CN104950014A - Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof - Google Patents
Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof Download PDFInfo
- Publication number
- CN104950014A CN104950014A CN201510267241.7A CN201510267241A CN104950014A CN 104950014 A CN104950014 A CN 104950014A CN 201510267241 A CN201510267241 A CN 201510267241A CN 104950014 A CN104950014 A CN 104950014A
- Authority
- CN
- China
- Prior art keywords
- preparation
- gas
- composite
- chlorinated hydrocarbon
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 239000011540 sensing material Substances 0.000 title abstract description 5
- 239000002131 composite material Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 13
- 230000008569 process Effects 0.000 claims abstract description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 239000012266 salt solution Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 229950005499 carbon tetrachloride Drugs 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims 2
- 159000000013 aluminium salts Chemical class 0.000 claims 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 235000019256 formaldehyde Nutrition 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 claims 1
- -1 methenyl choloride Chemical compound 0.000 claims 1
- 238000010792 warming Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 64
- 230000004044 response Effects 0.000 abstract description 19
- 239000000463 material Substances 0.000 abstract description 18
- 238000001514 detection method Methods 0.000 abstract description 12
- 230000035945 sensitivity Effects 0.000 abstract description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 abstract description 9
- 239000002243 precursor Substances 0.000 abstract description 5
- 238000000975 co-precipitation Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000011161 development Methods 0.000 abstract description 2
- 239000002270 dispersing agent Substances 0.000 abstract description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract description 2
- 150000004692 metal hydroxides Chemical class 0.000 abstract description 2
- 239000000376 reactant Substances 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 239000011261 inert gas Substances 0.000 abstract 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 17
- 229960001701 chloroform Drugs 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 6
- 229910021641 deionized water Inorganic materials 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 239000012855 volatile organic compound Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 231100000219 mutagenic Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000003905 indoor air pollution Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000606 suspected carcinogen Toxicity 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
本发明公开了一种用于氯代烃类挥发性气体的复合氧化物传感材料及其制备方法。本发明首先采用共沉淀法制备复合金属氢氧化物前驱体;然后将前驱体置于马弗炉中焙烧,形成复合金属氧化物材料;最后将复合金属氧化物材料制备成气敏元件,应用于低浓度氯代烃类气体的检测。以低廉的原料、简单的合成工艺制备复合氧化物材料,通过对制备条件的微观调控实现系列复合氧化物的可控制备,进而实现其气敏性能的宏观调控,筛选出对氯代烃类挥发性气体具有低检测限、高灵敏度、优异的选择性和重复性的复合材料,发展潜力大,有利于推广。特别是ZnO/Al2O3/CuO复合氧化物材料,气敏响应过程中CuO作为反应剂、Al2O3作为分散剂显著提高了ZnO材料对低浓度氯代烃的响应及选择性。
The invention discloses a composite oxide sensing material for chlorinated hydrocarbon volatile gases and a preparation method thereof. The present invention first adopts the co-precipitation method to prepare the composite metal hydroxide precursor; then the precursor is placed in a muffle furnace to roast to form a composite metal oxide material; finally, the composite metal oxide material is prepared into a gas sensor for use in Detection of low concentration chlorinated hydrocarbon gases. Composite oxide materials are prepared with cheap raw materials and a simple synthesis process, and the controllable preparation of a series of composite oxides is realized through micro-control of the preparation conditions, and then the macro-control of its gas-sensing performance is realized, and the chlorinated hydrocarbons are screened out. The composite material with low detection limit, high sensitivity, excellent selectivity and repeatability of inert gas has great development potential and is conducive to promotion. Especially for ZnO/Al 2 O 3 /CuO composite oxide materials, CuO as a reactant and Al 2 O 3 as a dispersant during the gas sensing response process significantly improved the response and selectivity of ZnO materials to low-concentration chlorinated hydrocarbons.
Description
技术领域technical field
本发明属于气敏传感技术领域,特别涉及一种用于氯代烃类挥发性气体的复合氧化物传感材料及其制备方法。The invention belongs to the technical field of gas sensing, and in particular relates to a composite oxide sensing material for chlorinated hydrocarbon volatile gases and a preparation method thereof.
背景技术Background technique
挥发性有机化合物(VOCs)不仅会造成室内空气污染,而且在光照作用下会导致光化学烟雾、二次有机气溶胶和大气有机酸的浓度升高,影响人体健康和大气环境。氯代烃类挥发性有机物是VOCs中的一种,它是指烷烃中氢原子被氯原子取代所得的有机物,在工业生产中常被作为重要的有机溶剂和产品中间体,具有致癌变、致畸变、致突变的危害。例如,氯仿是生产氟里昂、染料和药物的有机合成原料,是一种有毒的可疑致癌物,遇光照可产生剧毒的光气。目前有很多关于水体中氯代烃检测的技术如共聚焦激光诱导荧光、气相色谱分析、高效液相色谱及中红外探测等,以上仪器价格昂贵,且不能达到便携检测的需求。目前关于气体检测方法中,最主要也是最普遍的方法就是气体传感器检测。气体传感器简单易携,价格低廉,非常适合有毒有害气体的常规检测。其中金属氧化物气体传感器响应快、灵敏度高、重复性好在气体传感器中被广泛地应用。但其仍存在固有的缺点,如低浓度检测灵敏度低,工作温度较高等等。目前主要通过复合、掺杂及改变形貌对其气敏性能加以改善。Volatile organic compounds (VOCs) not only cause indoor air pollution, but also lead to increased concentrations of photochemical smog, secondary organic aerosols, and atmospheric organic acids under the action of light, affecting human health and the atmospheric environment. Volatile organic compounds of chlorinated hydrocarbons are one of VOCs, which refer to organic compounds obtained by replacing hydrogen atoms in alkanes with chlorine atoms. They are often used as important organic solvents and product intermediates in industrial production, and are carcinogenic and mutagenic. , Mutagenic hazards. For example, chloroform is an organic synthetic raw material for the production of freon, dyes and medicines. It is a toxic and suspected carcinogen, and it can produce highly toxic phosgene when exposed to light. At present, there are many technologies for the detection of chlorinated hydrocarbons in water, such as confocal laser-induced fluorescence, gas chromatography, high-performance liquid chromatography, and mid-infrared detection. The above instruments are expensive and cannot meet the needs of portable detection. At present, among the gas detection methods, the most important and common method is gas sensor detection. The gas sensor is simple, easy to carry, and low in price, and is very suitable for the routine detection of toxic and harmful gases. Among them, metal oxide gas sensors are widely used in gas sensors with fast response, high sensitivity and good repeatability. But it still has inherent shortcomings, such as low detection sensitivity at low concentrations, high working temperature and so on. At present, the gas-sensing performance is mainly improved by compounding, doping and changing the morphology.
半导体材料中ZnO是研究较多的基础气敏传感材料,对气体灵敏度高,响应快,但选择性差,对大多数气体都有响应。Al2O3主要作为分散和承载剂,可以很好的防止材料团聚。我们提出通过简单的水热法和共沉淀随后高温烧结,制备复合金属氧化物材料,提高目标物的气敏性能。因此,发展和完善简单水热法复合材料制备技术具有深远的意义。Among semiconductor materials, ZnO is a basic gas-sensing sensing material that has been studied more. It has high sensitivity to gases and fast response, but has poor selectivity and responds to most gases. Al 2 O 3 is mainly used as a dispersing and carrying agent, which can well prevent material agglomeration. We propose to prepare composite metal oxide materials through a simple hydrothermal method and co-precipitation followed by high-temperature sintering to improve the gas-sensing properties of the target. Therefore, it is of far-reaching significance to develop and improve the preparation technology of simple hydrothermal composite materials.
发明内容Contents of the invention
本发明的目的在于提供一种检测氯代烃类挥发性气体的复合氧化物材料的制备方法,将该材料制备成气敏元件,探究其对氯代烃类气体的敏感性质,通过调变金属元素比例筛选出最佳气敏性能的传感材料。The purpose of the present invention is to provide a method for preparing a composite oxide material for detecting chlorinated hydrocarbon volatile gases, prepare the material into a gas sensor, and explore its sensitivity to chlorinated hydrocarbon gases. The element ratio screens out the sensing material with the best gas-sensing performance.
本发明的技术方案为:首先采用共沉淀法制备复合金属氢氧化物前驱体;然后将前驱体置于马弗炉中焙烧,形成复合金属氧化物材料;最后将复合金属氧化物材料制备成气敏元件,应用于低浓度氯代烃类气体的检测。The technical scheme of the present invention is as follows: firstly, the composite metal hydroxide precursor is prepared by co-precipitation; then the precursor is placed in a muffle furnace for roasting to form a composite metal oxide material; Sensitive element, used in the detection of low concentration chlorinated hydrocarbon gases.
本发明所述的氯代烃类挥发性气体传感器的制备方法,其具体工艺步骤如下:The preparation method of chlorinated hydrocarbons volatile gas sensor of the present invention, its specific process steps are as follows:
配制可溶性二价金属盐和可溶性三价铝盐的混合盐溶液,其中二价金属阳离子M2+和Al3+的摩尔比为1-4,二价金属阳离子M2+的浓度为0.01-0.1mol/L;配制NaOH和Na2CO3摩尔比为1-16的碱溶液,NaOH的浓度为1-5mol/L;将碱溶液和混合盐溶液同时滴入反应瓶中,滴加过程中控制pH在6-10之间;滴加完成后转移至高压反应釜中,于80-150℃水热晶化1-24小时,离心洗涤,20-100℃干燥;Prepare a mixed salt solution of soluble divalent metal salt and soluble trivalent aluminum salt, wherein the molar ratio of divalent metal cation M 2+ to Al 3+ is 1-4, and the concentration of divalent metal cation M 2+ is 0.01-0.1 mol/L; prepare an alkali solution with a molar ratio of NaOH and Na 2 CO 3 of 1-16, and the concentration of NaOH is 1-5mol/L; drop the alkali solution and mixed salt solution into the reaction bottle at the same time, and control the The pH is between 6-10; after the dropwise addition, transfer to a high-pressure reactor, hydrothermally crystallize at 80-150°C for 1-24 hours, wash by centrifugation, and dry at 20-100°C;
(2)将步骤(1)制备的前驱体焙烧,以5-10℃/分的升温速率升温至500-1000℃,保温1-5小时,得到复合金属氧化物;(2) Roasting the precursor prepared in step (1), raising the temperature to 500-1000°C at a heating rate of 5-10°C/min, and keeping it warm for 1-5 hours to obtain a composite metal oxide;
(3)气敏传感器的制备:(3) Preparation of gas sensor:
将步骤(2)得到的复合金属氧化物研磨后,加溶剂调成浆糊状,然后涂在陶瓷管传感器或者叉指电极传感器上,涂层厚度0.1-1毫米;最后置于传感器老化台上,80-120mA的电流下老化12-120小时。Grind the composite metal oxide obtained in step (2), add a solvent to make a paste, and then apply it on the ceramic tube sensor or interdigital electrode sensor with a coating thickness of 0.1-1 mm; finally place it on the sensor aging table , Aging for 12-120 hours at a current of 80-120mA.
所述的M2+选自Cu2+、Zn2+、Fe2+和Cd2+中的一种或两种。优选摩尔比为1-10的Zn2+和Cu2+。The M 2+ is selected from one or both of Cu 2+ , Zn 2+ , Fe 2+ and Cd 2+ . Zn 2+ and Cu 2+ in a molar ratio of 1-10 are preferred.
所述的溶剂为水、乙醇或乙二醇。Described solvent is water, ethanol or ethylene glycol.
所述的氯代烃类挥发性气体为一氯甲烷、二氯甲烷、三氯甲烷、四氯甲烷中的一种或几种。The volatile gas of chlorinated hydrocarbons is one or more of monochloromethane, dichloromethane, trichloromethane and tetrachloromethane.
本发明的优点在于:以低廉的原料、简单的合成工艺制备复合氧化物材料,通过对制备条件的微观调控实现系列复合氧化物的可控制备,进而实现其气敏性能的宏观调控,筛选出对氯代烃类挥发性气体具有低检测限、高灵敏度、优异的选择性和重复性的复合材料,发展潜力大,有利于推广。特别是ZnO/Al2O3/CuO复合氧化物材料,气敏响应过程中CuO作为反应剂、Al2O3作为分散剂显著提高了ZnO材料对低浓度氯代烃的响应及选择性。The advantages of the present invention are: the composite oxide material is prepared with cheap raw materials and simple synthesis process, and the controllable preparation of a series of composite oxides is realized through the microscopic regulation of the preparation conditions, and then the macroscopic regulation of its gas-sensing performance is realized, and the A composite material with low detection limit, high sensitivity, excellent selectivity and repeatability for chlorinated hydrocarbon volatile gases has great development potential and is conducive to popularization. Especially for ZnO/Al 2 O 3 /CuO composite oxide materials, CuO as a reactant and Al 2 O 3 as a dispersant during the gas sensing response process significantly improved the response and selectivity of ZnO materials to low-concentration chlorinated hydrocarbons.
附图说明Description of drawings
图1是实施例1、2、3和4得到焙烧后复合氧化物制成的气敏元件不同工作温度下对氯仿气体的响应值。Fig. 1 is the response value to chloroform gas at different working temperatures of the gas sensor made of the composite oxide after roasting obtained in Examples 1, 2, 3 and 4.
图2是本发明实施例1得到焙烧后的复合氧化物材料制成的气敏元件对不同浓度氯仿的响应曲线。Fig. 2 is the response curve of the gas sensor made of the calcined composite oxide material obtained in Example 1 of the present invention to different concentrations of chloroform.
图3是实施例1中得到的复合氧化物制成的气敏元件对5ppm浓度氯仿的响应恢复曲线。Fig. 3 is the response recovery curve of the gas sensor made of the composite oxide obtained in Example 1 to 5 ppm concentration of chloroform.
具体实施方式Detailed ways
【实施例1】【Example 1】
1、复合金属氧化物材料的制备1. Preparation of composite metal oxide materials
称取Zn(NO3)2·6H2O(9.66g,0.04mol),Al(NO3)3·9H2O(7.5g,0.02mol),Cu(NO3)2.3H2O(5.95g,0.02mol)溶于200毫升去离子水搅拌均匀得到混合盐溶液,记为A溶液;NaOH(6.4g,0.16mol),Na2CO3(1.06g,0.01mol)溶于80毫升去离子水中得到碱溶液记为B溶液;溶液A和溶液B分别装入滴定管内,匀速双滴至四口烧瓶内,滴加过程中控制pH=8,30转/分持续搅拌;混合溶液转移至反应釜中,100℃反应12h;反应后的溶液移至离心桶内,3500转/分下离心分离,去离子水离心洗涤至pH=7;沉淀置于60℃干燥;称取适量产物于坩埚中,5℃/分的升温速度升至500℃煅烧5小时得到复合氧化物材料ZnO/Al2O3/CuO(Zn:Al:Cu=1:0.5:0.5)。于最佳工作温度200℃下对50ppm氯仿测定气敏响应,灵敏度值为8.5,响应时间20s。另外,该气敏元件可以检测1ppm氯仿,具有较低的检测限和好的重复性。Weigh Zn(NO 3 ) 2 6H 2 O (9.66g, 0.04mol), Al(NO 3 ) 3 9H 2 O (7.5g, 0.02mol), Cu(NO 3 ) 2 .3H 2 O (5.95 g, 0.02mol) was dissolved in 200ml of deionized water and stirred evenly to obtain a mixed salt solution, which was recorded as solution A; NaOH (6.4g, 0.16mol), Na 2 CO 3 (1.06g, 0.01mol) were dissolved in 80ml of deionized The alkali solution obtained in water is recorded as solution B; solution A and solution B are respectively put into burettes, and double-dropped into the four-necked flask at a uniform speed, and the pH is controlled during the dropping process = 8, and 30 rpm is continuously stirred; the mixed solution is transferred to the reaction In the kettle, react at 100°C for 12 hours; transfer the reacted solution to a centrifuge bucket, centrifuge at 3500 rpm, wash with deionized water until pH = 7; dry the precipitate at 60°C; weigh an appropriate amount of product in a crucible , the heating rate of 5°C/min was raised to 500°C and calcined for 5 hours to obtain a composite oxide material ZnO/Al 2 O 3 /CuO (Zn:Al:Cu=1:0.5:0.5). The gas sensitivity response to 50ppm chloroform was measured at the optimum working temperature of 200°C, the sensitivity value was 8.5, and the response time was 20s. In addition, the gas sensor can detect 1ppm chloroform, has a lower detection limit and good repeatability.
2、制备气敏元件2. Preparation of gas sensor
取少量焙烧后样品于玛瑙研钵中,加适量去离子水,调成浆糊状。用毛笔将调好的浆液涂在陶瓷管上,涂层厚度0.5毫米。使用焊烙铁将金属丝连接在底座上,中间穿过Ni-Cr合金的加热丝并固定。将焊好的气敏元件置于专用的老化台上,设置80mA电流,老化12小时。老化后测定其对氯代烃气体的气敏性能。Take a small amount of roasted samples in an agate mortar, add appropriate amount of deionized water to make a paste. Apply the adjusted slurry on the ceramic tube with a brush, and the thickness of the coating is 0.5 mm. Use a soldering iron to connect the metal wire to the base, and pass through the Ni-Cr alloy heating wire in the middle and fix it. Place the welded gas sensor on a special aging table, set 80mA current, and age for 12 hours. After aging, its gas sensitivity to chlorinated hydrocarbon gas was measured.
3、气敏性能测试3. Gas sensitivity performance test
3.1测试气敏元件的最佳工作温度3.1 Test the optimum working temperature of the gas sensor
a.用吹风机吹净5L配气瓶,真空泵抽真空,然后用微量进样器抽取氯代烃液体,扎入配气瓶中配制50ppm的氯代烃气体气氛,充分挥发,备用。a. Use a hair dryer to blow clean the 5L gas distribution bottle, vacuum it with a vacuum pump, then use a micro-sampler to extract the chlorinated hydrocarbon liquid, put it into the gas distribution bottle to prepare a 50ppm chlorinated hydrocarbon gas atmosphere, fully volatilize it, and set it aside.
b.通过调节通过加热丝的电流,改变器件加热温度。测试不同电流下器件电阻变化,记录相应Ra、Rg值。器件气体响应值S=Ra/Rg,根据记录的Ra和Rg的变化,用Origin作图,得到器件响应值随加热电流的变化曲线,从而得到气敏元件的最佳工作温度,如图1所示。b. Change the heating temperature of the device by adjusting the current through the heating wire. Test the resistance change of the device under different currents, and record the corresponding R a and R g values. The gas response value of the device S=R a /R g , according to the recorded changes of Ra and R g , use Origin to draw a graph to obtain the change curve of the device response value with the heating current, so as to obtain the best working temperature of the gas sensor. As shown in Figure 1.
3.2测试气敏响应值与浓度的关系3.2 Test the relationship between gas sensitivity response value and concentration
在器件最佳工作电流下,采用5L气瓶依次配制系列浓度的氯代烃气体,测定气敏元件对不同浓度下氯代烃气体的气敏响应值与浓度的关系曲线,如图2所示为气敏元件对氯仿挥发性气体的气敏响应值与浓度的关系曲线。Under the optimum working current of the device, a series of concentrations of chlorinated hydrocarbon gases were sequentially prepared in a 5L gas cylinder, and the relationship curve between the gas sensor response value and the concentration of the gas sensor to chlorinated hydrocarbon gases at different concentrations was measured, as shown in Figure 2 It is the relationship curve between gas sensor response value and concentration of gas sensor to chloroform volatile gas.
3.3测试对氯代烃类气体的重复性曲线3.3 Test repeatability curve for chlorinated hydrocarbon gases
a.用吹风机吹净5L配气瓶,真空泵抽真空,然后用1μL微量进样器抽取氯代烃液体,扎入配气瓶中配制5ppm的氯代烃气氛,充分挥发,备用。a. Use a hair dryer to blow clean the 5L gas distribution bottle, vacuum it with a vacuum pump, then extract the chlorinated hydrocarbon liquid with a 1μL micro-sampler, inject it into the gas distribution bottle to prepare a 5 ppm chlorinated hydrocarbon atmosphere, fully volatilize it, and set it aside.
b.调节电流至器件最佳工作条件,气敏元件在空气中的稳定电阻值,然后将元件置于5ppm氯代烃气氛中,测定元件在目标气体中的电阻值,待阻值稳定后,重新暴露在空气中,阻值重新达到稳定,重复4次,测出相应Ra、Rg值,将测得数据导入Origin软件中作图,图3为元件针对氯仿挥发性气体的响应恢复曲线。b. Adjust the current to the best working condition of the device, the stable resistance value of the gas sensor in the air, and then place the element in a 5ppm chlorinated hydrocarbon atmosphere, measure the resistance value of the element in the target gas, and when the resistance value is stable, Re-exposed to the air, the resistance value became stable again, repeated 4 times, measured the corresponding R a , R g values, and imported the measured data into the Origin software for drawing. Figure 3 is the response recovery curve of the component against the volatile gas of chloroform .
上述气敏性能评价方法采用北京艾利特公司(ELITE TECH)的chemical gas sensing-8(CGS-8)测试系统,测定制备好的器件对氯代烃类挥发性气体的响应性能。器件灵敏度S=Ra/Rg,Ra-空气中的基础电阻,Rg-目标气体中的电阻。响应时间定义为传感器接触到目标气体,电阻从Ra到Ra-90%×(Ra-Rg)的时间,恢复时间定义为传感器脱除目标气体置于空气中时Rg到Rg+90%×(Ra-Rg)的时间。The gas sensing performance evaluation method above adopts the chemical gas sensing-8 (CGS-8) testing system of Beijing ELITE TECH to measure the response performance of the prepared device to chlorinated hydrocarbon volatile gases. Device Sensitivity S= Ra / Rg , Ra - base resistance in air, Rg - resistance in target gas. Response time is defined as the time when the sensor is exposed to the target gas, and the resistance changes from R a to R a -90%×(R a -R g ), and the recovery time is defined as the time from R g to R g when the sensor removes the target gas and is placed in air +90% x (R a - R g ) time.
【实施例2】[Example 2]
1、材料的制备1. Preparation of materials
称取(Zn(NO3)2·6H2O(12.08g,0.05mol),Al(NO3)3·9H2O(7.5g,0.02mol),Cu(NO3)2 .3H2O(2.42g,0.01mol)溶于200毫升去离子水搅拌均匀得到盐溶液,其余反应条件与实施例1中相同,最终得到ZnO/Al2O3/CuO(Zn:Al:Cu=1:0.2:0.4)复合金属氧化物。Weigh (Zn(NO 3 ) 2 6H 2 O (12.08g, 0.05mol), Al(NO 3 ) 3 9H 2 O (7.5g, 0.02mol), Cu(NO 3 ) 2 . 3H 2 O( 2.42g, 0.01mol) was dissolved in 200 milliliters of deionized water and stirred evenly to obtain a salt solution, and all the other reaction conditions were the same as in Example 1, finally obtaining ZnO/Al 2 O 3 /CuO (Zn:Al:Cu=1:0.2: 0.4) Composite metal oxides.
2、制备气敏元件如实施例1。2. Prepare the gas sensor as in Example 1.
3、测试过程如实施例1,结果如图1所示。3. The test process is as in Example 1, and the results are shown in Figure 1.
【实施例3】[Example 3]
1、称取Zn(NO3)2·6H2O(23.80g,0.08mol),Al(NO3)3·9H2O(11.26g,0.03mol),Cu(NO3)2·3H2O(2.38g,0.01mol)溶于200mL去离子水搅拌均匀得到盐溶液,其余反应条件与实施例1中相同,最终得到ZnO/Al2O3/CuO(Zn:Al:Cu=1:0.375:0.125)复合金属氧化物。1. Weigh Zn(NO 3 ) 2 6H 2 O (23.80g, 0.08mol), Al(NO 3 ) 3 9H 2 O (11.26g, 0.03mol), Cu(NO 3 ) 2 3H 2 O (2.38g, 0.01mol) was dissolved in 200mL deionized water and stirred evenly to obtain a salt solution, and all the other reaction conditions were the same as in Example 1, finally obtaining ZnO/Al 2 O 3 /CuO (Zn:Al:Cu=1:0.375: 0.125) composite metal oxide.
2、制备气敏元件如实施例1。2. Prepare the gas sensor as in Example 1.
3、测试过程如实施例1,结果如图1所示。3. The test process is as in Example 1, and the results are shown in Figure 1.
【实施例4】【Example 4】
1、称取Zn(NO3)2·6H2O(9.66g,0.04mol),Al(NO3)3·9H2O(7.5g,0.02mol)溶于200毫升去离子水搅拌均匀得到混合盐溶液,其余反应条件与实施例1中相同,最终得到ZnO/Al2O3(Zn:Al=1:0.5)复合金属氧化物。1. Weigh Zn(NO 3 ) 2 6H 2 O (9.66g, 0.04mol), Al(NO 3 ) 3 9H 2 O (7.5g, 0.02mol) in 200ml of deionized water and stir evenly to obtain a mixture Salt solution, and other reaction conditions are the same as those in Example 1 to finally obtain ZnO/Al 2 O 3 (Zn:Al=1:0.5) composite metal oxide.
2、制备气敏元件如实施例1。2. Prepare the gas sensor as in Example 1.
3、测试过程如实施例1,结果如图1所示。3. The test process is as in Example 1, and the results are shown in Figure 1.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510267241.7A CN104950014A (en) | 2015-05-24 | 2015-05-24 | Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510267241.7A CN104950014A (en) | 2015-05-24 | 2015-05-24 | Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104950014A true CN104950014A (en) | 2015-09-30 |
Family
ID=54164828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510267241.7A Pending CN104950014A (en) | 2015-05-24 | 2015-05-24 | Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104950014A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0206839A3 (en) * | 1985-06-28 | 1987-12-09 | National Research Development Corporation | Gas sensors and methods of their fabrication |
CN1746130A (en) * | 2005-04-26 | 2006-03-15 | 北京化工大学 | A kind of ternary composite metal oxide nano gas sensitive material and preparation method thereof |
CN1746131A (en) * | 2005-05-19 | 2006-03-15 | 北京化工大学 | A kind of noble metal doped composite metal oxide gas sensitive material and preparation method thereof |
CN102628824A (en) * | 2012-04-16 | 2012-08-08 | 北京化工大学 | Gas sensitive element taking houghite as precursor and preparation method thereof |
-
2015
- 2015-05-24 CN CN201510267241.7A patent/CN104950014A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0206839A3 (en) * | 1985-06-28 | 1987-12-09 | National Research Development Corporation | Gas sensors and methods of their fabrication |
CN1746130A (en) * | 2005-04-26 | 2006-03-15 | 北京化工大学 | A kind of ternary composite metal oxide nano gas sensitive material and preparation method thereof |
CN1746131A (en) * | 2005-05-19 | 2006-03-15 | 北京化工大学 | A kind of noble metal doped composite metal oxide gas sensitive material and preparation method thereof |
CN102628824A (en) * | 2012-04-16 | 2012-08-08 | 北京化工大学 | Gas sensitive element taking houghite as precursor and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
聂美香 等: ""低浓度氯仿气体响应的ZnO/CuO/Al2O3异质结材料"", 《第十三届固态化学与无机合成学术会议论文摘要集》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104807860B (en) | A flower-shaped nano-WO3/graphene composite gas-sensing material and its preparation method and application | |
CN102628824B (en) | Gas sensitive element taking houghite as precursor and preparation method thereof | |
CN103901075B (en) | The preparation method of a kind of three-dimensional porous ZnO nano sheet ball gas sensitive and gas sensor | |
CN103482705B (en) | A preparation method of iron molybdate micro-nano material with low concentration H2S sensitivity | |
CN107561133A (en) | A kind of preparation method and application of precious metal doping WO3 base formaldehyde gas sensitive materials | |
CN101968461A (en) | Room temperature hydrogen sensor based on palladium-nanometer-scale stannic oxide film type electrode | |
CN103604800A (en) | Analysis method for determining titanium, vanadium, tungsten, manganese and silicon in K25 chromium-base high temperature alloy | |
CN102838993A (en) | Fluorescent nano-CdSe quantum dot probe of omethoate pesticide and application thereof | |
CN104502418A (en) | Acetone gas sensor based on ZnO/α-Fe2O3 compound oxide semiconductor and its preparation method | |
CN105181762A (en) | Co-Sn composite oxide ethyl alcohol sensor and preparation and application thereof | |
CN104925869A (en) | Preparation method of bismuth ferrite powder | |
CN113176305A (en) | Composite gas sensitive material and preparation method thereof, ethanol gas sensor and preparation method thereof | |
CN206114577U (en) | Air -sensitive material performance test room | |
CN110240205A (en) | A preparation method of zinc ferrite/tin dioxide composite nanomaterial with good gas sensitive response to acetone gas | |
CN105712405B (en) | A kind of preparation method of molybdenum doped tungsten oxide gas sensitive material | |
CN104698038A (en) | Indium oxide nanosheet gas sensor and preparation method thereof | |
CN104950014A (en) | Chlorinated hydrocarbons volatile gas sensing material and preparation method thereof | |
CN116283356B (en) | SnO (tin oxide) 2 Methyl hydride gas sensor and preparation method thereof | |
CN107416891A (en) | A kind of star-like flower-shaped indium oxide, and preparation method and application | |
CN109596595B (en) | Application of semiconductor compound in benzaldehyde specificity detection and detection method | |
CN106018489A (en) | Preparation method for organic amine volatile gas sensitive material | |
CN107817277A (en) | The preparation method of new high selectivity acetone gas sensor | |
CN106706719A (en) | Tin sulfide nano flower film sensitive to ammonia gas at low temperature | |
CN107894448B (en) | A kind of photo-assisted gas sensing element of boron-doped titanium dioxide, preparation method and application thereof | |
CN112986340B (en) | Thick film material for acetone gas sensitive element, preparation method and acetone gas sensitive element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150930 |
|
RJ01 | Rejection of invention patent application after publication |