CN104951870B - 药物临床前心脏风险评估方法 - Google Patents

药物临床前心脏风险评估方法 Download PDF

Info

Publication number
CN104951870B
CN104951870B CN201510289018.2A CN201510289018A CN104951870B CN 104951870 B CN104951870 B CN 104951870B CN 201510289018 A CN201510289018 A CN 201510289018A CN 104951870 B CN104951870 B CN 104951870B
Authority
CN
China
Prior art keywords
drug
herg
perfusion
cell
action potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510289018.2A
Other languages
English (en)
Other versions
CN104951870A (zh
Inventor
张之颢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Ke Ruisi Biological Medicine Science And Technology Ltd
Original Assignee
Nantong Ke Ruisi Biological Medicine Science And Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Ke Ruisi Biological Medicine Science And Technology Ltd filed Critical Nantong Ke Ruisi Biological Medicine Science And Technology Ltd
Priority to CN201510289018.2A priority Critical patent/CN104951870B/zh
Publication of CN104951870A publication Critical patent/CN104951870A/zh
Application granted granted Critical
Publication of CN104951870B publication Critical patent/CN104951870B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种药物临床前心脏风险评估方法,包括以下步骤:动作电位频率设计、动作电位记录以及hERG通道手动膜片钳记录。本发明利用频率依赖性、动作电位三角化以及hERG阻断动力学来评估药物心率失常的风险,大大提高了药物的筛选效率和准确性,降低药物临床心率失常的假阳性。

Description

药物临床前心脏风险评估方法
技术领域
本发明属于药物安全性评估技术领域,具体涉及药物临床前心脏风险评估方法。
背景技术
临床数据显示,由于QT延长而导致的室性扭转性心率失常(TdP)是药物从市场上禁止销售及限制销售的最主要原因。欧洲,美国,日本等国政府在2003年纷纷出台了相应的药物临床前心脏安评指导原则,比如美国FDA新药安评的指导文件S7B中指出,评估药物是否有诱发心率失常的风险主要看这个药物是否阻断hERG钾通道以及是否引发QTc延长。然而,实践证明世界上约60%的药物在高浓度都会阻断hERG通道,而只有极小部分这些化合物可能会对病人造成尖端扭转室性心率失常,即hERG通道的阻断引起的QTc延长和临床心率失常之间的实际相关性比较差。 S7B执行10多年以来由假阳性引起的问题越来越受到重视,常见的例子是维拉帕米,虽然能阻断hERG通道,但是在临床上不会引起心率失常。由于实验设计不严谨而增加假阳性可以使一个具有很好潜力的药物被放弃,这将对公司来说损失是无法估量的,所以提高临床前实验数据与临床的相关性迫在眉睫。
发明内容
本发明所要解决的技术问题是提供一种药物临床前心脏风险评估方法,以提高药物临床前心脏安评与临床心率失常的相关性和准确性。
为解决上述技术问题,本发明采用的技术方案是:
药物临床前心脏风险评估方法,包括以下步骤:
(1)动作电位频率设计:用三组不同刺激频率包含100个脉冲来刺激浦肯野纤维在不同刺激频率下发动的动作电位,三组刺激频率周期分别为2000ms、1000ms和600ms;
(2)动作电位记录:将兔子浦肯野纤维放置在灌流浴槽中,按4 mL/min的速度灌流台氏液,通过细胞内微电极记录细胞内膜电压,微电极的材质为硼硅酸盐玻璃毛细管,通过电极拉制仪拉制,微电极内充3 M KCl的内液;通过银丝连接到细胞内的静电计放大器记录胞内电压;待电压稳定后将药物按照浓度梯度灌流浦肯野纤维,并用步骤(1)的三组刺激频率分别刺激浦肯野纤维记录药物的作用;
(3)hERG通道手动膜片钳记录:将hERG稳转细胞接种于玻片上,细胞密度低于50%,过夜培养后移到嵌于倒置显微镜平台的浴槽中灌流细胞外液,灌流速度为2.7 mL/min;GO封接细胞后将细胞膜电位钳制在-80 mV,对细胞持续2 s、+20 mV电压刺激,激活hERG钾通道,再复极化至-50 mV、持续5 s,产生尾电流;采用膜片钳放大器和采集系统记录膜电流;待电流稳定即5 min内电流衰减小于5 %,且尾电流不低于300 pA时,以相同的速度灌流含药物的细胞外液,记录药物在细胞除极通道开发时间段阻断hERG通道的动态过程。
本发明的有益效果是:利用频率依赖性、动作电位三角化以及hERG阻断动力学来评估药物心率失常的风险,大大提高了药物的筛选效率和准确性,降低药物临床心率失常的假阳性。
附图说明
下面结合附图和具体实施方式对本发明发明专利作进一步详细描述。
图1是本发明中PCL和多菲利特的频率依赖性对比图;
图2是本发明中加多菲利特后的APD90-APD60相比于空白对照的比例图;
图3是本发明中加PCL后的APD90-APD60相比于空白对照的比例图;
图4是本发明中10 μM PCL与空白对照相比的使用依赖性对比图;
图5是本发明中30 nM多菲利特与空白对照相比的使用依赖性对比图;
图6是本发明中3 μM特罗地林与空白对照相比的使用依赖性对比图;
具体实施方式:
药物临床前心脏风险评估方法,包括以下步骤:
(1)动作电位频率设计:用三组不同刺激频率包含100个脉冲来刺激浦肯野纤维在不同刺激频率下发动的动作电位,三组刺激频率周期分别为2000ms、1000ms和600ms;
(2)动作电位记录:将兔子浦肯野纤维放置在灌流浴槽中,按4 mL/min的速度灌流台氏液,通过细胞内微电极记录细胞内膜电压,微电极的材质为硼硅酸盐玻璃毛细管,通过电极拉制仪拉制,微电极内充3 M KCl的内液;通过银丝连接到细胞内的静电计放大器记录胞内电压;待电压稳定后将药物按照浓度梯度灌流浦肯野纤维,并用步骤(1)的三组刺激频率分别刺激浦肯野纤维记录药物的作用;
(3)hERG通道手动膜片钳记录:将hERG稳转细胞接种于玻片上,细胞密度低于50%,过夜培养后移到嵌于倒置显微镜平台的浴槽中灌流细胞外液,灌流速度为2.7 mL/min;GO封接细胞后将细胞膜电位钳制在-80 mV,对细胞持续2 s、+20 mV电压刺激,激活hERG钾通道,再复极化至-50 mV、持续5 s,产生尾电流;采用HEKA EPC-10膜片钳放大器和PATCHMASTER采集系统记录膜电流;待电流稳定即5 min内电流衰减小于5 %,且尾电流不低于300 pA时,以相同的速度灌流含药物的细胞外液,记录药物在细胞除极通道开发时间段阻断hERG通道的动态过程。
本发明将PCL和特罗地林分别与在临床上能诱发心率失常的标准药物多菲利特按照上述评估方法进行评估,实验结果如下:
如图1所示,X轴表示三组刺激频率周期,分别为2000ms、1000ms和600ms,Y轴表示加PCL和多菲利特后APD90的变化情况。两者均表现出逆向使用依赖性的APD延长,但PCL的延长效果相对低。
如图2和图3所示,Y轴分别表示加多菲利特和PCL后的APD90-APD60相比于空白对照的比例,X轴分别为不同浓度的多菲利特和PCL。结果表明PCL延长APD没有三角化趋势,但是多菲利特却有较明显的三角化。
图4至图6分别表示灌流10 μM PCL、30 nM多菲利特和3 μM特罗地林(此浓度下hERG钾通道电流抑制率均为70 - 80 %)后hERG通道开放的使用依赖性,Y轴表示细胞中hERG电流大小,X轴为时间。每个电流图中均包括四条电流曲线,分别为未加药的空白曲线(control)、加药孵育5分钟后运行的第一条电流曲线(pulse 1)、第10条曲线(pulse 10)和第20条曲线(pulse 20)。结果表明多菲利特有较明显的使用依赖性,抑制作用随着运行的pulse数的递增而增加;而PCL和特罗地林没有使用依赖性,在第10条电流曲线(pulse 10)时即达到了稳定。
一般而言,有较强使用依赖性和三角化的药物有较高的致心率失常风险。因此,本发明利用频率依赖性、动作电位三角化以及hERG阻断动力学可以更加准确地评估药物是否有诱发心率失常的风险,从而降低药物临床心率失常的假阳性。

Claims (1)

1.药物临床前心脏风险评估方法,其特征在于,包括以下步骤:
(1)动作电位频率设计:用三组不同刺激频率包含100个脉冲来刺激浦肯野纤维在不同刺激频率下发动的动作电位,三组刺激频率周期分别为2000ms、1000ms和600ms;
(2)动作电位记录:将兔子浦肯野纤维放置在灌流浴槽中,按4 mL/min的速度灌流台氏液,通过细胞内微电极记录细胞内膜电压,微电极的材质为硼硅酸盐玻璃毛细管,通过电极拉制仪拉制,微电极内充3 M KCl的内液;通过银丝连接到细胞内的静电计放大器记录胞内电压;待电压稳定后将药物按照浓度梯度灌流浦肯野纤维,并用步骤(1)的三组刺激频率分别刺激浦肯野纤维记录药物的作用;
(3)hERG通道手动膜片钳记录:将hERG稳转细胞接种于玻片上,细胞密度低于50%,过夜培养后移到嵌于倒置显微镜平台的浴槽中灌流细胞外液,灌流速度为2.7 mL/min;GO封接细胞后将细胞膜电位钳制在-80 mV,对细胞持续2 s、+20 mV电压刺激,激活hERG钾通道,再复极化至-50 mV、持续5 s,产生尾电流;采用膜片钳放大器和采集系统记录膜电流;待电流稳定即5 min内电流衰减小于5 %,且尾电流不低于300 pA时,以相同的速度灌流含药物的细胞外液,记录药物在细胞除极通道开发时间段阻断hERG通道的动态过程。
CN201510289018.2A 2015-06-01 2015-06-01 药物临床前心脏风险评估方法 Expired - Fee Related CN104951870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510289018.2A CN104951870B (zh) 2015-06-01 2015-06-01 药物临床前心脏风险评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510289018.2A CN104951870B (zh) 2015-06-01 2015-06-01 药物临床前心脏风险评估方法

Publications (2)

Publication Number Publication Date
CN104951870A CN104951870A (zh) 2015-09-30
CN104951870B true CN104951870B (zh) 2018-11-13

Family

ID=54166508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510289018.2A Expired - Fee Related CN104951870B (zh) 2015-06-01 2015-06-01 药物临床前心脏风险评估方法

Country Status (1)

Country Link
CN (1) CN104951870B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856349A (zh) * 2018-12-05 2019-06-07 南通科瑞斯生物医药科技有限公司 一种高通量hERG评估心脏安全风险的优化方法
CN109765348A (zh) * 2018-12-05 2019-05-17 南通科瑞斯生物医药科技有限公司 一种精准的体外药物心脏安评方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678010A (zh) * 2007-03-19 2010-03-24 阿斯利康(瑞典)有限公司 包含(R)-螺[1-氮杂二环[2.2.2]辛烷-3,2’(3’H)-呋喃并[2,3-b]吡啶](AZD0328)的组合物及其治疗阿耳茨海默氏病、ADHD和认知功能障碍的用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9427418B2 (en) * 2009-02-23 2016-08-30 Gtx, Inc. Estrogen receptor ligands and methods of use thereof
TWI508726B (zh) * 2009-12-21 2015-11-21 Gilead Sciences Inc 治療心房纖維性顫動之方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101678010A (zh) * 2007-03-19 2010-03-24 阿斯利康(瑞典)有限公司 包含(R)-螺[1-氮杂二环[2.2.2]辛烷-3,2’(3’H)-呋喃并[2,3-b]吡啶](AZD0328)的组合物及其治疗阿耳茨海默氏病、ADHD和认知功能障碍的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氟哌啶醇、舒必利致心律失常的机制、产生条件及防治原则的研究;程路峰;《中国博士学位论文全文数据库(电子期刊)》;20061231;E065-77 *

Also Published As

Publication number Publication date
CN104951870A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
Lee et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus
Ryttsén et al. Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy
Song et al. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes
Saulis et al. Size of the pores created by an electric pulse: Microsecond vs millisecond pulses
Canfield et al. Effect of reversible ATP depletion on tight-junction integrity in LLC-PK1 cells
Gao et al. Different roles of membrane potentials in electrotaxis and chemotaxis of dictyostelium cells
Ruzgys et al. Effect of electroporation medium conductivity on exogenous molecule transfer to cells in vitro
Muralidharan et al. Actin networks regulate the cell membrane permeability during electroporation
Hashimoto et al. Effect of pulsatile electric field on cultured muscle cells in vitro
Schlue et al. A dual mechanism for intracellular pH regulation by leech neurones.
CN104951870B (zh) 药物临床前心脏风险评估方法
BR112018004278B1 (pt) Sistema para eletroporação de uma célula biológica, e método para eletroporação de células biológicas em uma solução tampão
Okun Isolated dorsal root ganglion neurons in culture: cytological maturation and extension of electrically active processes
Steinhardt et al. Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm eggs
Behrends Evolution of the ion channel concept: the historical perspective
US20180051311A1 (en) Method and device for antibiotic susceptibility testing based on fluctuations of electrical resistance in a microchannel
Sweeney et al. Characterization of cell membrane permeability in vitro part I: transport behavior induced by single-pulse electric fields
Dyachok et al. Electroporation-induced inward current in voltage-clamped guinea pig ventricular myocytes
Neu et al. Theory of electroporation
Silberberg et al. Detection of microtubules in vivo using antibody-immobilized nanoneedles
Leal et al. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts
Virág et al. Self‐augmentation of the lengthening of repolarization is related to the shape of the cardiac action potential: implications for reverse rate dependency
Hild et al. Electrophysiological properties of ependymal cells from the mammalian brain in tissue culture
Okada et al. Tip potential and fixed charges on the glass wall of microelectrode
Mazzanti Ion permeability of the nuclear envelope

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181113