CN1049382A - Alloy containing iron, manganese, silicon and nickel by form memory - Google Patents
Alloy containing iron, manganese, silicon and nickel by form memory Download PDFInfo
- Publication number
- CN1049382A CN1049382A CN 89105554 CN89105554A CN1049382A CN 1049382 A CN1049382 A CN 1049382A CN 89105554 CN89105554 CN 89105554 CN 89105554 A CN89105554 A CN 89105554A CN 1049382 A CN1049382 A CN 1049382A
- Authority
- CN
- China
- Prior art keywords
- alloy
- shape memory
- temperature
- memory
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 33
- 239000000956 alloy Substances 0.000 title claims abstract description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title description 5
- 229910052710 silicon Inorganic materials 0.000 title description 4
- 229910052759 nickel Inorganic materials 0.000 title description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title 2
- 229910052742 iron Inorganic materials 0.000 title 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 title 1
- 239000010703 silicon Substances 0.000 title 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 14
- 230000007334 memory performance Effects 0.000 abstract description 6
- 229910008071 Si-Ni Inorganic materials 0.000 abstract description 5
- 229910006300 Si—Ni Inorganic materials 0.000 abstract description 5
- 238000003723 Smelting Methods 0.000 abstract description 5
- 230000003446 memory effect Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 5
- 230000005291 magnetic effect Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000005098 hot rolling Methods 0.000 abstract description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 230000000930 thermomechanical effect Effects 0.000 abstract 1
- 230000007704 transition Effects 0.000 description 10
- 230000009466 transformation Effects 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 4
- 229910000734 martensite Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910001000 nickel titanium Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000005290 antiferromagnetic effect Effects 0.000 description 2
- 230000005318 antiferromagnetic ordering Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000006386 memory function Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910021484 silicon-nickel alloy Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Fe-Mn-Si-Ni系形状记忆合金属于功能材料,结构材料,无磁材料的加工制造领域。The Fe-Mn-Si-Ni series shape memory alloy belongs to the field of processing and manufacturing functional materials, structural materials and non-magnetic materials.
形状记忆合金在一定程度上已进入商品化阶段。目前在国内外的有关产品主要是由Ni-Ti记忆合金,Cu基记忆合金制造。这些合金在冶炼制造工艺等方面尚存在着很多的缺点和不足;Ni-Ti合金具有优良的记忆性能。但该合金冶炼工艺复杂,相变温度难于控制,价格昂贵;铜基记忆合金在一定程度上弥补了Ni-Ti合金的不足,然而,该合金的机械加工性能,记忆性能的稳定性,及抗过热能力均较差。Fe-Mn-Si系合金亦具有良好的形状记忆效应(A.Sato,et al,Acta.Metall.3249847.539)。从目前的报道来看,该合金亦存在着加工性能差,冶炼条件要求较高等缺点。因而,上述合金在很大程度上难于大规模地推广应用。Shape memory alloys have entered the stage of commercialization to a certain extent. At present, related products at home and abroad are mainly made of Ni-Ti memory alloy and Cu-based memory alloy. These alloys still have many shortcomings and deficiencies in the smelting and manufacturing process; Ni-Ti alloys have excellent memory properties. However, the smelting process of this alloy is complicated, the phase transition temperature is difficult to control, and the price is expensive; the copper-based memory alloy makes up for the deficiency of the Ni-Ti alloy to a certain extent. The overheating ability is poor. Fe-Mn-Si alloys also have a good shape memory effect (A. Sato, et al, Acta. Metall. 3249847.539). Judging from the current reports, the alloy also has disadvantages such as poor processability and high requirements for smelting conditions. Therefore, the above-mentioned alloys are largely difficult to popularize and apply on a large scale.
为开发具有经济性,实用性,高强度的形状记忆合金。本发明提出了Fe-Mn-Si-Ni系多晶形状记忆合金。In order to develop economical, practical and high-strength shape memory alloys. The invention proposes Fe-Mn-Si-Ni polycrystalline shape memory alloy.
形状记忆合金在一定成份范围内,发生两种相变:一种是奥氏体(r)马氏体(ε)相变,当在母相奥氏体状态下,施加外力。诱发r→ε转变,随之产生宏观的形状应变;加热后。借助ε→r逆转变使原来的形状得以恢复。即产生形状记忆效应(记为SME);另一种相变是顺磁奥氏体(r)反铁磁有序化(r)转变。这种磁性转变抑制r→ε相变,因而降低合金的记忆功能。Shape memory alloys undergo two phase transformations within a certain composition range: one is austenite (r)martensite (ε) phase transformation, and when in the state of the parent phase austenite, an external force is applied. Induce r→ε transition, followed by macroscopic shape strain; after heating. The original shape can be restored by means of ε→r reverse transformation. That is, the shape memory effect (referred to as SME) is generated; another phase transition is the transformation of paramagnetic austenite (r) and antiferromagnetic ordering (r). This magnetic transition suppresses the r→ε phase transition, thereby reducing the memory function of the alloy.
在Fe-Mn-Si-Ni合金成份设计时,必须充分考虑这两种相变对SME所起的作用。当Mn、Ni、Si总含量过低时,r→ε相变温度Ms过高,这既恶化合金的记忆性能,又不利于实际应用。反之,Mn、Ni、Si总含量过高,则Ms远低于室温,因而反铁磁有序化转变温度可能高于室温,使母相r对于应力诱发ε马氏体相过于稳定,因此也难于获得很好的形状记忆效应,当Mn含量一定时,Si的合量不能高于6%,否则将使合金变得很脆,以致难于加工。经过试验和综合,本发明认为在选择Fe-Mn基记忆合金的成份时,主要从以下几方面考虑。①避免应力诱发r→α马氏体转变。②提高母相强度。③抑制反铁磁有序化转变,④抑制淬火ε马氏体的形成,使r处于亚稳态。When designing the composition of Fe-Mn-Si-Ni alloy, the effects of these two phase transitions on SME must be fully considered. When the total content of Mn, Ni and Si is too low, the r→ε phase transition temperature M s is too high, which not only deteriorates the memory performance of the alloy, but also is not conducive to practical application. Conversely, if the total content of Mn, Ni, and Si is too high, M s is much lower than room temperature, so the antiferromagnetic ordering transition temperature may be higher than room temperature, making the parent phase r too stable for the stress-induced ε martensitic phase, so It is also difficult to obtain a good shape memory effect. When the Mn content is constant, the Si content cannot be higher than 6%, otherwise the alloy will become very brittle and difficult to process. After testing and synthesis, the present invention considers that when selecting the composition of Fe-Mn-based memory alloy, it mainly considers the following aspects. ① Avoid stress-induced r→α martensite transformation. ② Improve parent phase strength. ③Inhibit the transformation of antiferromagnetic order, ④Inhibit the formation of quenched ε martensite, so that r is in a metastable state.
本发明研制的Fe-Mn-Si-Ni系合金成份范围为The Fe-Mn-Si-Ni series alloy composition scope that the present invention develops is
Mn:22~27%(均以重量百分比计)Mn: 22-27% (both by weight percentage)
Si:1~6%Si: 1-6%
Ni:1~4%Ni: 1 to 4%
Fe:余量Fe: margin
C:<0.02%C: <0.02%
S.P总含量<0.01%S.P total content <0.01%
O2N2H2总量<200PPmThe total amount of O 2 N 2 H 2 <200PPm
合金采用电感应加热锅炉在常压下熔炼浇注,经高温均匀化退火后,于800~1100℃热锻成7mm厚的板材,然后再于1050℃一次热轧成2mm厚的薄板。该合金还可以进行冷轧或冷拨。The alloy is smelted and poured in an electric induction heating boiler under normal pressure. After high-temperature homogenization annealing, it is hot-forged at 800-1100°C to form a 7mm-thick plate, and then hot-rolled at 1050°C to form a 2mm-thick sheet. The alloy can also be cold rolled or cold drawn.
利用片状试样弯曲角的测量来评价合金的SME。将1×2×60mm的片状试样,在特制模具上均匀弯曲180°在受接、受压面其最大变形量均大于5%。将弯曲卸载后的弯角记为θe,当加热至温度T时,该弯曲角减小为θT,则在T温度下的形状恢复(SR)为:
该合金具有很好的室温、低温、超低温机械性能,在室温该合金:σs=100~140MPa、σb=700~900MPa、>40~50%该合金耐腐蚀、无磁性、电阻率温度系数dp/dT小,在TN r温度附近dp/dT≈0The alloy has good mechanical properties at room temperature, low temperature, and ultra-low temperature. At room temperature, the alloy: σ s = 100 ~ 140MPa, σ b = 700 ~ 900MPa, > 40 ~ 50% The alloy is corrosion-resistant, non-magnetic, and resistivity temperature The coefficient dp/dT is small, and dp/dT≈0 near T N r temperature
Fe-Mn-Si-Ni记忆合金的开发与研究有两方面的意义。一方面在理论上,它的研究将会进一步丰富和发展完善形状记忆合金及马氏体相变理论,另一方面,该合金具有更大的实际应用价值,从目前来看,形状记忆合金之所以难于大规模地推广应用,主要原因在于以往的记忆合金制造成本昂贵。粗略地估算。Cu基记忆合金成本较Ni-Ti合金的约低一个数量级,而该合金仅为Cu基合金的1/3左右,并且它的生产制造无需特殊的冶炼与制造技术。The development and research of Fe-Mn-Si-Ni memory alloy has two meanings. On the one hand, in theory, its research will further enrich and develop the theory of shape memory alloys and martensitic phase transition. On the other hand, this alloy has greater practical application value. Therefore, it is difficult to popularize and apply it on a large scale. The main reason is that the manufacturing cost of memory alloys in the past is expensive. rough estimate. The cost of Cu-based memory alloy is about an order of magnitude lower than that of Ni-Ti alloy, and this alloy is only about 1/3 of that of Cu-based alloy, and its production does not require special smelting and manufacturing technology.
综上所述,Fe-Mn-Si-Ni系合金具有优良的记忆性能,机械性能、物理性能。因而,根据性能要求可以在很多技术领域中期望广泛地应用。例如,用以制作,温控元件,紧固防震螺栓、管接头,精密电阻合金元件,超低温无磁用钢构件。下面以Fe-25.38Mn-3、47Si-2.98Ni为例着重说明合金的记忆功能,该合金Ms约50℃,反铁磁转变有序化序化温度TN r=-43℃,σs=110MPa σb/σs =7.89 =60%;当拉伸变形量≤2%时,在-196~25℃温度区间,经热轧空冷后,不经其它任何处理,具有完全的SME;当最大弯曲变形量为5%时,SME=80%;In summary, Fe-Mn-Si-Ni alloys have excellent memory performance, mechanical properties, and physical properties. Thus, a wide range of applications can be expected in many technical fields according to performance requirements. For example, it is used to make temperature control components, fasten shockproof bolts, pipe joints, precision resistance alloy components, and ultra-low temperature non-magnetic steel components. Taking Fe-25.38Mn-3 and 47Si-2.98Ni as examples to illustrate the memory function of the alloy, the M s of the alloy is about 50°C, and the antiferromagnetic transformation ordering ordering temperature T N r = -43°C, σ s = 110MPa σ b /σ s = 7.89 = 60%; when the tensile deformation is ≤ 2%, in the temperature range of -196 ~ 25 ℃, after hot rolling and air cooling, without any other treatment, it has complete SME; When the maximum bending deformation is 5%, SME=80%;
热轧态样品经250℃拉伸预变形15%,然后于650℃退火10min,最大弯曲变形量为5%时,室温下的SME可提高到90%以上。The hot-rolled sample was stretched and pre-deformed by 15% at 250°C, and then annealed at 650°C for 10 minutes. When the maximum bending deformation was 5%, the SME at room temperature could be increased to more than 90%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 89105554 CN1049382A (en) | 1989-08-10 | 1989-08-10 | Alloy containing iron, manganese, silicon and nickel by form memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 89105554 CN1049382A (en) | 1989-08-10 | 1989-08-10 | Alloy containing iron, manganese, silicon and nickel by form memory |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1049382A true CN1049382A (en) | 1991-02-20 |
Family
ID=4856258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 89105554 Pending CN1049382A (en) | 1989-08-10 | 1989-08-10 | Alloy containing iron, manganese, silicon and nickel by form memory |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1049382A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1049242C (en) * | 1995-05-11 | 2000-02-09 | 马升华 | Powdered pipe-dredging agent and preparation method thereof |
CN100535148C (en) * | 2006-03-10 | 2009-09-02 | 江阴职业技术学院 | Manganese-based memory alloy with high-strength, plasticity and damping performances and production thereof |
CN1470096B (en) * | 2000-10-11 | 2012-07-11 | 西门子公司 | Low-temperature ferromagnetic components capable of withstanding mechanical loads |
CN103866180A (en) * | 2012-12-11 | 2014-06-18 | 北京有色金属研究总院 | Preparation processing method for iron-manganese-aluminium-nickel alloy thin plate |
-
1989
- 1989-08-10 CN CN 89105554 patent/CN1049382A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1049242C (en) * | 1995-05-11 | 2000-02-09 | 马升华 | Powdered pipe-dredging agent and preparation method thereof |
CN1470096B (en) * | 2000-10-11 | 2012-07-11 | 西门子公司 | Low-temperature ferromagnetic components capable of withstanding mechanical loads |
CN100535148C (en) * | 2006-03-10 | 2009-09-02 | 江阴职业技术学院 | Manganese-based memory alloy with high-strength, plasticity and damping performances and production thereof |
CN103866180A (en) * | 2012-12-11 | 2014-06-18 | 北京有色金属研究总院 | Preparation processing method for iron-manganese-aluminium-nickel alloy thin plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PT100934B (en) | MARTENSITIC STAINLESS ACID, RESISTANT BY PRECIPITATION, AND ITS USE | |
CN102392189B (en) | High-Cr ferrite stainless steel and manufacturing method thereof | |
CN113265565B (en) | Iron-nickel soft magnetic alloy with high magnetic conductivity and high magnetic induction and preparation method thereof | |
CN109477175A (en) | Fe-based shape memory alloy material and manufacturing method thereof | |
CN111961982A (en) | Hot-rolled medium manganese steel sheet with high hole expansion ratio, high strength and high elongation and preparation method thereof | |
CN1049382A (en) | Alloy containing iron, manganese, silicon and nickel by form memory | |
CN115074598A (en) | A kind of multi-principal alloy with high damping performance and high strength and preparation process thereof | |
CN114990382A (en) | Metastable beta titanium alloy with ultralow-gap phase-change induced plasticity and preparation method thereof | |
CN106868347B (en) | A kind of Co-Fe B alloy wires with high mangneto twisting property and preparation method thereof | |
CN112853230B (en) | Low-layer-dislocation-energy face-centered cubic structure high-entropy shape memory alloy and preparation method thereof | |
CN102936701A (en) | Iron-based shape memory alloy with outstanding memory recovery characteristic and preparation method thereof | |
CN104259229B (en) | The potassium steel tubing of cold plasticity and processing technology thereof | |
CN115478201B (en) | A CoNiV-based medium-entropy alloy containing dual ordered phases and its preparation method | |
CN103060717A (en) | Chromium-saved duplex stainless steel with phase-change plasticization effect and preparation method of chromium-saved duplex stainless steel with phase-change plasticization effect | |
CN115418548B (en) | Multi-pass compression preparation method of Mn-substituted Ni-type duplex stainless steel | |
CN113604643A (en) | Preparation method of high-saturation magnetic induction FeCo alloy with high impact toughness | |
CN1098371C (en) | Rare earth-iron based high-temp. marmem | |
Zhentao et al. | Shape memory effect and superelastic property of a novel Ti-3Zr-2Sn-3Mo-15Nb alloy | |
JPH02270938A (en) | Iron-based shape memorizing alloy and preparation thereof | |
CN111235491B (en) | A kind of shape memory steel with high strength and high plasticity and preparation method thereof | |
Bhandarkar et al. | Structure and elevated temperature properties of carbon-free ferritic alloys strengthened by a Laves phase | |
CN108588368B (en) | The method that prediction ferrimanganic silicon-base alloy austenite increases temperature ferrite dual phase area warm area | |
CN114150123A (en) | A method for effectively improving the strength and electrical conductivity of alloys | |
CN103451539A (en) | Chromium-saving type aluminum-containing ferrite stainless steel and preparation method thereof | |
JP3379767B2 (en) | Method for producing NiTi-based superelastic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C01 | Deemed withdrawal of patent application (patent law 1993) | ||
WD01 | Invention patent application deemed withdrawn after publication |