CN104949818A - Sand starting wind speed observation device - Google Patents

Sand starting wind speed observation device Download PDF

Info

Publication number
CN104949818A
CN104949818A CN201410115627.1A CN201410115627A CN104949818A CN 104949818 A CN104949818 A CN 104949818A CN 201410115627 A CN201410115627 A CN 201410115627A CN 104949818 A CN104949818 A CN 104949818A
Authority
CN
China
Prior art keywords
wind
wind speed
camera
glass transparent
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410115627.1A
Other languages
Chinese (zh)
Inventor
赵爱国
李宏
董治宝
赵晶
杨佐涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cold and Arid Regions Environmental and Engineering Research Institute of CAS
Original Assignee
Cold and Arid Regions Environmental and Engineering Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cold and Arid Regions Environmental and Engineering Research Institute of CAS filed Critical Cold and Arid Regions Environmental and Engineering Research Institute of CAS
Priority to CN201410115627.1A priority Critical patent/CN104949818A/en
Publication of CN104949818A publication Critical patent/CN104949818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention relates to a sand starting wind speed observation device. The sand starting wind speed observation device is characterized in that soil wind erosion wind tunnel test segments are arranged at the left end and the right end of a glass transparent test segment; the glass transparent test segment has a top transparent rectangular chamber; the top of the glass transparent test segment is provided with a camera elevating bracket; the camera elevating bracket is provided with a camera and a photographing controller; the camera corresponds with a test platform at the top of the glass transparent test segment; the test platform is disc-shaped and a soil wind erosion testing sample is placed on the disc-shaped test platform; the photographing controller is connected with a computer and a display device; a digital micro-pressure anemometer fixes a wind speed measuring Pitot tube through a silica gel flexible pipe and a Pitot tube fixing seat; the wind speed measuring Pitot tube is placed at the middle part of the sectional area of the glass transparent test segment and is level with the bottom board of the chamber; the dynamic pressure port of the wind speed measuring Pitot tube is aligned with the wind; a lead which is connected with a wind speed variable-frequency controller passes through the soil wind erosion wind tunnel test segments and is connected with a motor; and the motor is connected with a propeller through a belt. The sand starting wind speed observation device has functions of settling a problem of a simulated wind direction error in the variable sand starting wind speed in a wind sand flow field, ensuring accurate measuring value of testing data, and providing a test condition for researching characteristics of wind sand motion at different wind speeds.

Description

A kind of grains of sand threshold wind velocity observation device
Technical field
The present invention relates to a kind of blowing sand wind tunnel test section grains of sand threshold wind velocity observation device.
Background technology
Soil drifting wind tunnel test is the large-scale instrument and equipment designed for simulating field dust storm phenomenon.Soil drifting wind-tunnel one be divided into the parts such as power system, rectification section, contraction section, test section, sediment feeding hopper and diffuser.In the simulated experiment carrying out dust storm phenomenon, wind speed consecutive variations speed governing in the scope of 2 meter per second ~ 40 meter per seconds, wind speed size is completed by manual control variator.In scientific experiment activity, grains of sand threshold wind velocity size observation in field is very difficult, studies different earth's surfaces particle threshold wind velocity size very inconvenient, and artificially large on grains of sand impact interference, observation wind speed size data precision is not high.And variable grain deflation threshold wind velocity carries out the Soil Erosion Modelling Study of stream and an important physical amount of engineering calculation.The observation of one grains of sand threshold wind velocity is testing crew eyes observing earth soil particle threshold wind velocity size outside wind sand environment hole, decreases the interference of people.In test observation, there is such problem, observation is required great effort very much, there is personal error larger.
Summary of the invention
Based on above-mentioned, object of the present invention provides a kind of grains of sand threshold wind velocity observation device.Wind tunnel model is utilized to carry out simulated experiment, for solving a kind of device artificially developed grains of sand impact interference.
Object of the present invention can be reached by following measures:
A kind of grains of sand threshold wind velocity observation device, by test platform, glass transparent test section, measuring wind speed pitot tube, digital minute-pressure wind gage, camera, soil drifting detects sample and computing machine forms.Soil drifting test chamber occupy two ends, glass transparent test section left and right, glass transparent test section is top transparent rectangle hole body, camera lifting support is equipped with at its top, camera lifting support is equipped with camera and camera controller, test platform bottom the corresponding glass transparent test section of camera, test platform likeness in form disc, disk is placed soil drifting and detects sample; Camera controller is connected with computing machine, display, digital micro manometer fixes measuring wind speed pitot tube by silica gel hose and skin hauling pipe holder, measuring wind speed pitot tube is placed to the centre of glass transparent test section sectional area and hole body base plate maintains an equal level, its pitot aperture aims at wind speed wind speed frequency-variable controller) wire that connects is connected with variable-frequency motor through soil drifting test chamber, and variable-frequency motor is connected with screw propeller.
Advantage of the present invention is:
1, wind speed frequency-variable controller is utilized to control variable-frequency motor and screw propeller adjustment wind speed, digital minute-pressure wind gage record measuring wind speed pitot tube wind speed in glass transparent test section, take the scene of grains of sand movement under certain wind speed by high-resolution camera, and measured in real time by computing machine, display and carry out data acquisition.The invention solves grains of sand threshold wind velocity observation device simulation field wind direction experiment in sand-flow field.Solve the problem in changeable wind transmission speed Imitating wind direction error, thus ensure the making of changing model velocity and reducing test model, ensure the exact value that experimental data is measured, for dust storm motion characteristics under studying different wind friction velocity provide reliable test condition.
2, the pitot aperture of measuring wind speed pitot tube aims at the data that wind speed can gather stream under different wind speed, within the regular hour.Digital micro manometer can obtain the data of sand drift amount during this period of time.
3, structure of the present invention is simple, and reasonable in design, easy to operate, practical, cost is low.Decrease the interference of people, ensure the exact value that experimental data is measured.
Accompanying drawing explanation
Fig. 1 is structural representation of the present invention.
Embodiment
As shown in Figure 1, a kind of grains of sand threshold wind velocity observation device, by test platform 3, glass transparent test section 2, measuring wind speed pitot tube 8, digital minute-pressure wind gage 9, camera 5, soil drifting detects sample 4 and computing machine 12 forms.Soil drifting test chamber 1 occupy glass transparent test section about 2 two ends, glass transparent test section 2 is top transparent rectangle hole body, camera lifting support 6 is equipped with at the top of glass transparent test section 2, camera lifting support 6 is equipped with camera 5 and camera controller 7.Camera lifting support 6 oscilaltion is regulated by camera controller 7.Test platform 3 bottom the corresponding glass transparent test section 2 of camera 5, test platform 3 is similar to disc, disk is placed soil drifting and detects sample 4; Camera controller 7 is connected with computing machine 12, display 13, digital minute-pressure wind gage 9 fixes measuring wind speed pitot tube 8 by silica gel hose 10 skin hauling pipe holder 11, measuring wind speed pitot tube 8 is installed to the centre of glass transparent test section 2 sectional area and hole body base plate maintains an equal level, it is fair with wind-tunnel base plate that its pitot aperture aims at the centre that wind speed 17 is placed in test section sectional area, the wire that wind speed frequency-variable controller 14 connects is connected with variable-frequency motor 15 through soil drifting test chamber 1, and variable-frequency motor 15 is equipped with screw propeller 16 with glass transparent test section 2 one end and is connected.
Test platform 3 is put into the soil drifting sample 4 fetched in field, maintains an equal level bottom soil drifting sample 4 surface and test section.After test platform being arranged test specimen completes, opening installation, at hole, glass test section 2 top, is elevated mounted high-resolution camera 5 in the body of hole, debugging camera 5 focal length, stop when camera 5 reaches the best observation angle of needs, fixing camera lifting support 6.Measuring wind speed pitot tube 8 maintains an equal level with glass transparent test section 2 base plate, its pitot aperture aims at wind speed 17, wind speed frequency-variable controller 14 controls variable-frequency motor 15 and screw propeller 16 adjusts wind speed, digital minute-pressure wind gage 9 records measuring wind speed pitot tube 8 wind speed 17 in glass transparent test section 2, when wind speed 17 controls after trial value, by camera lifting support 6 is equipped with high-resolution camera 5, takes the scene of grains of sand movement under certain wind speed, and carries out data acquisition by the measurement in real time of computing machine 12, display 13.

Claims (1)

1. a grains of sand threshold wind velocity observation device, by test platform (3), glass transparent test section (2), measuring wind speed pitot tube (8), camera (5), soil drifting detects sample (4) and computing machine (12) composition, it is characterized in that earth wind erosion test chamber (1) occupy glass transparent test section (2) two ends, left and right, glass transparent test section (2) is top and transparent pane shape hole, both sides, left and right body, camera lifting support (6) is equipped with at the top of glass transparent test section (2), camera lifting support (6) is equipped with camera (5) and camera controller (7), the test platform (3) of corresponding glass transparent test section (2) bottom of camera (5), test platform (3) likeness in form disc, disk is placed soil drifting and detect sample (4), camera controller (7) and computing machine (12), display (13) connects, digital minute-pressure wind gage (9) is by silica gel hose (10) the fixing measuring wind speed pitot tube (8) of skin hauling pipe holder (11), measuring wind speed pitot tube (8) is installed to the centre of glass transparent test section (2) sectional area and hole body base plate maintains an equal level, its pitot aperture aims at wind speed (17), the wire that wind speed frequency-variable controller (14) connects is connected with variable-frequency motor (15) through soil drifting test chamber (1), variable-frequency motor (15) is connected with screw propeller (16) by belt.
CN201410115627.1A 2014-03-26 2014-03-26 Sand starting wind speed observation device Pending CN104949818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410115627.1A CN104949818A (en) 2014-03-26 2014-03-26 Sand starting wind speed observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410115627.1A CN104949818A (en) 2014-03-26 2014-03-26 Sand starting wind speed observation device

Publications (1)

Publication Number Publication Date
CN104949818A true CN104949818A (en) 2015-09-30

Family

ID=54164646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410115627.1A Pending CN104949818A (en) 2014-03-26 2014-03-26 Sand starting wind speed observation device

Country Status (1)

Country Link
CN (1) CN104949818A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203720A (en) * 2015-10-29 2015-12-30 中国地质大学(北京) Test device and test method for wind, sand and underground water interaction
CN106680193A (en) * 2017-03-08 2017-05-17 河南大学 Portable wind erosion simulation method and device used outdoors
CN111896214A (en) * 2020-07-10 2020-11-06 太原理工大学 Open-air coal pile dust-rising amount test similar experiment system and measurement method
CN113390603A (en) * 2021-06-17 2021-09-14 哈尔滨工业大学 Wind speed measuring device for low-pressure high-speed Mars wind tunnel and precision improving method thereof
CN113465865A (en) * 2021-06-25 2021-10-01 扬州大学 Soil wind power erosion process simulation experiment device and experiment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210838A (en) * 1996-02-01 1997-08-15 Fujita Corp Experimental method for wind tunnel
CN1967184A (en) * 2006-07-08 2007-05-23 中国科学院寒区旱区环境与工程研究所 Dynamic monitor for sand flow
CN101403649A (en) * 2008-11-11 2009-04-08 中国科学院寒区旱区环境与工程研究所 Countryside multifunctional portable experiment wind tunnel
CN102269690A (en) * 2011-05-03 2011-12-07 北京航空航天大学 Method and device for testing frictional drag coefficient of inner wall of pipeline
JP2014048120A (en) * 2012-08-30 2014-03-17 Takenaka Komuten Co Ltd Wind velocity measuring device and wind velocity measuring method
CN203798531U (en) * 2014-03-26 2014-08-27 中国科学院寒区旱区环境与工程研究所 Device for observing starting wind speed of sand

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210838A (en) * 1996-02-01 1997-08-15 Fujita Corp Experimental method for wind tunnel
CN1967184A (en) * 2006-07-08 2007-05-23 中国科学院寒区旱区环境与工程研究所 Dynamic monitor for sand flow
CN101403649A (en) * 2008-11-11 2009-04-08 中国科学院寒区旱区环境与工程研究所 Countryside multifunctional portable experiment wind tunnel
CN102269690A (en) * 2011-05-03 2011-12-07 北京航空航天大学 Method and device for testing frictional drag coefficient of inner wall of pipeline
JP2014048120A (en) * 2012-08-30 2014-03-17 Takenaka Komuten Co Ltd Wind velocity measuring device and wind velocity measuring method
CN203798531U (en) * 2014-03-26 2014-08-27 中国科学院寒区旱区环境与工程研究所 Device for observing starting wind speed of sand

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
程旭: "风沙两相流中沙粒起动规律的实验研究", 《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105203720A (en) * 2015-10-29 2015-12-30 中国地质大学(北京) Test device and test method for wind, sand and underground water interaction
CN106680193A (en) * 2017-03-08 2017-05-17 河南大学 Portable wind erosion simulation method and device used outdoors
CN111896214A (en) * 2020-07-10 2020-11-06 太原理工大学 Open-air coal pile dust-rising amount test similar experiment system and measurement method
CN113390603A (en) * 2021-06-17 2021-09-14 哈尔滨工业大学 Wind speed measuring device for low-pressure high-speed Mars wind tunnel and precision improving method thereof
CN113390603B (en) * 2021-06-17 2022-09-13 哈尔滨工业大学 Wind speed measuring device for low-pressure high-speed Mars wind tunnel and precision improving method thereof
CN113465865A (en) * 2021-06-25 2021-10-01 扬州大学 Soil wind power erosion process simulation experiment device and experiment method

Similar Documents

Publication Publication Date Title
CN104949818A (en) Sand starting wind speed observation device
CN103969022B (en) A kind of hypersonic wind tunnel turbulivity indirect measurement method
CN107894381B (en) South is for river Sand measuring device and method
CN103674479B (en) Non-smooth surface fluid friction resistance measurement device and method of testing
CN203895007U (en) Circular motion comprehensive experimental platform
CN205898647U (en) Losing nature of soil drifting laboratory test system
CN106644226B (en) Friction resistance calibration device for liquid crystal coating
CN206756421U (en) A kind of low-speed wind tunnel model
CN105758602A (en) Truss girder bridge section buffeting force synchronous measurement method
RU2561829C2 (en) Method and device for determination of aircraft aerodynamics
CN102680076B (en) Device for simulating human vocal cord vibration and implementation method thereof
CN104567771B (en) Vertical-displacement measurement device for unconfined oil and gas pipeline in transverse motion process
CN203798531U (en) Device for observing starting wind speed of sand
CN203299088U (en) Temperature controlled determinator for liquid surface tension coefficients
CN201222068Y (en) Fluid velocimeter
CN203163959U (en) Simulation device for wind resistance of speed regulation air laminar flow test model
CN103175671A (en) Simulation device and method for wind resistance of speed-regulating laminar wind flow flowing test model
CN107991262B (en) Infrared optical automatic sand measuring device and method under low suspended load sand content
CN106910400A (en) Gas flow rate and pressure relation demonstration instrument
CN208847652U (en) A kind of infrared optics formula under low suspended load silt content surveys husky device automatically
RU147970U1 (en) DESIGN OF THE CARRIER FITTING OF ELECTRO-ACOUSTIC TRANSDUCERS OF THE ULTRASONIC 3D ANEMOMETER
CN104374948B (en) A kind of wind pressure type airspeedometer
CN108037053B (en) Intelligent hydrologic survey Sand device and method
CN108037051B (en) Intelligent cleaning type sand measuring device and method
CN202018374U (en) Small wind tunnel device convenient for observation and measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150930

WD01 Invention patent application deemed withdrawn after publication