载波系统”或者简称为“RAT间载波聚合”。例如可以聚合来自WCDMA网络和LTE网络的载波。另一示例是LTE和CDMA2000载波的聚合。更多的另一示例是LTEFDD和LTE TDD载波的聚合。为求简化,在与描述的技术相同的技术内的载波聚合可以视为“RAT内”或简称为“单RAT”载波聚合。
多载波操作也可以与多天线发射结合使用。例如,每个CC上的信号可以在两个或者更多天线之上由eNB发射到UE。一般而言,CA部署中的CC可以共同位于或可以未共同地位于相同站点或基站或无线电网络节点(例如中继、移动中继等)中。例如,CC可以在不同位置(例如从非共同位置的BS或从BS和远程无线电头端RRH或远程无线电单元RRU)始发(被发送或接收)。组合的CA和多点通信的熟知示例是分布式天线系统或者DAS、RRH、RRU、协调多点或CoMP发送/接收等。这里的技术适用于CA情境中的CC和/或适用于CoMP。
转向定位示例,现有用于确定目标无线设备的位置的许多已知定位方法,该目标无线设备可以是UE、移动中继、PDA、机器型通信MTC设备(也称为“M2M”设备)、膝上型或者其它计算机、调制器或者其它网络适配器、eNB或其它无线电网络节点、位置测量单元LMU或其它的专用定位节点或实质上任何其它类型的无线通信装置。在任何情况下,通过使用可以由适当测量节点或目标设备执行的一个或者多个定位测量来确定目标设备的定位。
在LTE中,演进服务移动位置中心或E-SMLC作为定位节点运行,从而提供各种定位有关服务和功能。例如,定位节点根据涉及到的定位方法和/或要求来配置目标设备以执行一个或者多个定位测量。定位测量由目标设备或由测量节点或由定位节点用来确定目标设备的位置。在LTE中,定位节点使用LTE定位协议LPP来与UE通信,而使用LTE定位协议附录或者LPPa来与eNB通信。
现有在无线通信网络中、例如在LTE和其它蜂窝网络中使用的若干熟知的定位方法。示例包括卫星方法,其中定位测量由目标设备对从导航卫星接收的信号执行并且用于确定目标设备的位置。例如GNSS或者A-GNSS(例如A-GPS、伽利略、COMPASS、GANSS等)测量被用于确定UE或其它目标设备的定位。
观测的到达时间差或OTDOA方法使用与来自网络无线电节点的信号的到达时间差有关的目标设备测量来用于确定目标设备的定位。在LTE示例中,参考信号接收时间差或者RSTD测量由LTE网络中的UE执行用于对UE进行定位。
相似地,有了上行到达时间差或者UTDOA技术,测量节点对从目标设备接收的上行链路信号执行测量。测量节点可以是LTE或其它蜂窝网络中的LMU而目标设备可以是UE。网络中的定位节点或其它位置服务器可以使用来自多个LMU的LMU测量用于确定目标设备的定位。
另一方式使用增强小区ID或者E-CID。这里,服务和/或邻近小区的小区ID和目标设备或无线电节点执行的至少一个附加无线电测量。例如E-CID方法通常使用小区ID和无线电测量、比如BS测量的UE Rx-Tx时间差、BS Rx-Tx时间差、定时提前TA、BS对UE传输的信号测量的LTE RSRP和/或RSRQ、HSPA CPICH测量、到达角度AoA等的任何组合来用于确定目标设备的定位。
混合方法也是已知的。混合定位方法结合与多于一种定位方法有关的定位测量用于确定目标设备的定位。例如混合方法可以使用A-GNSS测量和OTDOA RSTD测量来用于确定目标设备的定位。与基于个别方法获得的总定位准确度比较,混合方法可以提高总定位准确度。
谨记以上信息,将认识到在无线通信网络内运行的UE或其它的无线设备或装置可能必须例如在重复或者触发基础上进行许多类型的无线电信号或者其它测量。例如,可以要求UE在一个或者多个目标小区的DL和/或UL子帧中执行某些无线电测量用于在各种任务中使用。
发明内容
在无线设备未知一个或多个目标小区中的时分双工TDD配置、例如上行链路/下行链路分配时,有设备将在不适当时间执行某些测量的可能。例如设备可以尝试执行关于邻近小区的参考信号接收功率RSRP测量、但是可能无意地在邻近小区的上行链路子帧中进行该测量。在这样的情况下,感知的RSRP即使在设备接近发送无线电节点的情况下仍将很低。因而,在这里的教导的一个方面中,基站、无线设备或其它无线节点为用于从无线通信网络中的相应小区传输的一个或多个感兴趣的TDD载波的时分双工TDD载频确定复合动态子帧CDS信息。
CDS信息标识或指示TDD载波中的一个或多个TDD载波中的一个或多个子帧是具有动态可变的上行链路或者下行链路方向的动态子帧。根据CDS信息适配无线设备执行的关于一个或多个TDD载波无线电测量,以考虑动态子帧、例如避免对动态子帧的测量或者增加进行的测量数目和/或增加测量间隔。
在这里的教导的若干优点之中,在每载波的基础上提供CDS信息极大地减少为了向无线设备通知用于在给定的载频上的给定的载波集合的存在的动态子帧而需要的信令开销。附加地或备选地,使用CDS信息减轻需要提供每小区的动态子帧信息,这些方式可能在有许多小区或小区群集的网络中是禁止的。由于根据CDS信息适配设备的关于一个或者多个目标小区的测量,更多益处包括在设备处的的减少的能量消耗和/或更多可靠测量。
在示例情况下,基站或其它的网络节点被配置用于在无线通信网络、例如根据长期演进LTE标准配置的蜂窝网络中运行。网络节点实施一种方法,该方法包括为由网络中的相应一个或者多个小区传输的一个或多个TDD载波使用的第一TDD载频确定CDS。
该方法还包括向在网络中运行的无线设备发送CDS信息,以用于由无线设备在执行关于一个或多个TDD载波中的动态子帧的无线电测量时使用。CDS信息受与向设备的信令传输关联的任何格式化/或编码限制。另外,向设备发送的CDS信息可以包括更大的CDS信息集合的子集,或可以包括从更丰富CDS信息推导出的信息、例如逻辑标志,这些逻辑标志在设备处具有关于CDS信息的定义的含义。在一些实施例中,网络节点被配置为与其它的网络节点共享CDS信息,例如用于向连接到这样的其它的网络节点的无线设备传输。
在对应的设备侧示例中,一种无线设备被配置用于在无线通信网络中运行。根据这里的示例教导,无线设备被配置为实施一种方法,该方法包括为由网络中的相应一个或多个小区传输的一个或多个TDD载波使用的第一TDD载频获得CDS信息。该方法还包括根据CDS信息执行关于一个或多个TDD载波的无线电测量。
在一些实施例中,该设备基于从网络中的节点接收CDS信息获得CDS信息,例如网络中的服务基站或者其它节点向该设备发送CDS信息的指示。在其它实施例中,该设备基于对一个或多个TDD载波进行测量来确定CDS信息。在任何情况下,根据CDS信息执行无线电测量例如包括适配设备关于一个或多个TDD载波进行的测量以考虑动态子帧。示例适配包括避免在动态子帧期间对一个或多个TDD载波进行测量、进行更大数目的测量或者延长测量间隔。讨论的无线电测量可以例如是设备在重复或者触发基础上进行的无线电资源管理RRM测量。
当然,本发明不限于以上特征和优点。实际上,本领域技术人员将在阅读以下具体描述时和在查看附图时认识附加特征和优点。
附图说明
图1是如从3GPP TS 36.211已知的示例的时分双工TDD配置的表。
图2是图示包括特殊子帧的示例已知的TDD配置的表。
图3是图示用于在长期演进或LTE中定义的多个TDD配置的用于上行链路、下行链路和特殊子帧的不同混合的图。
图4是图示用于LTE无线电帧内的特殊子帧的更多的已知细节的图。
图5是图示涉及到动态子帧的用于动态TDD配置的已知示例细节的图。
图6和7是图示用于用来用信令发送动态子帧的信元的已知布置的表。
图8是图示示例子帧的表,在这些子帧中,用户设备或其它无线设备执行无线电测量。
图9是无线通信网络的一个实施例的框图,该无线通信网络包括根据这里的教导配置的一个或多个无线电网络节点和一个或多个无线设备。
图10是无线通信网络的另一实施例的框图,该无线通信网络包括根据这里的教导配置的一个或多个无线电网络节点和一个或多个无线设备。
图11是根据这里的教导配置的无线电网络节点的一个实施例的框图。
图12是根据这里的教导的在无线电网络节点的网络侧处理方法的一个实施例的逻辑流程图。
图13是根据这里的教导配置的无线设备的一个实施例的框图。
图14是根据这里的教导的在无线设备的设备侧处理方法的一个实施例的逻辑流程图。
具体实施方式
在使用动态TDD的示例网络中,如图5中所示布置UL/DL配置。作为用于动态TDD的基础,定义帧中的每个子帧为下行链路子帧、上行链路子帧或者灵活子帧。能够例如关于来自定义的配置列表的两个不同TDD配置来用信令发送这一布置,其中在配置之间不同的子帧视为灵活。静态子帧能够用于测量、半静态分配和用于控制信道反馈、比如HARQ。可以用与为半双工而完成的方式相似的方式从调度器完全地控制灵活子帧的方向,在该半双工中,除非用户设备已经被调度用于上行链路,子帧将被视为下行链路子帧。
在这一具体示例中,将向传统的UE通知UL重配置、例如配置0。能够用动态TDD运行的UE可以使用附加信息来找出哪些子帧是灵活子帧。在图5的示例中,第三和第四子帧仅可以用作灵活子帧。这里注意子帧计数从零开始。也可以设计灵活子帧的其它布置。例如第三和第四子帧中的仅一个子帧可以用作灵活子帧等。调度器处置在任何给定的灵活子帧中的UL/DL分配。
如在本文献的背景技术章节中阐述的那样,UE对一个或多个载频上的邻近小区执行无线电测量以支持多种操作任务。然而,如果给定的UE不了解动态TDD在给定的小区中的使用,则它可能无意地对不适合用于测量的灵活子帧执行那些测量。
在这里的教导的一个方面中,一种网络节点实施一种方法,其中该方法执行以下操作中的一个或者多个操作:
-确定每载波的复合动态子帧;
-向UE用信令发送关于每载波的复合动态子帧的信息;
-使用关于每载波的复合动态子帧的信息用于测量控制;以及
-向其它网络节点转发关于每载波的复合动态子帧的信息。
在此,术语每载波的复合动态子帧指在载波上的小区中的所有可能的子帧,这些子帧能够至少在原理上从一个无线电帧变化到另一无线电帧。
术语“复合灵活子帧”、“复合动态子帧”、“复合可配置子帧”、“复合模糊子帧”、“复合自适应子帧”等具有这里的相同含义。另外,术语“复合”意味着在属于给定的TDD载频的小区中使用的复合动态或灵活子帧。
确定复合动态子帧的示例是基于获取与邻近小区中的动态子帧有关的信息;以及用于至少部分基于所获取的信息确定复合动态子帧的标准。
至于获得与邻近小区中的动态子帧有关的信息,无线电网络节点获得或获取至少与在UE的每个TDD载频上的邻近小区中使用或者预计使用的动态子帧有关的信息。可以根据服务小区的RAT而为载频内、载频间或者RAT间LTE TDD载波等获取该信息。如果无线电网络节点是LTE TDD节点,则它内部地获得至少在UE的服务小区上使用或者预计使用的动态子帧。
无线电网络节点也可以获取与在每个TDD载波上的服务和邻近小区中使用或者预计使用的动态子帧有关的附加信息。附加信息的示例包括:
-动态子帧能够改变方向、例如从UL改变成DL或者从DL改变成UL的速率。速率能够在不同改变方向上不同。可以按照一个或多个参数表达“速率”:比如(a)子帧方向能够改变的概率、例如从DL改变成UL或相反的概率为0.5;(b)指示子帧方向能够改变的速率的离散水平、例如高、中和低;以及(c)子帧方向能够改变的频率、例如以不快于每100ms一次的频率从DL改变成UL或者相反;以及
-在UE处从邻近小区接收的信号的信号质量或者预计信号质量、例如预计由UE测量或者由接近UE的其它UE测量的RSRP、RSRQ等。
网络节点、比如基站可以通过以下机制中的一个或多个机制获取以上信息:显性、隐性或者预定义。在显性机制的一个示例中,无线电网络节点可以从邻近小区直接接收关于在那些小区中接收或者预计接收的动态子帧的显性指示,并且获取的信息也可以包括与动态子帧关联的附加信息。在示例中,通过在LTE网络的无线电接入网络RAN部分中的eNB之间的X2接口交换这样的信息。
在另一示例中,网络节点也可以从了解将在一个或多个载频上在不同无线电网络节点中使用或者预计使用的动态子帧的另一网络节点接收以上信息。也可以从另一网络节点接收与动态子帧关联的附加信息。其它网络节点的示例是运营和维护Q&M节点、运营支持服务OSS节点、自组织网络SON节点等。
在预定义的机制的示例中,网络节点可以具有关于能够在邻近小区中使用的所有潜在的动态子帧的预定信息和与那些潜在的动态子帧关联的附加信息。预定信息能够被存储在无线电网络节点中,并且能够在载波上的任何邻近小区在“动态子帧使用”方面存在改变时更新该信息。
至于用于至少部分基于获取的信息确定复合动态子帧的标准,网络节点(例如服务于UE的服务无线电网络节点)使用一个或多个标准以确定载波上的复合动态子帧。用于确定复合动态子帧的标准考虑或使用以上描述的获取的信息的至少一个集合。基于该标准,网络节点确定在每个TDD载频上使用或预计使用的最适合的复合动态子帧。
网络节点可以被配置为确定复合动态子帧为在以下小区中使用或预计使用的所有动态子帧:
-载波上的所有小区,这些小区包括UE的服务小区和UE的邻近小区;
-在载波上的UE的所有邻近小区,无论它是否为服务载波或者邻近载波;
-在载波上的选择的小区集合上,该小区集合可以是UE的服务小区和邻近小区的任何组合;
-以上列举的小区的任何集合,只要它们在UE处的信号质量在门限以上,例如RSRP在-110dBm以上和/或RSRQ在-16dB以上,等等;
-以上列举的任何小区集合,只要它们的改变方向的速率高于门限,例如改变方向的概率是0.4或以上和/或改变方向的频率是每40秒一次或更频繁等等;
-以上列举的任何小区并且这些小区能够潜在地是动态子帧、例如除了在时间上与特殊子帧相邻的子帧之外的所有子帧。例如在TDD配置#0中,子帧#3、#4、#8和#9;子帧#0、#2、#5和#7与特殊子帧#1和#6相邻。
在确定“复合动态子帧”的第一示例中,考虑UE在载频f1上的小区1中运行。服务小区1由服务无线电网络节点服务。假设在小区1中并且也在服务载频f1上运行的邻近小区2和3中配置TDD配置#0。假设在小区2和小区3中,子帧#3和子帧#8用作动态子帧。还假设小区使用子帧#9作为动态子帧。
在这一示例中,服务无线电网络节点获取与在小区2和小区3中使用的动态子帧有关的信息。如这里稍后说明的那样,它使用这一获取的信息用于确定f1上的复合动态子帧。例如服务无线电网络节点可以例如通过在涉及到的eNB之间的X2接口从邻近小区接收关于在那些小区中使用的动态子帧的显性指示。
服务无线电网络节点也可以从了解在一个或多个载频上的不同无线电网络节点中使用或者预计使用的动态子帧的另一网络节点接收这一信息。在示例确定中,服务无线电网络节点基于仅在所有邻近小区中使用的所有动态子帧、但是未基于在服务小区中使用的动态子帧确定f1三的复合动态子帧。使用以上确定,服务无线电网络节点确定f1上的复合动态子帧为子帧#3和#8,因为这些子帧在邻近小区2和3中用作动态子帧。
在另一示例配置中,服务无线电网络节点基于在服务小区(小区1)中并且也在所有邻近小区(小区2和3)中使用的所有动态子帧来确定f1上的复合动态子帧。使用以上示例的假设,小区1使用子帧#9作为动态子帧,而小区2和3使用子帧#3和#8作为动态子帧,并且服务无线电网络节点因此确定复合动态子帧为子帧#3、#8和#9。
另一示例使用关于动态TDD配置的以上假设、但是举例说明考虑与动态子帧关联的附加信息。UE的服务无线电节点也获得与动态子帧#3、#8和#9关联的附加信息。
在一个示例中,动态信息能够是动态子帧的链路方向能够改变的速率。例如,对于小区1、2和3中的载频f1,服务无线电网络节点可以获取关于讨论的动态子帧的附加信息,该附加信息指示动态子帧能够每80ms一次(子帧#3)、每20ms一次(子帧#9)和每500ms一次(子帧#8)改变链路方向。
在另一示例中,服务无线电网络节点基于方向改变的门限速率调控它对复合动态子帧的确定。例如它确定载波f1上的复合动态子帧为其方向改变速率多于每100ms一次的那些动态子帧。使用以上数据,满足最小方向改变速率的动态子帧是子帧#3和子帧#9,并且确定那些子帧是f1上的复合动态子帧。
在另一示例中,服务无线电网络节点在要求子帧方向的改变速率多于每50ms一次时的调控下确定载波f1上的复合动态子帧。使用来自以上的示例数据,子帧#3满足这一要求、因此是被确定为载波f1上的复合动态子帧的仅有动态子帧。让服务无线电网络节点调控确定哪些动态子帧是复合动态子帧具有多个优点。例如UE可能更难以预测动态子帧的方向。对于不频繁地改变其方向的子帧(例如在以上示例中在小区3中使用的子帧#8),UE可以更容易地预测方向。
在另一示例中,无线电网络节点确定每个感兴趣的载波上的复合动态子帧和复合半动态(即半静态)子帧。通常基于基本标准、例如载波上的所有动态子帧来确定半动态子帧。也可以考虑附加标准。例如附加标准可以是给定的载波上的其方向比给定的门限更频繁地改变的所有那些动态子帧。例如可以根据在以上示例中描述的场景确定复合半动态子帧。无线电网络节点可以如以下描述的那样向UE用信令发送所有这样的信息。
尽管以上示例细节涉及确定复合动态子帧并且获取用于进行这样的确定的信息,但是以下细节涉及一种在无线电网络节点中向UE用信令发送关于复合动态子帧的信息的方法。这样的信令可以视为这里呈现的教导的另一方面。根据一个示例实施例,服务无线电网络节点向UE用信令发送至少与每TDD载频的复合动态子帧有关的信息以辅助UE对每个TDD载波上的一个或多个小区执行一个或多个无线电测量。服务无线电网络节点也可以针对每个TDD载频向UE用信令发送与复合半动态子帧有关的信息。
服务无线电网络节点可以基于用信令发送关于每TDD载频的复合动态子帧的详细信息或者通过向UE用信令发送简单指示来执行这样的信令发送。至于向UE用信令发送的信息的示例内容,根据一种方式,网络向UE通知关于在TDD载波上的一个或多个小区中是否有一个或多个复合动态子帧。为一个或多个TDD载波中的每个TDD载波分离地提供该信息。
在示例中,用信令发送的信息包含指示符、例如1位信元或者IE和用于每个载波的载频指示。载频指示例如是E-UTRA绝对射频信道编号或EARFCN。
也可以发送1位指示符以指示TDD载波上的邻近小区是否具有与UE的服务小区上相同的动态子帧。服务网络节点可以例如针对UE没有关于在特定TDD载波上的所有邻近小区中使用的动态子帧的精确信息的情况向UE用信令发送这一信息。
另外,在网络节点指示在TDD载波上有“复合动态子帧”的情况下,UE可以假设所有潜在的动态子帧在指示的TDD载波上是“动态子帧”。在图6中描绘的表中示出向UE用信令发送的示例信元。
网络可以提供关于TDD载波上的所有“复合动态子帧”或者“半动态子帧”的显性信息。备选地,网络节点向UE用信令发送与不是“复合动态子帧”或者不是“复合半动态子帧”的子帧有关的信息。用信令发送的信息也包含关于每个载频(例如EARFCN)的指示,其指示哪一个或者多个小区用一个或者动态子帧运行。在图7的表中通过示例示出向UE用信令发送的详细信息。
用以下示例进一步阐述用信令发送的信息的内容。首先考虑载波f2上的确定的复合动态子帧是子帧#3、#4、#7和#8的示例。服务无线电网络节点向UE指示载波上的复合动态子帧是子帧#3、#4、#7和#8。在另一示例中,服务无线电网络节点向UE指示正常子帧(即不是复合动态子帧的子帧)或者其方向不会改变的子帧是子帧#0、#1、#2、#5、#6和#9。子帧#0和#5总是下行,因为它们包含预定义的公共信道并且发信令、比如PSS/SSS、PBCH、SIB1等。这意味着子帧#0和#5不是动态子帧。因此,在一种用于减少信令开销的有利方式中,网络在一些实施例中在用信令发送关于不是动态的子帧的信息时排除这些子帧。例如服务无线电网络节点指示子帧#1、#2、#6和#9在载波f2上的小区中为非动态子帧。
至于载波(为这些载波,服务无线电网络节点向UE用信令发送以上信息)的示例,可以根据服务小区的RAT对于以下载波中的任何一个或多个载波用信令发送这样的信息:频率内TDD载波、频率间TDD载波和RAT间LTE TDD载波等。例如,如果服务小区是GSM或HSPA,则服务小区将提供关于一个或多个RAT间LTE TDD载波的信息,以用于执行RAT间TDD测量。
服务无线电网络节点可以向在低UE活动状态中或在高UE活动状态中的UE用信令发送以上提到的信息。低UE活动状态的示例是空闲状态、CELL_PCH状态、URA_PCH状态、CELL_FACH状态等。高UE活动状态的示例是RRC连接状态、CELL_DCH状态等。网络节点可以使用更高层协议、比如第3层协议(无线电资源控制或者RRC协议)向UE用信令发送这一信息。在低活动状态中,网络节点可以在广播信道上、例如在一个或多个系统信息块或者SIB上向UE用信令发送该信息。在高活动状态中,网络可以在UE专属信道、例如共享信道、比如LTE中的物理下行共享信道或者PDSCH上向UE用信令发送该信息,或比如在服务小区是HSPA等时使用共享信道向UE用信令发送该信息。
网络可以周期性地或者在触发或者按照需要基础上向UE用信令发送这一信息。例如无论何时与复合动态子帧有关的信息对于任何感兴趣的TDD载波而改变都用信令发送该信息。至于触发的信令,可以对于具体场合或者事件、例如在小区改变、服务小区测量的信号质量从门限偏离某个阈值等之前或者之后用信令发送该信息。
这里的教导的另一方面涉及一种配置为接收和使用以上描述的用信令发送的信息的UE。在示例配置中,UE接收指示复合动态子帧的信令,并且它使用该信息用于执行一个或多个无线电操作任务、例如一个或多个无线电资源管理任务或动作。根据接收的信令执行的示例操作包括以下操作中的一项或多项:
-有选择地执行一个或多个无线电测量;
-使用信息用于内部使用、例如用于执行小区选择、小区重选、用于收集测量统计量、用于确定它的定位;
-使用信息用于外部使用、比如用于向服务无线电网络节点报告测量结果、用于向定位节点(例如E-SMLC)报告测量结果等;以及
-向其它UE和/或其它网络节点转发所获得的信息。
因此,UE可以使用与TDD载波上的复合动态子帧有关的接收的信息以判决它可以使用哪些子帧用于执行一个或者多个无线电测量。例如如果UE具有关于TDD载波上的动态子帧的详细信息(比如图7的表中所示),则它可以使用具体的子帧用于执行如图8的表中所示的无线电测量。
UE判决可以是实现方式地特定于UE,或者它可以基于一个或多个预定义的规则。也可以按照与每个测量关联的预定义的要求隐性地表达预定义的规则。例如UE必须满足预定义的要求,这些要求依赖于TDD载波上的复合动态子帧的数目或者百分比。预定义的测量的示例是测量时段、测量准确度、测量报告延迟、满足预定义的要求的信号条件等。
预定义的规则和/或预定义的要求可以适用于特定的测量类型(例如信号强度、比如RSRP)、测量组(例如移动性有关或者定位有关、比如RSTD)或者所有测量。它们也可以对于不同测量类型而不同。
在预定义的规则的一个示例中,UE遵循规则,在该规则中,UE应当仅使用未被指示为复合动态子帧的那些子帧用于执行无线电测量。根据另一示例规则,UE应当仅使用未被指示为复合动态子帧的那些子帧用于执行无线电测量并且也使用如下那些复合动态子帧用于测量,只要它们的方向由UE唯一地确定。例如在DL CoMP场景中,UE可以了解每个子帧在一个或多个邻近小区中的方向。这样的检测可以基于与参考信号的相关性。在另一示例中,UE盲检在小区中的特定的动态子帧的方向。
在更多另一示例中,如果网络向UE通知在TDD载波上有复合动态子帧(例如无需子帧专属信息的简单指示),则为了执行无线电测量,UE应当仅使用不能是动态子帧的那些子帧。例如UE可以仅使用子帧#0和#5以保证对希望的信号执行测量。
在另一示例中,UE可以使用子帧#0、#1、#2、#5、#6和#7,并且它了解在TDD载波上使用以子帧#1和#6作为特殊子帧的TDD配置。UE可以从服务小区或者在初始小区搜索期间或者通过盲检获取关于载波上的TDD配置的信息。
在更多的另一具体示例中,UE应当根据第一或第二要求集合执行一个或多个测量,其中适用的要求集合依赖于UE是否已经接收信令,该信令指示在涉及到的TDD载波上使用“复合动态子帧”。例如,在指示在TDD载波上使用复合动态子帧时,UE执行满足第二要求集合的测量,否则UE根据第一要求集合执行测量。第二要求集合可以比第一要求集合更少严格或者更“宽松”。
例如,第二要求集合可以以比在第一要求集合中使用的测量时段更长的测量时段为特征。在示例情况下,第二和第一要求集合分别使用400ms和200ms测量时段。在另一示例中,测量时段可以相同,但是另一个或多个预定义的要求可以宽松。例如,在第二要求集合中减少要求UE测量的标识的小区数目(例如RSRP/RSRQ测量数目)。作为工作示例,标识的小区数目在特定载波上从第一要求集合中的8个小区减少成第二要求集合中的6个小区。
在更多的另一具体示例中,可以预定义在特定TDD载波上使用的“复合动态子帧”的指示的数目超过某个门限时UE应当满足与对TDD载波上的小区完成的测量有关的第二预定义的要求集合;否则UE应当满足第一要求集合。门限可以是每无线电帧3个子帧。如在先前示例中说明的那样,第二要求集合比第一要求集合更宽松(或者更少严格)。
在更多另一具体示例中,可以预定义在特定TDD载波上使用的“复合动态子帧”数目超过另一门限、比如四的情况下不要求UE满足预定义的要求。
在另一具体示例中,可以预定义在UE执行测量之时改变在TDD载波上使用的“复合的动态子帧”的指示的数目的情况下要求UE满足与对该特定TDD载波上的小区完成的测量有关的第二预定义的要求集合。
也如注意的那样,根据这里的教导配置的一种UE可以被配置为转发与复合动态子帧有关的接收的信令。例如,能够设备到设备D2D通信的UE可以向一个或多个其它能够D2D的UE转发与每TDD载波的复合动态子帧有关的获得的信息或者这样的信息的至少一部分。UE可以基于从网络节点显性地接收信息来获得它或者可以隐性地、比如通过自治地确定在TDD载波上的不同小区中使用的动态子帧来获得它。例如,在对TDD载波上的小区执行测量时,UE可以自治地确定动态子帧。更具体地,UE在子帧中的已知参考信号(例如CRS等)之上执行相关并且观测在不同无线电帧之间的相关结果的差值。如果差值大于门限(例如6dB或者更多),则UE可以假设子帧方向已经在一个或多个子帧之间改变并且该子帧是动态子帧。UE可以存储用于多个小区的这样的获得的信息并且收集统计量。UE也可以使用显性和隐性信息二者以进一步验证和确认在TDD载波上的小区中配置的复合动态子帧。
在这里设想的转发的一个示例中,D2D UE可以向其它D2D UE用信令发送与在TDD载波上的所有小区中或者某个小区上、比如在服务小区中或者在特定的邻近小区上等等配置的动态子帧有关的信息。D2D UE可以前摄地或者基于从网络节点接收的请求或者基于从其它D2D UE接收的请求或者基于出现事件或者满足一个或多个条件、比如在动态子帧数目改变时等向其它D2D UE发送这一信息。
UE也可以向一个或多个网络节点、例如定位节点等转发与“每TDD载波的复合动态子帧”有关的所获得的信息或者这样的信息的至少一部分。例如,UE可以向定位节点(例如在LPP之上的E-SMLC)用信令发送与在TDD载波上的所有小区中或者某个小区上、比如对于服务小区或者在特定邻近小区上等等配置的动态子帧有关的信息。定位节点可以使用这一信息,以用于一个或多个定位有关的操作或任务。
例如,如果在TDD载波上有大量动态子帧(例如4个或者更多),则定位节点可以配置UE以在更大带宽内(例如10MHz或更大带宽内)执行一个或多个定位测量。在另一示例中,如果在TDD载波上有大量动态子帧(例如4个或者更多),则定位节点可以选择具有要求的定位方法,这些要求涉及到在UE与服务小区之间接收和/或发送的信号。例如,定位节点可以使用需要UE和/或eNodeB Rx-Tx时间差测量的E-CID、需要UL RTOA测量的UTDOA等。
在更多另一示例中,定位节点还可以向对UE传输的信号执行定位测量的一个或多个测量无线电节点(例如LMU)用信令发送与动态子帧有关的接收的信息或者它的一部分。测量节点可以在对UE传输的信号执行一个或者多个定位测量、例如UL RTOA时使用这一信息。例如,测量节点有选择地避免对UE的服务小区的‘动态’子帧上的信号执行测量。这保证准确地执行定位测量、因此未降低定位准确度。
在更多另一示例中,如果UE自治地获得关于TDD载波上的动态子帧的信息,则UE也可以向它的服务无线电节点(例如服务eNodeB、服务无线电网络控制器、服务基站控制器等)用信令发送这一信息。服务无线电网络节点可以向它服务于的其它UE用信令发送这一信息作为测量配置的一部分。服务无线电网络节点也可以更新它自己的在TDD载波上的“复合动态子帧”列表。
并非所有UE可以能够使用CDS信息。因而,这里设想让UE配置为向网络节点用信令发送它的关于接收/使用CDS信息的能力,其中服务网络节点、核心网络节点、定位节点等可以考虑这样的信息例如以用于有选择地执行一个或多个执行无线电测量等的任务。UE也可以指示TDD载波数目,UE可以应用CDS信息用于对这些TDD载波执行测量。UE也可以指示测量类型、例如有关的移动性、比如RSRP/RSRQ等,UE能够在执行无线电测量时为该测量类型应用CDS信息。换而言之,UE可以指示特定方式和/或限制,其在使用从网络用信令发送的CDS信息方面适用于UE,以对具有动态子帧的一个或多个TDD载波22执行无线电测量。
网络节点(例如服务eNodeB、服务RNC等)可以在执行一个或多个任务时使用接收的UE能力信息。例如,如果UE甚至未支持基本能力,则网络节点可以配置UE以仅对如下那些TDD载波执行测量,即没有动态子帧被配置在这些TDD载波上,或者在这些TDD载波中,复合动态子帧数目在门限、例如3以下。因此,网络节点可以修改、配置或控制由无能力的UE执行的测量以避免或者减少可能原本由于存在的动态子帧而产生的测量问题。
UE可以用以下方式中的任何方式向网络节点发送它的能力信息:
-前摄报告而无需从网络节点(例如服务或者任何目标网络节点)接收任何显性请求;以及
-在从网络节点(例如服务或者任何目标网络节点)接收任何显性请求时报告。
显性请求可以由网络在任何时间或者在任何具体场合发送到UE。例如,用于能力报告的请求可以在初始设立期间或者在小区改变(例如切换、RRC连接重建、有重定向的RRC连接释放、CA中的P小区改变、PCC中的PCC改变等)之后被发送到UE。
转而,又设想无线通信网络中的网络节点实施一种使用从UE接收的能力信息的方法,其中该能力信息指示UE有能力接收/使用由网络用信令发送的关于用于测量控制的复合动态子帧(例如在每载波基础上)的信息。
当然,如这里更早描述的那样,网络节点也可以使用与每TDD载波的复合动态子帧有关的所确定的信息,以用于执行一个或多个测量控制有关任务。在一个示例中,网络节点(例如异构网络布置中的干扰者eNB)配置一个或多个发送信号模式(例如ABS模式),该一个或多个发送信号模式考虑与每载波的复合动态子帧有关的信息。例如,在配置ABS模式时,网络节点可以排除在TDD载波上配置的所有确定的复合动态子帧,例如,模式中的并非所有ABS子帧是动态子帧。网络节点也可以向其它网络节点(例如低功率节点、受害者微微eNB等)通知已经在考虑与复合动态子帧有关的信息之时配置了发送信号模式(例如ABS模式)。在这一考虑的示例中,ABS子帧不是动态子帧,或者未与TDD载波上的任何动态子帧重叠。
在另一示例中,网络节点、比如异构网络中的eNB可以向UE配置一个或多个测量模式,该一个或多个测量模式考虑与每TDD载波的复合动态子帧有关的信息。示例测量模式包括也称为受限制模式的资源限制测量模式以及CSI测量模式等。
在这样的运行的至少一个实施例中,网络节点在配置一个或多个测量模式时排除在TDD载波上配置的所有确定的复合动态子帧,从而模式中的无受限制测量子帧是动态子帧。网络节点也可以向其它网络节点(例如高功率节点、比如干扰者eNB)通知已经在考虑与复合动态子帧有关的信息之时配置了测量模式,例如受限制测量子帧不是动态子帧,或者未与TDD载波上的任何动态子帧重叠。网络节点可以向UE用信令发送适配的一个或多个测量模式,以用于执行一个或者多个测量、比如CSI、RSRP、RSRQ、UE Rx-Tx时间差测量等。
在另一示例中,网络节点(例如eNodeB、RNC等)可以判决是否在考虑与每TDD载波的确定的复合动态子帧有关的信息之时执行某些无线电测量。例如,如果每载波的动态子帧数目在特定非服务TDD载波上大于门限(例如3个或者更多),则网络节点可以不在向UE发送的用于执行无线电测量的测量配置中包括这一载波。这是因为非服务TDD载波(例如频率间、RAT间载波)上的小区通常在测量间隙中由UE测量,如果有若干动态子帧(即非可测量子帧),则这些测量间隙可以不与所有的可测量子帧重叠。
在另一示例中,只要UE能够对非服务TDD载频测量而无需测量间隙,如果每载波的动态子帧数目大于门限,则网络节点可以在向UE发送的用于执行无线电测量的测量配置中包括这一载波。
在更多另一示例中,如果每载波的动态子帧数目大于门限,则网络节点可以配置UE以在更大测量带宽(BW)内、例如在10MHz或者更大的带宽内执行测量。在此认识到:在可用时间与测量带宽之间的折衷,因此更大的测量BW使得UE能够在由于TDD载波上的更大数目的动态子帧而更少的子帧可用于对TDD载波的测量的情况下实现更佳的无线电测量性能(例如更佳的测量准确度)。
除了网络节点使用由它确定的复合动态子帧信息之外或者作为其备选,在一个或多个实施例中网络节点被配置为向网络中的一个或多个其它节点转发这样的信息。其它网络节点的示例是任何其它网络节点、核心网络节点(例如MSC、MME等)、O&M、OSS或SON节点、定位节点(例如E-SMLC)、MDT节点等。网络节点的示例是包括节点B、eNB等的基站、网络控制器、无线电网络控制器、基站控制器、中继、施主节点控制中继、收发器基站、BTS、接入点、AP等。
至于向其它网络节点用信令发送复合动态子帧信息的设想的机制,非限制示例包括网络节点以如下方式中的任何方式转发这样的信息:
-前摄报告而未从另一网络节点(例如邻近或者任何目标网络节点)接收任何显性请求;以及
-在从另一网络节点(例如邻近或者任何目标网络节点)接收任何显性请求时报告。
显性请求可以由另一网络在任何时间或者在任何具体场合被发送到网络节点。例如,用于信息的请求可以在初始设立期间、在升级网络(更多无线电单元或者收发器、增加无线电单元中的天线数目、部署新天线模式、改变TDD配置等)时被发送到网络节点。
另一网络节点可以使用所接收的信息用于执行一个或多个无线电操作任务。这样的任务的示例是在配置UE以执行一个或者多个测量时使用接收的信息、向测量节点转发信息、用于网络规划、调节或设置无线电网络参数等。
在一个示例中,网络节点、比如eNB通过X2接口向邻近eNB转发所确定的信息。接收eNB在向它自己的UE发送的测量配置消息中包括这一信息或它的至少一部分,以用于对邻近小区执行无线电测量。以这一方式,接收eNB无需确定所有TDD载波上的动态子帧。也就是说,在给定的eNB或其它网络节点确定用于一个或多个TDD载波的复合动态子帧时,可以至少部分地从邻近节点/小区接收的信令获得信息,该信息例如在每TDD载波基础上指示在那些邻近小区中使用的动态子帧。
在另一示例中,网络节点向执行或者参与网络规划和/或调节无线电网络参数的网络节点转发所确定的信息。这样的节点例如是SON、O&M和/或OSS节点。如果TDD载波上的每无线电帧的动态子帧平均或总数目在门限以上(例如4个或者更多),则接收节点可以推荐网络节点减少动态子帧数目、例如不多于每无线电帧两个或三个。在另一示例中,网络节点可以向网络节点配置更大带宽以补偿无线电测量由于可用于测量的更少子帧而所致的性能下降。
在更多另一示例中,网络节点向定位节点(例如经由LPPa的E-SMLC)转发复合动态子帧信息。在这里设想的一个或者多个实施例中,如这里更早描述的那样,定位节点使用接收的信息用于一个或多个定位有关任务。也如这里更早描述的那样,定位节点可以从在任何数目的小区中的一个或多个小区中运行的一个或多个UE获得如在这些小区中使用的用于一个或多个TDD载波的复合动态子帧信息。
更广而言之,这里的教导公开一种方法和子帧,其中网络节点确定用于一个或多个TDD载波的在一个或多个小区中使用的动态子帧。标识用于某个数目的小区、例如某个数目的邻近小区中的给定的TDD载波的总的动态子帧集合的信息称为“复合动态子帧信息”。
另外,根据这里的教导,在一个或多个示例中,网络节点被配置为基于所确定的复合动态子帧信息来配置或控制由一个或多个UE进行的一个或多个无线电信号测量。附加地或者备选地,网络节点向UE传输信令以指示所确定的复合动态子帧信息或至少其一部分。UE又被配置为在配置由它们进行的一个或者多个无线电信号测量时考虑这样的信息。例如,UE可以避免对动态子帧进行测量以考虑动态子帧的存在。
因此,公开的方法使得网络节点能够确定在TDD载波上的小区中使用的动态子帧,并且还使得网络节点能够在它的控制之下向UE提供与在TDD载波上的小区中使用的动态子帧有关的信息。这样的操作保证UE在使用动态TDD的通信网络中执行可靠的测量。例如,配置RSRP和/或RSRQ(或其它的移动性有关)测量以考虑动态子帧信息,从而提高网络中的移动性有关性能。这里的教导也通过考虑动态子帧信息而改进定位有关测量、例如RSTD、UL RTOA等来增强定位准确度和性能。
谨记这些示例优点,图9图示无线通信网络10、比如基于LTE标准的蜂窝网络。网络10将一个或多个无线设备12、例如12-1、12-2和12-3通信地耦合到一个或多个外部网络14、比如因特网。这里,可以理解设备12为以上描述的UE和UE功能的示例。
网络10包括无线电接入网络RAN 16。RAN 16通过小区18在对应的地理地区或者区域内提供通信服务,其中多个基站20、例如20-1和20-2提供这些小区18。在一个LTE实施例中,基站20是eNB并且可以在这样的实施例中例如经由X2接口互连基站20。
可以理解小区18为在特定覆盖区域或位置内或用于特定覆盖区域或位置的特定接口资源的分配。例如,每个小区18提供在特定载频上运行的下行链路TDD载波22,并且无线设备12对应地向它们在网络中的“服务”基站20传输上行链路信号24。任何给定的基站20可以通过在多于一个载频上传输来提供多个小区18,其中这样的小区可以部分地或者全部地重叠。图9图示这一布置的示例,其中基站20-1提供小区18-1、18-2和18-3,而基站20-2提供小区18-4。注意的是,小区18-4可以使用与小区18-1、18-2和18-3中的任何小区相同的载频。
当然,这里的教导不限于图9中描绘的示例小区布置。例如考虑图10,该图示出这里的教导在其中适用的另一网络布置。具体而言,图10图示异构网络布置,在该异构网络布置中,描绘基站20-1为宏基站,并且在该异构网络布置中,描绘小区18-2为对应宏小区。又描绘基站20-2、20-3和20-4为微微基站,其中基站20-2提供小区18-2为在宏小区18-1上叠加的微微小区,基站20-3提供小区18-3为在宏小区18-1上叠加的微微小区,而基站20-4提供小区18-4为在宏小区18-1上叠加的微微小区。
暂时返回至图9,网络10还包括核心网络CN 30,该核心网络CN以示例的方式包括移动性管理实体MME 32、服务网关SGW 34和一个或多个其它节点36、比如定位节点OOM节点等。在一些实施例中,基站20中的一个或多个基站根据这里的教导被配置为网络节点。附加地或者备选地,可以有这样配置的一个或多个其它网络节点、比如在图9中未示出、但是可以根据网络10的类型而存在于网络10中的无线电网络控制器RNC。其它的网络节点示例包括根据这里的网络侧教导而配置的一个或多个CN节点、比如定位节点。
图11图示基站20的一个实施例作为根据这里的教导而配置的网络节点的示例。将认识另一网络节点、比如CN节点可以不具有相同类型或者数目的通信接口、但是将具有以在图11的上下文中为基站20描述的方式而配置的处理电路装置。
所示的基站20包括与无线通信接口42关联的一个或多个接收/发送天线40。在示例中,无线通信接口42包括被配置用于发送一个或多个下行链路载波22和用于从任何数目的无线设备12接收上行链路信号24的无线电接收器电路装置和无线电发送电路装置。无线通信接口42与这里称为处理电路44的控制和处理电路44操作地关联。处理电路44可以包括一个或多个微控制器、DSP、FPGA、ASIC或者其它数字处理电路装置、比如具体地适于基于执行在处理电路44中或处理电路44可访问的计算机可读介质中存储的计算机程序执行在这里的网络侧的教导的计算机处理电路装置。
在至少一个实施例中,处理电路44至少在功能上包括多个电路,这些电路在图中称为“单元”,但是应当被理解为例如在一个或多个数字处理器内程序地配置的电路模块或布置。这些单元包括被配置为如这里教导的那样确定CDS信息的CDS信息确定单元46、被配置为经由无线通信接口42例如向作为目标的无线设备12发送CDS信息的CDS信息信令单元48、被可选地包括并且被配置为向一个或多个其它节点、例如其它基站20转发CDS信息或从CDS信息推导出的信息的CDS信息转发单元50。在一些实施例中,处理电路44也包括测量配置单元52,其被配置为适配测量配置以考虑如从CDS信息已知的动态子帧。
可以在基站20处关于无线设备地执行这样的适配,这些无线设备在CDS信息方面不能够进行测量配置适配。就这一点而言,将理解基站20可以关于多个载频和关于具体小区18和/或具体小区组18确定CDS信息。换而言之,给定的CDS信息特定于给定的载频和在该频率上提供TDD载波22的给定的小区18,并且基站20可以确定用于给定的载频上的TDD载波22和/或TDD载波组的不同的CDS信息。所描绘的基站20还包括用于从其它网络节点接收CDS信息和/或用于向其它网络节点发送CDS信息的网络通信接口54。
谨记上述,示例基站20代表网络节点,该网络节点被配置用于在网络10中运行并且包括被配置用于向由网络节点20服务的一个或多个无线设备12发送信令和从该一个或多个无线设备接收信令。网络节点还包括与通信接口42在操作上关联地的处理电路44。处理电路44被配置为为由网络中的相应一个或多个小区18传输的一个或多个TDD载波22使用的TDD载频确定CDS信息,并且向无线设备12发送CDS信息,以用于由无线设备12在执行关于一个或多个TDD载波22的无线电测量时使用。如先前指出的那样,CDS信息指示TDD载波22中的一个或多个TDD载波中的一个或多个子帧是具有动态可改变的上行链路或下行链路方向的动态子帧。
处理电路44经由无线通信接口42向无线设备12发送由基站20获得或生成的CDS信息,其经过为了向无线设备12用信令发送CDS信息而需要的任何格式化、编码、打包、封装或者以别的方式适配。备选地,如向无线设备12发送的CDS信息可以是基站20获得或生成的更大或者更丰富CDS信息集合的子集或可以从这样的信息中推导出。
图12图示如这里设想的用于网络节点、比如服务基站或者其它无线电网络节点的网络侧处理方法。方法1200包括为由网络10中的相应一个或多个小区18传输的一个或多个TDD载波22使用的第一TDD载频确定(块1202)CDS信息。CDS信息指示TDD载波22中的一个或多个TDD载波中的一个或多个子帧是具有动态可变的上行链路或下行链路方向的动态子帧,并且方法1200还包括向在网络10中操作的无线设备12发送(块1204)CDS信息,以用于无线设备12在执行关于一个或多个TDD载波22的无线电测量时使用。例如设备12使用CDS信息以标识动态子帧并且避免在与动态子帧对应的时间关于一个或多个TDD载波22进行测量,或进行比它名义上将对一个或多个TDD载波22的测量数目更大数目的测量和/或延长它将名义上用于对一个或多个TDD子载波22进行测量的测量间隔。
在一些实施例中,CDS信息包括一个或者多个逻辑标志,其向无线设备12指示在一个或多个TDD载波22中存在动态子帧。在其它实施例中,CDS信息包括经过信令所需要的任何适配的、由网络节点生成或获得的潜在地更大或更丰富的CDS信息的集合的全部或一部分。
在示例情况下,一个或多个小区18包括关于无线设备12的服务小区18和服务小区18的一个或多个邻近小区18。CDS信息向无线设备12指示由服务小区18和一个或多个邻近小区18传输的TDD载波22中的哪些子帧是动态子帧。也就是说,CDS信息可以显性地或隐性地标识每个TDD载波22中的哪些子帧是动态子帧。
在另一示例情况下,第一TDD载频是关于无线设备12的非服务载频,并且一个或多个载波22是关于由无线设备12的服务小区8传输的服务小区载波22的一个或多个邻近小区载波22。CDS信息例如指示一个或多个邻近小区载波22中的非服务载频上的哪些子帧是动态子帧。
至于发送CDS信息,在一些实施例中,向无线设备12发送(块1204)CDS信息包括向无线设备12发送无线电资源控制RRC信令。另外,在至少一些实施例中,使得步骤向无线设备12发送(块1204)CDS信息基于开始时接收的用于无线设备12能力信息,该能力信息指示无线设备12能够执行无线电测量以考虑动态子帧。简而言之,基站20或其它网络节点可以仅向已经被标识为能够在它们的下行;链路载波测量中考虑动态子帧的那些无线设备12发送CDS信息。
因此,在一些实施例中,方法1200还包括为未被指示为能够执行无线电测量以考虑动态子帧的第二无线设备适配关于一个或多个TDD载波22的第二无线设备的无线电测量配置以考虑那些一个或多个TDD载波22中的动态子帧。这里,方法1200包括向第二无线设备发送对应的测量配置信息。
因此,对于能够使用CDS信息以执行考虑动态子帧的无线电测量的无线设备12,向设备12发送CDS信息足以使得设备12能够对它的无线电测量进行适当的适配。设备12用于进行那些测量的名义的配置可以由网络10设置,从而设备12变更、调整或者以别的方式适配它原本根据配置而进行的测量,以考虑在一个或多个TDD载波22中存在的动态子帧。
反言之,对于不能解析或者使用CDS信息的无线设备,网络节点进行适当的测量配置适配并且向设备发送对应的测量配置信息。等效地,网络节点用信令发送引起应当进行的适配的一个或多个参数,并且设备12基于用信令发送的参数进行适配。
至于关于向无线设备12发送的CDS信息的示例细节,在一些实施例中,发送的CDS信息包括以下信息中的任意一项或多项:关于哪些子帧是动态子帧的指示、关于哪些子帧不是动态子帧的指示,以及用于一个或多个TDD载波22包括用于无线设备12的服务小区载波22和一个或多个邻近小区载波22的情况的指示和/或关于服务小区载波22的动态子帧是否与一个或多个邻近小区载波22的动态子帧相同的指示。
在另一示例情况下,第一TDD载频上的一个或多个TDD载波22包括根据无线设备12的载波聚合CA配置而配置为用于无线设备22的第一服务小区载波22的第一TDD载波22。CA配置还配置第二TDD载频上的用于无线设备12的第二服务小区载波22,并且该方法1200还包括确定关于第二TDD载频的第二CDS信息并且向无线设备12发送第二CDS信息。一般而言,应当理解,网络节点可以被配置为为任何数量的TDD载频确定和并向该设备12发送CDS信息,这些TDD载频对于该设备12而言在CA操作、邻近小区18、服务小区18等中的任何一项或多项方面是感兴趣的。
在一些实施例中,确定(块1202)CDS信息包括网络节点根据从网络10中的一个或多个其它节点接收的信息确定一个或多个TDD载波22中的哪些子帧是动态子帧。这些其它节点可以是CN 30中的其它基站20和/或其它节点36、比如定位节点。
另外,在一些实施例中,确定(块1202)CDS信息包括适配或者过滤CDS信息,从而CDS信息仅指示满足一个或多个定义的条件的那些动态子帧。例如,一个或多个定义的条件包括以下条件中的一个或多个:具有定义的频率门限或者范围的上行链路/下行链路方向改变的那些动态子帧;以及在一个或多个TDD载波22中的任何TDD载波中传输的满足在无线设备12处定义的信号质量门限或者范围的那些动态子帧。
例如,作为无线设备细节,图13图示一个非限制实施例。所示无线设备12包括一个或多个接收/发送天线60、收发器62,该收发器包括天线接口电路装置64、发送器电路装置66、接收器前端68并且可以包括无线电信号测量单元70。收发器62例如包括被配置用于在无线通信网络10、例如LTE网络中运行的无线电收发器。设备12还包括这里称为“处理电路72”的控制和处理电路72。设备12根据它的既定使用和实施的特征而可以包括附加处理电路装置和/或接口电路装置74、比如用户接口电路装置、应用处理器等。
处理电路72在一些实施例中包括一个或多个微控制器、DSP、ASIC、FPGA或者其它数字处理电路装置。在至少一个实施例中,处理电路72至少部分地特定地适于基于执行在处理电路72中或处理电路72可访问的计算机可读介质中存储的计算机程序指令,以实施这里的设备侧的教导。在一个示例中,处理电路72包括为了清楚而称为“单元”的一个或多个物理或至少功能电路。在所示示例中,这些单元包括配置为解析接收的CDS信息的可选CDS信息解析单元80、配置为自治地基于设备12进行的TDD载波测量或者基于可选CDS信息解析单元80提供的解析的信息获得CDS信息的CDS信息获得单元82。关于自治确定CDS信息的方面,设备12可以对TDD载波22进行测量并且对那些测量执行相关处理以检测动态的子帧。
在一些实施例中,网络10用信令发送CDS信息,并且CDS信息解析单元80处理这样的信令。在其它实施例中,网络10不发送CDS信息,并且设备12自治地确定该信息。设备12也可选地包括配置为向网络10报告能力信息和/或经由D2D通信向另一节点、比如另一设备12转发CDS信息的能力报告和/或转发单元86。注意如更早说明的那样,设备12报告的能力信息使得网络10能够识别设备12能够执行对一个或多个TDD载波22进行的无线电测量以考虑在那些一个或多个TDD载波22中存在的动态子帧。
因此,在示例情况下,无线设备12被配置为在无线通信网络10中运行并且包括配置为向网络10发送信号和从网络10接收信号的收发器62并且包括与收发器62操作地关联的处理电路72。处理电路72被配置为获得CDS信息,其用于由网络10中的相应的一个或多个小区18传输的一个或多个TDD载波22使用的第一TDD载频,并且根据CDS信息执行关于一个或多个TDD载波22的无线电测量。
图14图示例如经由程序配置在示例设备12处实施的方法1400。该方法1400包括为由网络10中的相应一个或多个小区8传输的一个或多个TDD载波22使用的第一TDD载频获得(块1402)CDS信息并且还包括根据CDS信息执行(块1402)关于一个或多个TDD载波22的无线电测量。
在一些实施例中,CDS信息包括一个或多个逻辑标志,其指示在一个或多个TDD载波22中存在动态子帧。可以从网络10中的网络节点接收这样的信息或者设备12可以基于对一个或多个TDD载波22执行无线电测量和相关处理来生成这样的信息。在至少一些实施例中,CDS信息显性地或者隐性地标识一个或多个TDD载波22中的哪些TDD载波中的哪些子帧是动态子帧。
在示例情况下,一个或多个小区18包括关于无线设备12的服务小区8和服务小区8的一个或多个邻近小区18。这里的CDS信息指示由服务小区18和一个或多个邻近小区18传输的TDD载波22中的哪些子帧是动态子帧。在具体示例中,用于这一情况的CDS信息包括服务小区和邻近小区载波22具有相同的动态子帧这样的指示。这样的布置是有利的,因为一个位或者很少的位可以用来指示邻近小区18中的动态子帧与在服务小区18中使用的动态子帧相同——即相同的子帧编号。
在另一示例情况下,第一TDD载频是关于无线设备12的非服务载频,并且一个或多个TDD载波22是关于由无线设备12的服务小区18传输的服务小区载波22的一个或多个邻近小区载波22。这里,CDS信息指示一个或多个邻近小区载波22中的在非服务载频上的哪些子帧是动态子帧。
至于根据CDS信息执行关于一个或多个TDD载波22的无线电测量的步骤,在一个示例中,无线设备12适配它对一个或多个TDD载波22进行的无线电测量以例如避免在与动态子帧对应的时间对一个或多个TDD载波22中的任何TDD载波进行无线电测量或者对一个或多个TDD载波22进行比它原本进行的测量数目更大数目的测量或者延长它原本用于对一个或多个TDD载波22进行测量的测量间隔。
在这些稍后示例适配中,应当注意,使用更多测量和/或延长测量间隔可以被理解为衰减动态子帧对这样的测量的影响。也就是说,如果这样的测量是基于正在测量下行链路信号这样的前提,则对正在上行链路方向上使用的动态子帧的测量可能产生异常或者无关测量,其能够通过进行更多测量而被掩蔽或衰减。
在示例情况下,设备12具有例如由网络10向它发送的测量配置,该测量配置在默认意义上配置它的关于一个或多个TDD载波22的测量。设备12可以考虑CDS信息来适配这一配置,从而以考虑存在动态子帧的方式执行它关于一个或多个TDD载波22进行的测量。广言之,设备12进行一个或多个适配,该一个或多个适配可以被理解为避免或补偿信号测量中的原本由于在正在用于上行链路传输的动态子帧期间对TDD载波22进行面向下行链路的测量而产生的误差或者偏离。
如注意的那样,可以为多于一个TDD载频、即为与第一TDD载频关联的一个或多个第一TDD载波22和为与第二TDD载频关联的一个或多个第二TDD载波22,在无线设备12完成这样的处理。这样的境况例如在设备12的CA配置涉及到多于一个TDD载频时适用。CDS信息可以对于不同TDD载频和对于不同小区18而不同。
关于这里的教导的进一步感兴趣的参考文献包括:3GPPTS36.211,Table 4.2-2,3GPP TR 36.828 V2.0.0(2012-06),RP-12772,“Further Enhancements to LTE TDD for DL-UL InterferenceManagement and Traffic Adaptation”,WID approved at 3GPP RAN#58以及Erik Eriksson et al.,“Dynamic Uplink-Downlink Configurationsand Interference Managements in TD-LTE”,IEEE CommunicationsMagazine Vol.50 No.11,November 2012。
也注意到,虽然本文使用来自3GPP LTE的术语,但是这样的使用未使这里的教导的范围限于3GPP LTE。包括UTR TDD、WiMax和UMB(或者在动态/灵活TDD上运行的任何其它系统)、RAT间E-UTRA TDD的其它无线系统也可以从利用在本公开内容内覆盖的思想受益。
另外,如这里使用的术语网络节点能够表示实质上任何类型的网络节点或者网元。广言之,术语、比如基站或者网络节点一般地应当视为非限制并且特别地未意味着在二者之间的某个分层关系。“基站”可以视为服务无线电节点而其它基站可以视为目标无线电节点,并且这两个设备通过某个无线电信道相互通信/干扰。
根据实施例,甚至使用更一般术语“网络节点”,并且它可以对应于任何类型的网络节点。网络节点的示例是任何的无线电网络节点、核心网络节点——例如MSC、MME等或者其它节点类型、比如O&M、OSS、SON、MDT、定位节点、比如E-SMCL等。
相似地,在实施例中,如这里所用术语用户设备或UE也应当视为非限制。这些术语表示与无线电网络节点通信的实质上任何类型的无线通信设备。如这里设想的UE或其它无线设备可以是目标设备和/或可以具有设备到设备D2D通信能力从而允许它与其它的UE通信。在其它示例中,无线设备包括机器到机器M2M设备。在更多其它示例中,无线设备包括蜂窝电话、比如智能电话或者其它移动终端、膝上型计算机、写字板计算机、网络通信适配器、比如无线调制解调器、安全装置等。
注意的是,公开的实施例的修改和其它实施例将被从在前文描述和关联附图中呈现的教导受益的本领域技术人员所想到。因此,将理解本发明不会限于公开的具体实施例,并且修改和其它实施例旨在于被包括在本公开内容的范围内。虽然这里可以运用具体术语,但是它们仅在通用和描述意义上加以使用而未用于限制的目的。

Claims (36)

1.一种在无线通信网络(10)中的网络节点(20)的方法(1200),包括:
为一个或多个TDD载波(22)使用的第一时分双工TDD载频确定(1202)复合动态子帧CDS信息,所述一个或多个TDD载波(22)由所述网络(10)中的相应的一个或多个小区(18)传输,所述CDS信息指示所述TDD载波(22)中的一个或多个TDD载波中的一个或者多个子帧是具有动态可变的上行链路或下行链路方向的动态子帧;以及
向在所述网络(10)中运行的无线设备(12)发送(1204)所述CDS信息,以用于由所述无线设备(12)在执行关于所述一个或多个TDD载波(22)中的所述动态子帧的无线电测量时使用。
2.根据权利要求1所述的方法(1200),其中,所述CDS信息包括一个或多个逻辑标志,其向所述无线设备(12)指示在所述一个或多个TDD载波(22)中存在所述动态子帧。
3.根据权利要求1所述的方法(1200),其中,所述CDS信息包括CDS信息消息,其标识所述一个或多个TDD载波(22)中的哪些TDD载波中的哪些子帧是动态子帧。
4.根据权利要求1-3中的任一权利要求所述的方法(1200),其中,所述一个或多个小区(18)包括关于所述无线设备(12)的服务小区(18)和所述服务小区(18)的一个或多个邻近小区(18),并且其中所述CDS信息向所述无线设备(12)指示由所述服务小区(18)和所述一个或多个邻近小区(18)传输的所述TDD载波(22)中的哪些子帧是动态子帧。
5.根据权利要求1-3中的任一权利要求所述的方法(1200),其中,所述第一TDD载频是关于所述无线设备(12)的非服务载频并且所述一个或多个TDD载波(22)是关于由所述无线设备(12)的服务小区(18)传输的服务小区载波(22)的一个或多个邻近小区载波(22),并且其中所述CDS信息指示所述一个或多个邻近小区载波(22)中的在所述非服务载频上的哪些子帧是动态子帧。
6.根据权利要求1-5中的任一权利要求所述的方法(1200),其中,向所述无线设备(12)发送(1204)所述CDS信息包括向所述无线设备(12)发送无线电资源控制RRC信令。
7.根据权利要求1-6中的任一权利要求所述的方法(1200),还包括至少使得向所述无线设备(12)发送所述CDS信息的所述步骤基于在开始时接收的用于所述无线设备(12)的能力信息,所述能力信息指示所述无线设备(12)能够执行无线电测量以考虑动态子帧。
8.根据权利要求7所述的方法(1200),还包括为未被指示为能够执行无线电测量以考虑动态子帧的第二无线设备适配关于所述一个或多个TDD载波(22)的所述第二无线设备的无线电测量配置,以考虑那些一个或多个TDD载波(22)中的所述动态子帧,并且向所述第二无线设备发送对应的测量配置信息。
9.根据权利要求1-8中的任一权利要求所述的方法(1200),其中,向所述无线设备(12)发送的所述CDS信息包括以下的任意一项或多项:
关于哪些子帧是动态子帧的指示;
关于哪些子帧不是动态子帧的指示;以及
对于所述一个或者多个TDD载波(22)包括用于所述无线设备(12)的服务小区载波(22)和一个或多个邻近小区载波(22)的情况,关于所述服务小区载波(22)的所述动态子帧与所述一个或者多个邻近小区载波(22)的所述动态子帧是否相同的指示。
10.根据权利要求1-9中的任一权利要求所述的方法(1200),其中,所述第一TDD载频上的所述一个或多个TDD载波(22)包括根据所述无线设备(12)的载波聚合CA配置而配置为用于所述无线设备(12)的第一服务小区载波(22)的第一TDD载波(22),所述CA配置还配置第二TDD载频上的用于所述无线设备的第二服务小区载波(22),并且其中所述方法还包括确定关于所述第二TDD载频的第二CDS信息并且向所述无线设备(12)发送所述第二CDS信息。
11.根据权利要求1-10中的任一权利要求所述的方法(1200),其中,确定(1202)所述CDS信息包括所述网络节点(20)根据从所述网络(10)中的一个或多个其它节点(20,36)接收的信息标识所述一个或多个TDD载波(22)中的哪些子帧是动态子帧。
12.根据权利要求1-11中的任一权利要求所述的方法(1200),其中,确定(1202)所述CDS信息包括适配或过滤所述CDS信息,从而所述CDS信息仅指示满足一个或多个定义的条件的那些动态子帧。
13.根据权利要求12所述的方法(1200),其中,所述一个或多个定义的条件包括以下条件中的一个或多个:
具有定义的频率门限或者范围的上行链路/下行链路方向改变的那些动态子帧;以及
在所述一个或多个TDD载波(22)中的任何TDD载波中传输的满足在所述无线设备(12)处定义的信号质量门限或者范围的那些动态子帧。
14.根据任一前述权利要求所述的方法(1200),其中,向另一网络节点用信令发送所述CDS信息。
15.一种配置用于在无线通信网络(10)中运行的网络节点(20),所述无线电网络节点(20)包括:
通信接口(42),配置用于向所述无线电网络节点(20)所服务的一个或多个无线设备(12)发送信令和从所述一个或者多个无线设备(12)接收信令;以及
处理电路(44),其与所述通信接口(42)操作地关联并且配置为:
为一个或多个TDD载波(22)使用的第一时分双工TDD载频确定复合动态子帧CDS信息,所述一个或多个TDD载波(22)由所述网络(10)中的相应的一个或多个小区(18)传输,所述CDS信息指示所述TDD载波(22)中的一个或多个TDD载波中的一个或多个子帧是具有动态可变的上行链路或下行链路方向的动态子帧;以及
向在所述网络(10)中运行的无线设备(12)发送所述CDS信息,以用于由所述无线设备(12)在执行关于所述一个或者多个TDD载波(22)中的所述动态子帧的无线电测量时使用。
16.根据权利要求15所述的网络节点(20),其中,所述CDS信息包括一个或多个逻辑标志,其向所述无线设备(12)指示在所述一个或多个TDD载波(22)中存在所述动态子帧。
17.根据权利要求15所述的网络节点(20),其中,所述CDS信息包括CDS信息消息,其标识所述一个或多个TDD载波(22)中的哪些TDD载波中的哪些子帧是动态子帧。
18.根据权利要求15-17中的任一权利要求所述的网络节点(20),其中,所述一个或多个小区(18)包括关于所述无线设备(12)的服务小区(18)和所述服务小区(18)的一个或多个邻近小区(18),并且其中所述CDS信息向所述无线设备(12)指示由所述服务小区(18)和所述一个或多个邻近小区(18)传输的所述TDD载波(22)中的哪些子帧是动态子帧。
19.根据权利要求15-17中的任一权利要求所述的网络节点(20),其中,所述第一TDD载频是关于所述无线设备(12)的非服务载频并且所述一个或者多个TDD载波(22)是关于由所述无线设备(12)的服务小区(18)传输的服务小区载波(22)的一个或多个邻近小区载波(22),并且其中所述CDS信息指示所述一个或多个邻近小区载波(22)中的在所述非服务载频上的哪些子帧是动态子帧。
20.根据权利要求14-19中的任一权利要求所述的网络节点(20),其中,所述处理电路(44)被配置为响应于开始时接收的用于所述无线设备(12)的能力信息而向所述无线设备(12)发送所述CDS信息,所述能力信息指示所述无线设备(12)能够执行无线电测量以考虑动态子帧。
21.根据权利要求15所述的网络节点(20),其中,对于未被指示为能够执行无线电测量以考虑动态子帧的第二无线设备,所述处理电路(44)被配置为适配关于所述一个或者多个TDD载波(22)的所述第二无线设备的无线电测量配置,以考虑那些一个或多个TDD载波(22)中的所述动态子帧,并且向所述第二无线设备发送对应的测量配置信息。
22.根据权利要求15-21中的任一权利要求所述的网络节点(20),其中,所述网络节点(20)被配置为向另一网络节点(20)用信令发送所述CDS信息。
23.一种在配置用于在无线通信网络(10)中运行的无线设备(12)处的方法(1400),所述方法包括:
为一个或多个TDD载波(22)使用的第一时分双工TDD载频获得(1402)复合动态子帧CDS信息,所述一个或多个TDD载波(22)由所述网络(10)中的相应的一个或多个小区(18)传输,所述CDS信息指示所述TDD载波(22)中的一个或多个TDD载波中的一个或者多个子帧是具有动态可变的上行链路或下行链路方向的动态子帧;以及
根据所述CDS信息执行(1404)关于所述一个或多个TDD载波(22)的无线电测量。
24.根据权利要求23所述的方法(1400),其中,所述CDS信息包括一个或多个逻辑标志,其指示在所述一个或多个TDD载波(22)中存在所述动态子帧。
25.根据权利要求23所述的方法(1400),其中,所述CDS信息标识所述一个或多个TDD载波(22)中的哪些TDD载波中的哪些子帧是动态子帧。
26.根据权利要求23-25中的任一权利要求所述的方法(1400),其中,所述一个或多个小区(18)包括关于所述无线设备(12)的服务小区(18)和所述服务小区(18)的一个或多个邻近小区(18),并且其中所述CDS信息指示由所述服务小区(18)和所述一个或多个邻近小区(18)传输的所述TDD载波(22)中的哪些子帧是动态子帧。
27.根据权利要求23-26中的任一权利要求所述的方法(1400),其中,所述第一TDD载频是关于所述无线设备(12)的非服务载频并且所述一个或多个TDD载波(22)是关于由所述无线设备(12)的服务小区(18)传输的服务小区载波(22)的一个或多个邻近小区载波(22),并且其中所述CDS信息指示所述一个或多个邻近小区载波(22)中的在所述非服务载频上的哪些子帧是动态子帧。
28.根据权利要求23-27中的任一权利要求所述的方法(1400),其中,所述一个或多个TDD载波(22)包括服务小区载波(22)和一个或多个邻近小区载波(22),并且其中所述CDS信息包括指示,其指示所述服务小区和邻近小区载波(22)具有相同的动态子帧。
29.根据权利要求23-28中的任一权利要求所述的方法(1400),其中,获得所述CDS信息包括从所述网络(10)中的网络节点(20)接收所述CDS信息。
30.根据权利要求23-28中的任一权利要求所述的方法(1400),其中,获得所述CDS信息包括基于对所述一个或多个TDD载波(22)进行的测量在所述无线设备(12)处确定所述CDS信息。
31.根据权利要求23-30中的任一权利要求所述的方法(1400),还包括向所述网络(10)中的一个或多个其它节点(12,20)发送所述CDS信息或者从所述CDS信息推导出的信息。
32.根据权利要求23-31中的任一权利要求所述的方法(1400),其中,根据所述CDS信息执行(1404)关于所述一个或多个TDD载波(22)的所述无线电测量包括在所述无线设备(12)处关于所述一个或多个TDD载波(22)适配测量配置,以在对所述一个或多个TDD载波(22)进行无线电测量时考虑所述一个或多个TDD载波(22)中的所述动态子帧,并且其中所述适配包括以下操作中的至少一项:避免在与所述动态子帧对应的时间对所述一个或多个TDD载波(22)进行一个或多个无线电测量、延长测量间隔、以及增加对所述一个或多个TDD载波(22)进行的测量数目以考虑所述动态子帧。
33.根据权利要求23-32中的任一权利要求所述的方法(1400),还包括向所述网络(10)发送能力信息,所述能力信息指示所述无线设备(12)能够适配它的测量配置以考虑动态子帧,并且其中获得所述CDS信息的所述步骤包括响应于发送所述能力信息从所述网络(10)接收所述CDS信息。
34.根据权利要求23-33中的任一权利要求所述的方法(1400),其中,所述无线设备(12)根据载波聚合CA配置而运行,在所述CA配置中,所述第一TDD载频对应于在所述CA配置中配置的第一TDD载波(22),其中在所述CA配置中还配置第二TDD载频上的第二TDD载波(22),并且其中所述方法包括获得关于所述第一和第二TDD载频的第一和第二CDS信息并且基于所述第一CDS信息适配关于所述第一TDD载频的所述测量配置,并且基于所述第二CDS信息适配关于所述第二TDD载波的所述测量配置。
35.一种配置用于在无线通信网络(10)中运行的无线设备(12),所述无线设备(12)包括:
收发器(62),配置为向所述网络(10)发送信号和从所述网络(10)接收信号;
处理电路(72),其与所述收发器(62)在操作上关联并且配置为:
为一个或多个TDD载波(22)使用的第一时分双工TDD载频获得复合动态子帧CDS信息,所述一个或多个TDD载波(22)由所述网络(10)中的相应的一个或多个小区(18)传输,所述CDS信息指示所述TDD载波(22)中的一个或多个TDD载波中的一个或多个子帧是具有动态可变的上行链路或下行链路方向的动态子帧;以及
根据所述CDS信息执行关于所述一个或多个TDD载波(22)的无线电测量。
36.根据权利要求35所述的无线设备(12),其中,所述处理电路(72)被配置为向所述网络(10)中的一个或多个其它节点(12,20)发送所述CDS信息或者从所述CDS信息推导出的信息。
CN201380072370.XA 2012-12-27 2013-12-10 用于动态tdd中的复合动态子帧的测量过程的方法和子帧 Active CN104969641B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261746310P 2012-12-27 2012-12-27
US61/746,310 2012-12-27
PCT/SE2013/051477 WO2014104960A1 (en) 2012-12-27 2013-12-10 Method and apparatus for measurement procedures with composite dynamic subframes in dynamic tdd

Publications (2)

Publication Number Publication Date
CN104969641A true CN104969641A (zh) 2015-10-07
CN104969641B CN104969641B (zh) 2018-12-28

Family

ID=49917713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380072370.XA Active CN104969641B (zh) 2012-12-27 2013-12-10 用于动态tdd中的复合动态子帧的测量过程的方法和子帧

Country Status (4)

Country Link
US (1) US9973956B2 (zh)
EP (1) EP2939485B1 (zh)
CN (1) CN104969641B (zh)
WO (1) WO2014104960A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178439A (zh) * 2017-01-06 2019-08-27 瑞典爱立信有限公司 用于扩展覆盖的按需系统信息传递
CN110663269A (zh) * 2017-03-24 2020-01-07 瑞典爱立信有限公司 用于控制不同类型的频内测量之间的间隙共享的方法和系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906158A (zh) * 2012-12-28 2014-07-02 展讯通信(上海)有限公司 一种从2g/3g网络返回lte网络的方法
US9226211B2 (en) * 2013-01-17 2015-12-29 Intel IP Corporation Centralized partitioning of user devices in a heterogeneous wireless network
US9769859B2 (en) * 2013-02-26 2017-09-19 Lg Electronics Inc. Method for performing D2D link communication in wireless communication system and apparatus therefor
CN105027599B (zh) * 2013-03-07 2019-04-30 索尼公司 通信控制设备、通信控制方法和通信设备
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes
US20140376426A1 (en) * 2013-06-20 2014-12-25 Gary David Boudreau Machine type communication aggregator apparatus and method
US10404442B2 (en) * 2013-07-02 2019-09-03 Texas Instruments Incorporated Inter-point parameter signaling in coordinated multi-point (CoMP) networks
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
CN105393470B (zh) * 2013-08-08 2018-11-02 英特尔Ip公司 用于多输入多输出系统中的电子下倾角调节的方法、装置和系统
US9807763B2 (en) * 2013-08-21 2017-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for configuring CSI measurements
US9474089B2 (en) * 2013-10-22 2016-10-18 Acer Incorporated User equipment and base station with configurable carrier
US9781606B2 (en) * 2013-11-13 2017-10-03 Nokia Technologies Oy Spectrum sharing for small cells in multi-operator networks
WO2015160777A1 (en) 2014-04-15 2015-10-22 Commscope Technologies Llc Wideband remote unit for distributed antenna system
JP2018032887A (ja) * 2015-01-08 2018-03-01 シャープ株式会社 端末装置、基地局装置、制御方法及び集積回路
US10111066B2 (en) * 2015-01-28 2018-10-23 Hfi Innovation Inc. Methods to support measurements for user equipment
US10149201B2 (en) * 2015-01-30 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for transmission coordination on wireless backhaul path
WO2016208098A1 (ja) * 2015-06-25 2016-12-29 日本電気株式会社 D2d通信制御装置、無線端末、中継無線端末候補選択方法及び非一時的なコンピュータ可読媒体
US9699699B1 (en) * 2015-11-12 2017-07-04 Sprint Spectrum L.P. Consideration of carrier characteristics when providing carrier aggregation service
CN109041137B (zh) 2016-01-16 2020-01-17 华为技术有限公司 一种切换的方法、基站及终端设备
CN111131997B (zh) * 2018-10-12 2021-08-06 大唐移动通信设备有限公司 一种上行到达时间差定位方法及其装置
KR20200092096A (ko) * 2019-01-24 2020-08-03 삼성전자주식회사 동기신호 검출기를 포함하는 무선 통신 장치 및 이의 셀 탐색 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897234B2 (en) * 2005-09-07 2014-11-25 Huawei Technologies Co., Ltd. Method and apparatus for controlling carrier frequency in multi-carrier/cell system
WO2009062115A2 (en) * 2007-11-09 2009-05-14 Zte U.S.A., Inc. Flexible ofdm/ofdma frame structure for communication systems
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
CN103004256B (zh) * 2010-08-13 2016-08-24 中兴通讯股份有限公司 一种终端设备实现通信的方法及系统
WO2012047144A1 (en) * 2010-10-04 2012-04-12 Telefonaktiebolaget L M Ericsson (Publ) Acquisition of cell information for enhancing network operation in heterogeneous environment
KR101859594B1 (ko) * 2011-03-10 2018-06-28 삼성전자 주식회사 통신시스템에서 시분할복신 지원 방법 및 장치
US10638464B2 (en) * 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
KR101785313B1 (ko) * 2011-04-12 2017-10-17 삼성전자주식회사 통신 시스템에서 간섭 제어를 위한 서브프레임 운용 및 채널 정보 전송 방법 및 장치
KR102031031B1 (ko) * 2011-06-20 2019-10-15 삼성전자 주식회사 무선 통신 시스템에서 시분할 복식 프레임 구성 정보 송수신 방법 및 장치
US9119120B2 (en) * 2012-01-23 2015-08-25 Intel Corporation Network assisted user association and offloading techniques for integrated multi-rat heterogeneous networks
US9602251B2 (en) * 2012-01-27 2017-03-21 Sharp Kabushiki Kaisha Devices for reconfiguring uplink and downlink allocations in time domain duplexing wireless systems
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110178439A (zh) * 2017-01-06 2019-08-27 瑞典爱立信有限公司 用于扩展覆盖的按需系统信息传递
CN110178439B (zh) * 2017-01-06 2023-11-14 瑞典爱立信有限公司 用于扩展覆盖的按需系统信息传递
CN110663269A (zh) * 2017-03-24 2020-01-07 瑞典爱立信有限公司 用于控制不同类型的频内测量之间的间隙共享的方法和系统

Also Published As

Publication number Publication date
WO2014104960A1 (en) 2014-07-03
US20150036519A1 (en) 2015-02-05
US9973956B2 (en) 2018-05-15
EP2939485B1 (en) 2018-08-15
EP2939485A1 (en) 2015-11-04
CN104969641B (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
CN104969641B (zh) 用于动态tdd中的复合动态子帧的测量过程的方法和子帧
CN110226293B (zh) 无线通信的方法、装置和非暂时性计算机可读介质
JP6985413B2 (ja) ネスト型システム動作のためのロングタームエボリューション(lte)基準信号の再使用
CN115769522A (zh) 用于cli报告的方法和装置
CN111034078A (zh) 用于短传输时间间隔的信道状态信息报告
WO2019060248A1 (en) METHODS AND APPARATUS RELATING TO IMPROVED MACHINE-TYPE COMMUNICATION
US20190223216A1 (en) Systems and methods for controlling ue inter-frequency measurements in gaps in presence of lbt
CN103733675A (zh) 在异构网络中改善无线设备性能
TW201332382A (zh) 基地台中用於指示用戶終端進行干擾減輕的方法
KR20190073419A (ko) 뉴 라디오에서 공통 업링크 부분을 구성하기 위한 기법들 및 장치들
JP2023543204A (ja) 干渉の低減及び調整のための方法及びその装置
EP3036961A1 (en) Coordination for pbch
EP3958627B1 (en) Downlink signal transmission method and device
WO2022021343A1 (en) Cross link interference measurement configuration
CN114830590A (zh) 全双工干扰测量和报告
US11825373B2 (en) Reference measurement timing selection for wireless communication mobility
US20230047695A1 (en) Interference measurement for sidelink
JP2022547984A (ja) サイドリンクcsi報告送信方法および条件
WO2014161196A1 (en) Carrier allocation
JP6320683B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
EP4216610A1 (en) Wireless communication method, terminal device, and network device
US20140269598A1 (en) Apparatus and Method for Time Domain ICIC with Muting Pattern Comprising Fixed and Optional Parts
US11791944B2 (en) UE triggered one-shot HARQ-ACK feedback
CN117561753A (zh) 用于网络节能的发现信号稀疏传输
WO2024093770A1 (en) Procedures for layer 1/layer 2 mobility

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant