CN104951612B - Enhanced active tuned mass damper Optimization Design based on damping connection - Google Patents

Enhanced active tuned mass damper Optimization Design based on damping connection Download PDF

Info

Publication number
CN104951612B
CN104951612B CN201510354583.2A CN201510354583A CN104951612B CN 104951612 B CN104951612 B CN 104951612B CN 201510354583 A CN201510354583 A CN 201510354583A CN 104951612 B CN104951612 B CN 104951612B
Authority
CN
China
Prior art keywords
msub
mrow
msup
lambda
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510354583.2A
Other languages
Chinese (zh)
Other versions
CN104951612A (en
Inventor
李春祥
杨云志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201510354583.2A priority Critical patent/CN104951612B/en
Publication of CN104951612A publication Critical patent/CN104951612A/en
Application granted granted Critical
Publication of CN104951612B publication Critical patent/CN104951612B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention provides a kind of enhanced active tuned mass damper Optimization Design based on damping connection, and it comprises the following steps:Establish structure-DEATMD system model;According to Structural Dynamics principle, structure-DEATMD system dynamics equations are established;Traditional active tuned mass damper is contrasted, carries out the optimization design of vibration control using genetic algorithm to the enhanced active tuned mass damper based on damping connection;By reference to optimum results, consider the validity of control and the validity of damping system stroke control, optimum combination parameter is selected, for instructing actual engineering design.The present invention can significantly decrease stroke, simultaneously effective the dynamic respond of the lower structure of Earthquake occurrence control effect relative to traditional ATMD on the basis of ensureing that vibration control validity is constant or slightly improving.

Description

Enhanced active tuned mass damper Optimization Design based on damping connection
Technical field
The present invention relates to a kind of enhanced active tuned mass damper (Damp based based on damping connection Enhanced Active Tuned Mass Dampers, DEATMD) Optimization Design.
Background technology
Earthquake is natural calamity that is a kind of common and happening suddenly again, and foresight is still very low so far, and widely distributed, destruction is sternly Weight, once occur that very serious loss will be caused to the mankind.Earthquake except cause house destroy and collapse, casualties etc. it is straight It is outer to connect influence, can also trigger the secondary disasters such as fire and disease, cause huge potential safety hazard and economic loss.China is the world On suffer disaster from an earthquake one of the country of most serious.
The research and application of vibration control of civil engineering structure are considered as the great prominent of structures under wind earthquake research field It is broken.It breaches traditional construction design method, for example increases the rigidity of structure, resistance even if only relying on and changing structure self performance Buddhist nun and change Mass Distribution etc. are developed into by structure-wind resistance antidetonation to resist the method for environmental load (such as high wind and macroseism) Vibration control system actively controls the dynamic response of structure.1972, Chinese descendant in America scholar Yao Zhiping was systematically proposed first Structure Active Control concept.He suggests, using classical or modern control theory, some control systems being installed in structure.Structure Under wind and geological process, these control systems being mounted thereon produce controling power, can significantly reduce the dynamic response of structure. Structural vibration control is generally divided into passive control, active control, semi- active control and mixing control according to whether outside resources Make four classes.
Structure intelligent is the important component of building intellectualization.And structure intelligent is most importantly it to natural calamity The defence capability of evil (such as high wind and macroseism).In real time measurement and monitoring structure disaster respond, the damage of detecting structure and bend Clothes, implement controling power from trend structure through the servo-drive system that computer is handled online.Structural vibration control technology is existing wind resistance The reparation and transformation of shock resistance and durability deficiency building provide feasible and thoroughly solve method, are also built for future Aseismic Design of the building structure based on performance-based provides feasible method.In each branch of structural vibration control, mass tuning Damping technology is a kind of technology of relative maturity, requires low to control element because it has, can be directly mounted at building structure, nothing Structure design need to be changed and just can be suitably used for a series of feature such as existed building, in skyscraper, tall and slender structure, Longspan Bridge In obtain a wide range of applications.In recent years, application of the tuned mass damper at home and abroad on some important buildings is more wide It is general.Such as:The pendulum-type eddy current tuned mass damper of Shanghai Center Building;The wind that 150 tons of Shanghai World Financial Center two Damper;Swing TMD systems of Taipei 101 mansion etc..
It is widely used on building at present mainly to have passive tuned mass damper (TMD) and active tuning quality Damper (ATMD).It is worth noting that, TMD is only when its frequency is tuned to structure controlled frequency and external excitation covers this The validity of control can be just given full play to during frequency content.Once TMD lacks of proper care, it controls validity to be decreased obviously.Quilt Dynamic control does not need that extra power, technology be simple, low cost, dependable performance, but effectiveness in vibration suppression is limited.And in current technology water Under flat, pure active control constantly inputs substantial amounts of energy due to needing from the external world, and setting technical sophistication, the expense of control system are held high Expensive, the application in Practical Project receives obvious limitation.For these defects, active tuned mass damper (ATMD) should Transport and give birth to.As active control device, ATMD has good control effect, and the required energy fills much smaller than pure active control Put.
The content of the invention
The defects of existing for prior art, the technical problems to be solved by the invention are to provide a kind of based on damping connection Enhanced active tuned mass damper Optimization Design, its can ensure vibration control validity it is constant or slightly carry On the basis of height, stroke (can be reduced by about 50% relative to ATMD) is significantly decreased, simultaneously effective under Earthquake occurrence control effect The dynamic respond of structure.
In order to solve the above technical problems, the present invention is using such as following technical proposals:It is a kind of based on damping connection it is enhanced Active tuned mass damper Optimization Design, it is characterised in that it comprises the following steps:
Step 1, on the basis of traditional ATMD, an additional damping device is added between ATMD masses and ground, The damping of additional damping device is designated as
Step 2, according to Structural Dynamics principle, force analysis is carried out to structure and active tuned mass damper, established The kinetic equation of structure-DEATMD systems;
Step 3, traditional active tuned mass damper is contrasted, to actively tuning matter based on the enhanced of damping connection Measure the optimization design that damper carries out vibration control;
Step 4, by reference to optimum results, consider the validity of control and the validity of damping system stroke control, choosing Optimum combination parameter is selected, with reference to enhanced active tuned mass damper of the parameter designing of original structure based on damping connection.
Preferably, the mechanical model of structure-DEATMD systems is established in the step 1:Using structure as a list from By degree particle, its damping and rigidity are determined according to its material characteristics, by ATMD devices in structure, then by ATMD masses and ground A damping is connected between face isAdditional damping;Structure-DEATMD systems are formed with this.
Preferably, the step 2 establishes the kinetic equations of structure-DEATMD systems and is expressed as following formula:
In formula,For earthquake ground motion acceleration;ySDisplacement for structure relative to substrate;For structure relative to The speed of substrate;Acceleration for structure relative to substrate;yTDisplacement for ATMD masses relative to structure;For ATMD Mass relative to structure speed;Acceleration for ATMD masses relative to structure;ms、csAnd ksRespectively structure Controlled vibration shape quality, damping and rigidity;mTAnd kTRespectively ATMD quality, damping and rigidity;For the firm of additional damping Degree;uT(t) it is active controlling force, using the form of closed-loop control;For the feedback gain of main structure acceleration;Respectively ATMD speed and the feedback gain of displacement.
Preferably, vibration control is carried out to the enhanced active tuned mass damper based on damping connection in the step 3 The optimization design of system is following content:
The displacement dynamic magnification factor such as following formula of structure-DEATMD systems:
The dynamic magnification factor of ATMD strokes is such as following formula:
In formula:λ is the frequency ratio of main structure;fTFor ATMD frequency ratio;ξSFor the damping ratio of main structure;For ATMD's Damping ratio;For the damping ratio of additional damping;μ is ATMD and the mass ratio of structure;α is that the standardization accelerator feedback of structure increases Beneficial coefficient.
Preferably, optimized parameter interpretational criteria defined in the step 4:Enhanced active based on damping connection is set The minimum of the minimum value of the structure maximum power amplification coefficient of tuned mass damper;It is excellent that parameter is carried out using genetic algorithm Change, and compared with ATMD.
Compared with prior art, the present invention have substantive distinguishing features prominent as follows and it is notable the advantages of:The inventive method Design it is a kind of be applied to institute it is structured based on damping connect enhanced active tuned mass damper, will be appreciated that: , can be constant in guarantee vibration control validity or slightly on the basis of raising relative to traditional ATMD, significantly decrease punching Journey (can be reduced by about 50%) relative to ATMD, simultaneously effective the dynamic respond of the lower structure of Earthquake occurrence control effect.
Brief description of the drawings
Fig. 1 is enhanced active tuned mass damper (DEATMD) the design analysis procedure chart based on damping connection;
Fig. 2 is enhanced active tuned mass damper (DEATMD) system model based on damping connection;
Fig. 3 is the flow chart using genetic algorithm optimization;
When Fig. 4 is α=4, when ATMD, DEATMD correspond to different μWithVariation relation curve;
When Fig. 5 is α=4, f when ATMD, DEATMD correspond to different μTWithVariation relation curve;
When Fig. 6 is α=4, when ATMD, DEATMD correspond to different μWithVariation relation curve;
When Fig. 7 is α=8, when ATMD, DEATMD correspond to different μWithVariation relation curve;
When Fig. 8 is α=8, f when ATMD, DEATMD correspond to different μTWithVariation relation curve;
When Fig. 9 is α=8, when ATMD, DEATMD correspond to different μWithVariation relation curve;
When Figure 10 is α=4, when ATMD, DEATMD correspond to different μWithVariation relation curve;
When Figure 11 is α=8, when ATMD, DEATMD correspond to different μWithVariation relation curve.
Embodiment
Below in conjunction with the accompanying drawings, the specific embodiment of the present invention is further described.
As shown in figure 1, enhanced active tuned mass damper Optimization Design bag of the present invention based on damping connection Include following steps:
Step 1, on the basis of traditional ATMD, an additional damping device is added between ATMD masses and ground, The damping of additional damping device is designated asThen the mechanical model of structure-DEATMD systems is established;
Step 2, according to Structural Dynamics principle, force analysis is carried out to structure and active tuned mass damper, established The kinetic equation of structure-DEATMD systems;
Step 3, traditional active tuned mass damper (ATMD) is contrasted, to the enhanced active based on damping connection Tuned mass damper carries out the optimization design of vibration control;
Step 4, by reference to optimum results, consider the validity of control and the validity of damping system stroke control, choosing Optimum combination parameter is selected, with reference to enhanced active tuned mass damper of the parameter designing of original structure based on damping connection.
As shown in Fig. 2 the mechanical model of structure-DEATMD systems is established in the step 1:Using structure as a list Free degree particle, determine that it damps c according to its material characteristicssWith rigidity ks, by ATMD devices in structure, then by ATMD mass A damping is connected between block and ground isAdditional damping;Structure-DEATMD systems are formed with this.
The kinetic equation of structure-DEATMD systems is established in the step 2:Stress point is carried out to structure, ATMD respectively Analysis, according to theory of structural dynamics, its system equation is listed as following formula (1), (2), (3):
In formula,For earthquake ground motion acceleration;ySDisplacement for structure relative to substrate;For structure relative to The speed of substrate;Acceleration for structure relative to substrate;yTDisplacement for ATMD masses relative to structure;For ATMD Mass relative to structure speed;Acceleration for ATMD masses relative to structure;mS、cSAnd kSRespectively structure Controlled vibration shape quality, damping and rigidity;mTAnd kTRespectively ATMD quality, damping and rigidity;cT2For the firm of additional damping Degree;uT(t) it is active controlling force, using the form of closed-loop control;For the feedback gain of main structure acceleration;Respectively ATMD speed and the feedback gain of displacement.
The excellent of vibration control is carried out to the enhanced active tuned mass damper based on damping connection in the step 3 Change is designed as following content:
Displacement (the y of structure-DEATMD systemss) dynamic magnification factor such as following formula (4):
ATMD strokes (yT) dynamic magnification factor be such as following formula (5):
Meet below equation in above-mentioned formula, such as following formula (6) to formula (13):
In formula:λ is the frequency ratio of main structure;fTFor ATMD frequency ratio;ξSFor the damping ratio of main structure;For ATMD's Damping ratio;For the damping ratio of additional damping;μ is ATMD and the mass ratio of structure;α is that the standardization accelerator feedback of structure increases Beneficial coefficient.
In optimization process, according to Practical Project, ξ is setSμ, α value, to fTCarry out parameter optimization.
Optimized parameter interpretational criteria defined in the step 4:Enhanced active tuning quality based on damping connection is set The minimum of the minimum value of the structure maximum power amplification coefficient of damper, i.e., More Small, then device vibration control validity is better;Parameter optimization is carried out using genetic algorithm, and compared with ATMD.
Optimize calculating with genetic algorithm, for structure normalized acceleration feedback gain coefficient take respectively α= 4th, α=8 two kind situation, discuss respectively in each case, for different mass ratio μ, ATMD and DEATMD fT With additional dampingThe trend for changing and changing, finds the optimal varied section of additional damping and selects Take rational Combination Design parameter.The variation tendency of parameter is as shown in Fig. 4 to Figure 11.
The validity of DEATMD vibration control compares traditional ATMD (i.e. it can be seen from Fig. 4, Fig. 7When) become Change is not that clearly, validity is held essentially constant or slightly lifted.
It can be seen from Figure 10, Figure 11 DEATMD stroke relative to traditional ATMD (i.e.When) stroke have it is aobvious The change of work,Optimal varied section be in the range of 0~0.20, withIncrease, DEATMD stroke is in significantly drop Low tendency, maximum stroke can reduce about 50%, whenWhen changing in the range of 0~0.01, it is the most obvious that stroke reduces effect.
Complex chart 4 is to Figure 11, it can be deduced that to draw a conclusion:DEATMD frequency compares fTReduce with mass ratio μ increase, With damping ratioIncrease and increase.DEATMD damping ratioWith mass ratio fTIncrease and increase, with damping ratioIncreasing Reduce greatly.Weigh the dynamic magnification factor of vibration control validityWithIncrease be basically unchanged or slightly subtract Small, i.e., the validity of DEATMD vibration control compares traditional ATMD (i.e.When) change be not clearly, effectively Property be held essentially constant or slightly lifted.DEATMD stroke reduces with mass ratio μ increase, withIncrease and show Writing and reduce, maximum stroke can reduce about 50%, whenWhen changing in the range of 0~0.01, stroke reduction effect is the most obvious, Stroke tends to be steady afterwards.
In summary describe, consider economic factor and the possibility realized, for the enhanced active based on damping connection It is as follows that tuned mass damper provides optimal design parameters combination:μS=0.02, μT=0.01, α=4,fT= 0.99,Above parameter in the reasonable scope, can in Practical Project To carry out the design of DEATMD devices with reference to this group of data.

Claims (5)

1. a kind of enhanced active tuned mass damper Optimization Design based on damping connection, it is characterised in that it is wrapped Include following steps:
Step 1, on the basis of traditional active tuned mass damper ATMD, in active tuned mass damper ATMD mass An additional damping device is added between block and ground, the damping of additional damping device is designated as
Step 2, according to Structural Dynamics principle, force analysis is carried out to structure and active tuned mass damper, establishes knot The kinetic equation of structure-enhanced active tuned mass damper DEATMD systems based on damping connection;
Step 3, traditional active tuned mass damper is contrasted, the enhanced active tuning quality based on damping connection is hindered Buddhist nun's device carries out the optimization design of vibration control;
Step 4, by reference to optimum results, consider the validity of control and the validity of damping system stroke control, selection is most Excellent combination parameter, with reference to enhanced active tuned mass damper of the parameter designing of original structure based on damping connection.
2. the enhanced active tuned mass damper Optimization Design according to claim 1 based on damping connection, Characterized in that, structure-enhanced active tuned mass damper DEATMD based on damping connection is established in the step 1 The mechanical model of system:Using structure as a single-degree-of-freedom particle, its damping and rigidity are determined according to its material characteristics, by master Dynamic tuned mass damper ATMD devices are in structure, then will connect between active tuned mass damper ATMD masses and ground It is C to connect a dampingT2Additional damping;Structure-enhanced active tuned mass damper based on damping connection is formed with this DEATMD systems.
3. the enhanced active tuned mass damper Optimization Design according to claim 1 based on damping connection, Characterized in that, the step 2 establishes structure-enhanced active tuned mass damper DEATMD systems based on damping connection The kinetic equation of system is expressed as following formula:
<mrow> <msub> <mi>m</mi> <mi>S</mi> </msub> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>S</mi> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>c</mi> <mi>S</mi> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>S</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mi>S</mi> </msub> <msub> <mi>y</mi> <mi>S</mi> </msub> <mo>=</mo> <msub> <mi>c</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>T</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mi>T</mi> </msub> <msub> <mi>y</mi> <mi>T</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>m</mi> <mi>T</mi> </msub> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>S</mi> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>T</mi> </msub> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>c</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>T</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mi>T</mi> </msub> <msub> <mi>y</mi> <mi>T</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>T</mi> </msub> <mo>+</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>S</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>u</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>u</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mover> <mi>m</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>S</mi> </msub> <mo>-</mo> <msub> <mover> <mi>c</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>T</mi> </msub> <mo>-</mo> <msub> <mover> <mi>k</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <msub> <mi>y</mi> <mi>T</mi> </msub> </mrow>
In formula,For earthquake ground motion acceleration;ySDisplacement for structure relative to substrate;It is structure relative to substrate Speed;Acceleration for structure relative to substrate;yTIt is active tuned mass damper ATMD masses relative to structure Displacement;Speed for active tuned mass damper ATMD masses relative to structure;Damped for active tuning quality Device ATMD masses relative to structure acceleration;ms、csAnd ksRespectively controlled vibration shape quality, damping and the rigidity of structure; mTAnd kTRespectively active tuned mass damper ATMD quality, damping and rigidity;For the rigidity of additional damping;uT (t) it is active controlling force, using the form of closed-loop control;For the feedback gain of main structure acceleration;Respectively For active tuned mass damper ATMD speed and the feedback gain of displacement.
4. the enhanced active tuned mass damper Optimization Design according to claim 1 based on damping connection, Characterized in that, vibration control is carried out to the enhanced active tuned mass damper based on damping connection in the step 3 Optimization design is following content:
The displacement dynamic magnification factor of structure-enhanced active tuned mass damper DEATMD systems based on damping connection Such as following formula:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>DMF</mi> <msub> <mi>H</mi> <mi>s</mi> </msub> </msub> <mo>=</mo> <mo>|</mo> <msub> <mi>TRF</mi> <msub> <mi>H</mi> <mi>s</mi> </msub> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>w</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <msubsup> <mi>w</mi> <mi>S</mi> <mn>2</mn> </msubsup> <msub> <mi>H</mi> <mi>S</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mrow> <mo>|</mo> <mfrac> <mrow> <mover> <mi>Re</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mover> <mi>Im</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>Re</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mi> </mi> <mi>Im</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> </mrow> <mo>=</mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <mover> <mi>Re</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mover> <mi>Im</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>Re</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>Im</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced>
The dynamic magnification factor of ATMD strokes is such as following formula:
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>DMF</mi> <msub> <mi>H</mi> <mi>T</mi> </msub> </msub> <mo>=</mo> <mo>|</mo> <msub> <mi>TRF</mi> <msub> <mi>H</mi> <mi>T</mi> </msub> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>w</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <msubsup> <mi>w</mi> <mi>S</mi> <mn>2</mn> </msubsup> <msub> <mi>H</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mover> <mi>X</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mo>-</mo> <mi>i</mi> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mrow> <mo>|</mo> <mfrac> <mrow> <msub> <mover> <mi>Re</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <msub> <mover> <mi>Im</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>Re</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>i</mi> <mi> </mi> <msub> <mi>Im</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> </mrow> <mo>=</mo> <mfrac> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>Re</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mover> <mi>Im</mi> <mo>&amp;OverBar;</mo> </mover> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <msqrt> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>Re</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>Im</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
Meet below equation in above-mentioned formula, such as following formula (6) to formula (13):
<mrow> <mover> <mi>Re</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;mu;f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mn>...</mn> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <mi>Im</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;mu;&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mn>...</mn> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Re</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;mu;&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&amp;lambda;</mi> <mn>4</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mn>...</mn> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>Im</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;mu;&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msup> <msub> <mi>f</mi> <mi>T</mi> </msub> <mn>3</mn> </msup> <mi>&amp;lambda;</mi> <mo>-</mo> <mo>&amp;lsqb;</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msubsup> <mi>&amp;lambda;f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mn>...</mn> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <msub> <mi>Re</mi> <mi>T</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1...</mn> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mover> <msub> <mi>Im</mi> <mi>T</mi> </msub> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <mi>&amp;lambda;</mi> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mn>...</mn> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Re</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;mu;&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&amp;lambda;</mi> <mn>4</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msubsup> <mi>f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>4</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mn>...</mn> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Im</mi> <mi>T</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mi>&amp;mu;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;mu;&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msup> <msub> <mi>f</mi> <mi>T</mi> </msub> <mn>3</mn> </msup> <mi>&amp;lambda;</mi> <mo>-</mo> <mo>&amp;lsqb;</mo> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>1</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <msub> <mi>T</mi> <mn>2</mn> </msub> </msub> <msub> <mi>f</mi> <mi>T</mi> </msub> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msubsup> <mi>&amp;lambda;f</mi> <mi>T</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <msub> <mi>&amp;xi;</mi> <mi>S</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mn>3</mn> </msup> </mrow> </mtd> </mtr> </mtable> <mn>...</mn> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
In formula:λ is the frequency ratio of main structure;fTFor active tuned mass damper ATMD frequency ratio;ξSFor the damping of main structure Than;For active tuned mass damper ATMD damping ratio;For the damping ratio of additional damping;μ hinders for active tuning quality Buddhist nun's device ATMD and structure mass ratio;α is the normalized acceleration feedback gain coefficient of structure.
5. the enhanced active tuned mass damper Optimization Design according to claim 1 based on damping connection, Characterized in that, optimized parameter interpretational criteria defined in the step 4:Enhanced active tuning based on damping connection is set The minimum of the minimum value of the structure maximum power amplification coefficient of mass damper;Parameter optimization is carried out using genetic algorithm, and Compared with active tuned mass damper ATMD.
CN201510354583.2A 2015-06-24 2015-06-24 Enhanced active tuned mass damper Optimization Design based on damping connection Expired - Fee Related CN104951612B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510354583.2A CN104951612B (en) 2015-06-24 2015-06-24 Enhanced active tuned mass damper Optimization Design based on damping connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510354583.2A CN104951612B (en) 2015-06-24 2015-06-24 Enhanced active tuned mass damper Optimization Design based on damping connection

Publications (2)

Publication Number Publication Date
CN104951612A CN104951612A (en) 2015-09-30
CN104951612B true CN104951612B (en) 2018-04-06

Family

ID=54166269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510354583.2A Expired - Fee Related CN104951612B (en) 2015-06-24 2015-06-24 Enhanced active tuned mass damper Optimization Design based on damping connection

Country Status (1)

Country Link
CN (1) CN104951612B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647383B (en) * 2018-04-03 2022-07-12 上海大学 Optimal design method for structure-enhanced tuned mass damper
CN110502787B (en) * 2019-07-16 2021-04-06 南京航空航天大学 Optimal design method for quasi-zero stiffness shock absorber
CN113312713B (en) * 2021-04-06 2023-05-02 华东交通大学 Optimal parameter design method for tuned inertial mass damper
CN116556757B (en) * 2023-07-04 2023-10-17 上海材料研究所有限公司 Tuned mass damper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421129A (en) * 1992-01-28 1995-06-06 Kajima Corporation Vibration control device for structure
CN104131629A (en) * 2014-04-09 2014-11-05 上海大学 Wind-induced vibration control and optimum design method for structure hybrid active tuned mass damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421129A (en) * 1992-01-28 1995-06-06 Kajima Corporation Vibration control device for structure
CN104131629A (en) * 2014-04-09 2014-11-05 上海大学 Wind-induced vibration control and optimum design method for structure hybrid active tuned mass damper

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《地震作用下结构主动调谐质量阻尼器最优控制设计》;李春祥,滕念管;《上海交通大学学报》;20040630;第38卷(第6期);第987-991页 *
《基于刚度阻尼器ATMD模型的性能评价》;李春祥;《振动与冲击》;20040331;第23卷(第3期);第14-16,28页 *
《结构最优主动调谐质量阻尼器风致振动控制的研究》;李春祥,张静怡;《地震工程与工程振动》;20071031;第27卷(第5期);第160-165页 *

Also Published As

Publication number Publication date
CN104951612A (en) 2015-09-30

Similar Documents

Publication Publication Date Title
CN104951612B (en) Enhanced active tuned mass damper Optimization Design based on damping connection
CN105332440B (en) Connection in series-parallel tuned mass damper Optimal Design Method
CN105160100B (en) The TMD of spring mass system Optimization Design is installed
Elias Effect of SSI on vibration control of structures with tuned vibration absorbers
CN106758765B (en) A kind of multidimensional tuned mass damper
CN113312713A (en) Optimal parameter design method for tuned inertial mass damper
CN105975730A (en) Multi-tuned mass damper vibration absorption design method for arc-shaped steel gate
Pal et al. Optimization of base isolation parameters using genetic algorithm
Lu et al. Shaking table test and numerical simulation on vibration control effects of TMD with different mass ratios on a super high‐rise structure
Liu et al. Seismic vibration control of novel prefabricated industrial equipment suspension structures with tuned mass damper
Ikeda Active and semi-active control of buildings in Japan
CN105155717A (en) Magneto-rheological damping fuzzy controller design method based on imperialist competition algorithm
CN105155714B (en) Parallel resonant mass damper Optimal Design Method
Sun et al. Connecting parameters optimization on unsymmetrical twin-tower structure linked by sky-bridge
Santos et al. Smart glass facade subjected to wind loadings
Ozer et al. Sliding mode control optimized by genetic algorithm for building model
Cao et al. Seismic isolation performance evaluation for a class of inerter-based low-complexity isolators
CN104895209B (en) Mixing active tuned mass damper design method based on controllable stroke
CN104929264B (en) Main passive tuned mass damper design method based on controllable stroke
Aly Design of buildings for wind and earthquake
Kurzekar et al. An investigation on structural performance of tall building embedded with core & outrigger system
Pnevmatikos et al. Influence of time delay and saturation capacity to the response of controlled structures under earthquake excitations
He et al. Section Size Optimization of Continuum Structure with Bending and Shearing Deformation for Uniform Displacement Criterion
Gu et al. Dynamic reliability analysis of large span isolated structures based on extreme distribution theory
Farrokhi et al. Probabilistic failure analysis of high steel frames with tuned mass damper

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180406

Termination date: 20200624

CF01 Termination of patent right due to non-payment of annual fee