CN104933706B - A kind of imaging system color information scaling method - Google Patents

A kind of imaging system color information scaling method Download PDF

Info

Publication number
CN104933706B
CN104933706B CN201510289303.4A CN201510289303A CN104933706B CN 104933706 B CN104933706 B CN 104933706B CN 201510289303 A CN201510289303 A CN 201510289303A CN 104933706 B CN104933706 B CN 104933706B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mtd
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510289303.4A
Other languages
Chinese (zh)
Other versions
CN104933706A (en
Inventor
宫睿
王娇阳
许洁
邵晓鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510289303.4A priority Critical patent/CN104933706B/en
Publication of CN104933706A publication Critical patent/CN104933706A/en
Application granted granted Critical
Publication of CN104933706B publication Critical patent/CN104933706B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Abstract

Its CIEXYZ tristimulus values is calculated the invention discloses a kind of imaging system color information scaling method, including by the spectral reflectance of demarcation colour atla and the spectral intensity distribution of Calibrating source, and changes to color space CIELAB coordinate;Same Scene under same imaging circumstances is imaged using with reference to imaging system and imaging system to be calibrated, it is digital drive values to obtain digital image colors information, and mapping matrix between CIELAB coordinates and digital drive values is obtained by being fitted;For the imaging system to be calibrated digital picture that scene obtains under any imaging circumstances, using corresponding mapping matrix, the digital drive values of every pixel are predicted to corresponding CIELAB coordinates, then digital drive values after predicting to demarcation, complete accurately color information demarcation between two imaging systems.The present invention realizes accurate transmission and presentation of the digital image colors information in various equipment rooms, and calibration algorithm is accurate, and method implements simple, strong applicability.

Description

A kind of imaging system color information scaling method
Technical field
The invention belongs to Digital image technology field, more particularly to a kind of imaging system color information scaling method.
Background technology
Image be the mankind obtain and exchange external information main source, imaging system then be obtain digital picture can not or Scarce hardware device.Imaging system is that a kind of be distributed scene brightness according to geometric optics or physioptial rule is converted to light The system of electric transducer Illumination Distribution, its digital picture obtained can be widely applied to photograph, record, investigate, remote sensing mapping etc. Field.In some application demands, it is desirable to the digitized map that different imaging systems are recorded to Same Scene under same imaging circumstances As having identical color information, i.e. digital drive values (R, G, B) are identical, when these Digital Image Transmissions to any output equipment During display, visually consistent color perception amount is also brought along, consequently facilitating digital image colors information is between various equipment Accurate transmission and presentation.
However, different imaging systems are due to sensor type, running parameter setting, spectral response characteristic and imaging circumstances Etc. have differences, they under same imaging circumstances Same Scene obtain imaging results simultaneously differ, cause these into As system finally obtain image color information exist it is larger different, this limit to a certain extent imaging system the army and the people lead Further apply in domain.
The content of the invention
It is an object of the invention to provide a kind of imaging system color information scaling method, it is intended to solves different imaging systems Because sensor type, running parameter setting, spectral response characteristic and imaging circumstances etc. have differences, to same imaging Under environment Same Scene obtain imaging results and differ, cause imaging system finally obtain image color information exist compared with It is big different, imaging system is limited to a certain extent Military and civil fields are further applied the problem of.
The present invention is achieved in that a kind of imaging system color information scaling method, the imaging system color information Scaling method includes:
CIEXYZ tri- is calculated and is pierced by the spectral reflectance of demarcation colour atla and the spectral intensity distribution of Calibrating source first Swash value, and change to uniform color space CIELAB coordinate;
Then, using Same Scene under same imaging circumstances is carried out with reference to imaging system and imaging system to be calibrated into Picture, it is digital drive values to obtain digital image colors information, is obtained by being fitted between CIELAB coordinates and digital drive values Mapping matrix;
For the imaging system to be calibrated digital picture that scene obtains under any imaging circumstances, using corresponding mapping square Battle array, the digital drive values of every pixel are predicted to corresponding CIELAB coordinates, then digital drive values after predicting to demarcation, complete two Accurate color information demarcation between imaging system.
Further, the imaging system color information scaling method specifically includes following steps:
Step 1: selection demarcation colour atla and Calibrating source, demarcation colour atla is no less than 24 tinctorial patterns, N number of according to demarcation colour atla The spectral reflectance ρ of tinctorial patterniThe spectral intensity of (λ) and Calibrating source is distributedWith reference to CIE1931 standard colorimetric systems Color matching functionThe demarcation N number of tinctorial pattern of colour atla is calculated in CIE1931 by following two formula CIEXYZ tristimulus values (X under standard colorimetric systemi,Yi,Zi);
Pass throughCalibrating source is calculated under CIE1931 standard colorimetric systems with following formula CIEXYZ tristimulus values (XW,YW,ZW);
Wherein, Δ λ is used spectrum sample interval when calculating, and takes 5nm, and i is the sequence number of the demarcation N number of tinctorial pattern of colour atla, i =1,2,3 ..., N;
Step 2: (the X that step 1 is obtainedi,Yi,Zi) and (XW,YW,ZW) following two formula is substituted into, calculate each Coordinate of the tinctorial pattern in uniform color space CIELAB
Step 3: being respectively adopted with reference to imaging system and imaging system to be calibrated, N number of tinctorial pattern under Calibrating source is carried out Imaging, record obtain the color information of digital picture, read each tinctorial pattern corresponding digital drive values in two imaging systems (RSi,GSi,BSi) and (RTi,GTi,BTi);
Step 4: for imaging system to be calibrated, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2The N number of tinctorial pattern digital drive values (R obtained with step 3Ti,GTi,BTi), under being gone out using least square fitting By (R in formulaTi,GTi,BTi) prediction is extremelyMapping matrix MT, MTFor 3 × 11 matrixes;
Step 5: for reference imaging system, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2 The N number of tinctorial pattern digital drive values (R obtained with step 3Si,GSi,BSi), using least square fitting go out by Predict to (RSi,GSi,BSi) mapping matrix HSI, HSIFor 3 × 10 matrixes;
Step 6: for the imaging system to be calibrated digital picture that any scene obtains under any imaging circumstances, use The mapping matrix M that step 4 is obtainedT, by following formula, by the digital drive values (R of every pixelTj',GTj',BTj') predict correspondingly CIELAB space coordinatesWherein j=1,2,3 ..., N', N' are that imaging system to be calibrated obtains numeral The total number-of-pixels of image;
Step 7: obtain CIELAB space coordinates of the imaging system to be calibrated per pixel for step 6The mapping matrix H obtained using step 5SI, by following formula, predict number after being demarcated corresponding to every pixel Word drive value (RSj',GSj',BSj'), that is, the color information demarcation between two imaging systems is completed, makes imaging system to be calibrated The digital picture that certain scene obtains under any imaging circumstances has the digital drive values consistent with reference imaging system;
Imaging system color information scaling method provided by the invention, realize the color information mark between different imaging systems It is fixed, make them consistent to the color information that same scene imaging obtains under same imaging circumstances, i.e., digital drive values are identical;With Demarcation colour atla spectral reflectance is calculated into the link of its CIELAB coordinate with Calibrating source spectral intensity distributed intelligence, CIELAB The selection of uniform color space can make the sign of color information and transmit to have more versatility;CIELAB is established by mapping matrix The mode of mathematical between coordinate and digital drive values, the color for being capable of more accurate characterization difference imaging system acquisition are believed Breath.The inventive method is implemented simply, and calibration algorithm is accurate, strong applicability, is advantageous to digital image colors information in distinct device Between accurate transmission and presentation.
Brief description of the drawings
Fig. 1 is imaging system color information scaling method flow chart provided in an embodiment of the present invention;
Fig. 2 is the calculating process of target designation parameter CIELAB coordinates provided in an embodiment of the present invention;
Fig. 3 is imaging system color information scaling method specific implementation flow chart provided in an embodiment of the present invention.
Embodiment
In order to make the purpose , technical scheme and advantage of the present invention be clearer, with reference to embodiments, to the present invention It is further elaborated.It should be appreciated that the specific embodiments described herein are merely illustrative of the present invention, it is not used to Limit the present invention.
The present invention carries out the demarcation of image color information by certain Processing Algorithm to different imaging systems, obtains them The digital drive values (R, G, B) that the digital picture taken is consistent, overcome and rung by sensor type, running parameter setting, spectrum Color information difference caused by answering characteristic and imaging circumstances, ensure that different imaging systems obtain to Same Scene under same imaging circumstances The digital picture taken has consistent color information, and this is by the optimization and its extension of application field to imaging system picture quality Produce significant impetus.
1-3 is explained in detail to the imaging system color information calibration process of the present invention below in conjunction with the accompanying drawings.
As shown in figure 1, the imaging system color information scaling method of the embodiment of the present invention comprises the following steps:
S101:Its CIEXYZ tri- is calculated by the spectral reflectance of demarcation colour atla and the spectral intensity distribution of Calibrating source Values, and change to uniform color space CIELAB coordinate;
S102:Using Same Scene under same imaging circumstances is carried out with reference to imaging system and imaging system to be calibrated into Picture, it is digital drive values to obtain digital image colors information, is obtained by being fitted between CIELAB coordinates and digital drive values Mapping matrix;
S103:For the imaging system to be calibrated digital picture that scene obtains under any imaging circumstances, can use corresponding Mapping matrix, the digital drive values of every pixel are predicted to corresponding CIELAB coordinates, then predict to its demarcation after numeral drive Dynamic value, that is, complete accurately color information demarcation between two imaging systems.
In embodiment, using Canon's 5D Mark III slr cameras as with reference to imaging system, using the micro- one cameras of Nikon J4 as Imaging system to be calibrated, by the micro- one cameras of Nikon J4, certain scene obtains the digital drive values of digital picture under any imaging circumstances (RTj',GTj',BTj') obtain calibrated digital drive values (RSj',GSj',BSj'), it is allowed to mono- anti-with Canon 5D Mark III Camera is identical.
As shown in Figures 2 and 3, the imaging system color information scaling method of the embodiment of the present invention specifically includes following step Suddenly:
Step 1: selection demarcation colour atla and Calibrating source, GretagMacbethColorChe typically can be selected in demarcation colour atla Cker, should be no less than 24 tinctorial patterns, and standard illuminants D series, such as D65 can be selected in Calibrating source.According to the demarcation N number of tinctorial pattern of colour atla Spectral reflectance ρiThe spectral intensity of (λ) and Calibrating source is distributedWith reference to the color of CIE1931 standard colorimetric systems With functionThe demarcation N number of tinctorial pattern of colour atla is calculated in CIE1931 reference colours by formula (1)~(2) CIEXYZ tristimulus values (X under degree systemi,Yi,Zi);
CIEXYZ tristimulus values of the Calibrating source under CIE1931 standard colorimetric systems is calculated by formula (2)~(3) (XW,YW,ZW);
Wherein, Δ λ is used spectrum sample interval when calculating, and it is the sequence of the demarcation N number of tinctorial pattern of colour atla typically to take 5nm, i Number, i=1,2,3 ..., N;
Step 2: (the X that step 1 is obtainedi,Yi,Zi) and (XW,YW,ZW) formula (4)~(5) are substituted into, calculate each color Coordinate of the sample in uniform color space CIELAB
Step 3: being respectively adopted with reference to imaging system and imaging system to be calibrated, N number of tinctorial pattern under Calibrating source is carried out Imaging, the color information that they obtain digital picture is recorded, read each tinctorial pattern corresponding numeral in two imaging systems and drive Dynamic value (RSi,GSi,BSi) and (RTi,GTi,BTi);
Step 4: for imaging system to be calibrated, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2The N number of tinctorial pattern digital drive values (R obtained with step 3Ti,GTi,BTi), formula is gone out using least square fitting (6) by (R inTi,GTi,BTi) prediction is extremelyMapping matrix MT, MTFor 3 × 11 matrixes;
Step 5: for reference imaging system, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2 The N number of tinctorial pattern digital drive values (R obtained with step 3Si,GSi,BSi), using least square fitting go out in formula (7) byPredict to (RSi,GSi,BSi) mapping matrix HSI, HSIFor 3 × 10 matrixes;
6th, for the imaging system to be calibrated digital picture that any scene obtains under any imaging circumstances, using step The four mapping matrix M obtainedT, by formula (8), by the digital drive values (R of every pixelTj',GTj',BTj') predict corresponding to CIELAB space coordinatesWherein j=1,2,3 ..., N', N' are that imaging system to be calibrated obtains digitized map The total number-of-pixels of picture;
Step 7: obtain CIELAB space coordinates of the imaging system to be calibrated per pixel for step 6 The mapping matrix H obtained using step 5SI, by formula (9), predict digital drive values (R after being demarcated corresponding to every pixelSj', GSj',BSj'), that is, the color information demarcation between two imaging systems is completed, makes imaging system to be calibrated in any imaging circumstances The digital picture that certain lower scene obtains has the digital drive values consistent with reference imaging system;
The foregoing is merely illustrative of the preferred embodiments of the present invention, is not intended to limit the invention, all essences in the present invention All any modification, equivalent and improvement made within refreshing and principle etc., should be included in the scope of the protection.

Claims (1)

  1. A kind of 1. imaging system color information scaling method, it is characterised in that the imaging system color information scaling method bag Include:
    CIEXYZ tristimulus values is calculated by the spectral reflectance of demarcation colour atla and the spectral intensity distribution of Calibrating source first, And change to color space CIELAB coordinate;
    Then, Same Scene under same imaging circumstances is imaged using with reference to imaging system and imaging system to be calibrated, obtained It is digital drive values to obtain digital image colors information, passes through the mapping square for being fitted and obtaining between CIELAB coordinates and digital drive values Battle array;
    For the imaging system to be calibrated digital picture that scene obtains under any imaging circumstances, using corresponding mapping matrix, The digital drive values of every pixel are predicted to corresponding CIELAB coordinates, then digital drive values after predicting to demarcation, complete twenty percent As accurately color information demarcation between system;
    The imaging system color information scaling method specifically includes following steps:
    Step 1: selection demarcation colour atla and Calibrating source, demarcation colour atla is no less than 24 tinctorial patterns, according to the demarcation N number of tinctorial pattern of colour atla Spectral reflectance ρiThe spectral intensity of (λ) and Calibrating source is distributedWith reference to the color of CIE1931 standard colorimetric systems With functionThe demarcation N number of tinctorial pattern of colour atla is calculated in CIE1931 standards by following two formula CIEXYZ tristimulus values (X under colorimeter systemi,Yi,Zi);
    Pass throughCalibrating source is calculated under CIE1931 standard colorimetric systems with following formula CIEXYZ tristimulus values (XW,YW,ZW);
    Wherein, Δ λ is used spectrum sample interval when calculating, and takes 5nm, and i is the sequence number of the demarcation N number of tinctorial pattern of colour atla, i=1, 2,3,…,N;
    Step 2: (the X that step 1 is obtainedi,Yi,Zi) and (XW,YW,ZW) following two formula is substituted into, calculate each tinctorial pattern In color space CIELAB coordinate
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mn>116</mn> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>16</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mn>500</mn> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mn>200</mn> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mtd> <mtd> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>&gt;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>7.787</mn> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>16</mn> <mo>/</mo> <mn>116</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> <mo>&amp;le;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mtd> <mtd> <mrow> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>&gt;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>7.787</mn> <mrow> <mo>(</mo> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>16</mn> <mo>/</mo> <mn>116</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> <mo>&amp;le;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msup> </mtd> <mtd> <mrow> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>&gt;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>7.787</mn> <mrow> <mo>(</mo> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>16</mn> <mo>/</mo> <mn>116</mn> </mrow> </mtd> <mtd> <mrow> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mi>W</mi> </msub> <mo>&amp;le;</mo> <mn>0.008856</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
    Step 3: be respectively adopted with reference to imaging system and imaging system to be calibrated, N number of tinctorial pattern under Calibrating source is carried out into Picture, record obtain the color information of digital picture, read each tinctorial pattern corresponding digital drive values in two imaging systems (RSi,GSi,BSi) and (RTi,GTi,BTi);
    Step 4: for imaging system to be calibrated, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2With N number of tinctorial pattern digital drive values (R that step 3 is obtainedTi,GTi,BTi), gone out using least square fitting in following formula by (RTi,GTi, BTi) prediction is extremelyMapping matrix MT, MTFor 3 × 11 matrixes;
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>M</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>,</mo> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>B</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>B</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>R</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>B</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow>
    Step 5: for reference imaging system, the N number of tinctorial pattern CIELAB coordinates obtained according to step 2And step The rapid three N number of tinctorial pattern digital drive values (R obtainedSi,GSi,BSi), using least square fitting go out byPrediction To (RSi,GSi,BSi) mapping matrix HSI, HSIFor 3 × 10 matrixes;
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>G</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>B</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>S</mi> <mi>I</mi> </mrow> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>,</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>,</mo> <msubsup> <mi>L</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>L</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>3</mn> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mi>i</mi> <mrow> <mo>*</mo> <mn>3</mn> </mrow> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow>
    Step 6: for the imaging system to be calibrated digital picture that any scene obtains under any imaging circumstances, using step The four mapping matrix M obtainedT, by following formula, by the digital drive values (R of every pixelTj',GTj',BTj') predict corresponding to CIELAB space coordinatesWherein j=1,2,3 ..., N', N' are that imaging system to be calibrated obtains digitized map The total number-of-pixels of picture;
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msup> <msubsup> <mi>L</mi> <mi>j</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msubsup> <mi>a</mi> <mi>j</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msubsup> <mi>b</mi> <mi>j</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>M</mi> <mi>T</mi> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msup> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mn>2</mn> </msup> <mo>,</mo> <msup> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mn>2</mn> </msup> <mo>,</mo> <msup> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mn>2</mn> </msup> <mo>,</mo> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>,</mo> <msubsup> <mi>R</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>G</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>B</mi> <mrow> <mi>T</mi> <mi>j</mi> </mrow> <mo>&amp;prime;</mo> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>;</mo> </mrow>
    Step 7: obtain CIELAB space coordinates of the imaging system to be calibrated per pixel for step 6Adopt The mapping matrix H obtained with step 5SI, by following formula, predict digital drive values (R after being demarcated corresponding to every pixelSj', GSj',BSj'), that is, the color information demarcation between two imaging systems is completed, makes imaging system to be calibrated in any imaging circumstances The digital picture that certain lower scene obtains has the digital drive values consistent with reference imaging system;
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msup> <msub> <mi>R</mi> <mrow> <mi>S</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msub> <mi>G</mi> <mrow> <mi>S</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <msub> <mi>B</mi> <mrow> <mi>S</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>S</mi> <mi>I</mi> </mrow> </msub> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> <mo>,</mo> <msup> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> <mo>,</mo> <msup> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>&amp;prime;</mo> </msup> <mo>,</mo> <msup> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <msubsup> <mi>L</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <msup> <msubsup> <mi>a</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>3</mn> </mrow> </msup> <mo>,</mo> <msup> <msubsup> <mi>b</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mrow> <mo>&amp;prime;</mo> <mn>3</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow> 3
CN201510289303.4A 2015-05-29 2015-05-29 A kind of imaging system color information scaling method Expired - Fee Related CN104933706B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510289303.4A CN104933706B (en) 2015-05-29 2015-05-29 A kind of imaging system color information scaling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510289303.4A CN104933706B (en) 2015-05-29 2015-05-29 A kind of imaging system color information scaling method

Publications (2)

Publication Number Publication Date
CN104933706A CN104933706A (en) 2015-09-23
CN104933706B true CN104933706B (en) 2017-12-01

Family

ID=54120860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510289303.4A Expired - Fee Related CN104933706B (en) 2015-05-29 2015-05-29 A kind of imaging system color information scaling method

Country Status (1)

Country Link
CN (1) CN104933706B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561240A (en) * 2017-08-23 2018-01-09 湖南城市学院 A kind of evaluation method using turfgrass microbial association cadmium pollution soil repair
CN108362830A (en) * 2018-01-15 2018-08-03 湖北民族学院 The SCM Based infusion atmospheric monitoring system of one kind and method
CN109451624B (en) * 2018-10-26 2021-01-01 中国建筑科学研究院有限公司 Spectrum adjusting method of multi-channel LED illuminating system
CN111510693B (en) 2019-01-30 2022-07-12 中强光电股份有限公司 Projection system and image color correction method
CN111750850B (en) * 2019-03-27 2021-12-14 杭州海康威视数字技术股份有限公司 Angle information acquisition method, device and system
CN114040539B (en) * 2021-11-05 2024-03-15 深圳爱图仕创新科技股份有限公司 Light source implementation method for highlighting main color

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090446A (en) * 2006-06-15 2007-12-19 科隆科技股份有限公司 Photosensitive dement color correction method and device
CN101179745A (en) * 2007-12-05 2008-05-14 宁波大学 Preprocessing method of multi-viewpoint image
CN103905803A (en) * 2014-03-18 2014-07-02 中国科学院国家天文台 Image color correcting method and device
CN104574371A (en) * 2014-12-20 2015-04-29 中国科学院西安光学精密机械研究所 Characterization calibration method for high dynamic digital color camera

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863424B2 (en) * 2011-12-01 2016-02-16 キヤノン株式会社 Color processing apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090446A (en) * 2006-06-15 2007-12-19 科隆科技股份有限公司 Photosensitive dement color correction method and device
CN101179745A (en) * 2007-12-05 2008-05-14 宁波大学 Preprocessing method of multi-viewpoint image
CN103905803A (en) * 2014-03-18 2014-07-02 中国科学院国家天文台 Image color correcting method and device
CN104574371A (en) * 2014-12-20 2015-04-29 中国科学院西安光学精密机械研究所 Characterization calibration method for high dynamic digital color camera

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Color measurement in L*a*b* units from RGB digital images;Katherine Leon et al;《Fend Research lnternatinnal》;20061231;全文 *
基于最优解的数字成像系统色彩校正方法;郝静如等;《复旦学报(自然科学版)》;20100630;第49卷(第3期);第384-385页第1.1节,第385页第1.2节,图1 *

Also Published As

Publication number Publication date
CN104933706A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
CN104933706B (en) A kind of imaging system color information scaling method
US11100619B2 (en) Image formation
JP6974397B2 (en) measuring device
CN105046646B (en) A kind of color visualization method of high spectrum image
CN103954362B (en) A kind of digital method for measuring color based on imaging device
CN105578166A (en) Color temperature determination method and device
US7616314B2 (en) Methods and apparatuses for determining a color calibration for different spectral light inputs in an imaging apparatus measurement
CN104574371A (en) Characterization calibration method for high dynamic digital color camera
CN103474046B (en) Method for improving color reproduction effect from digital camera to displayer
CN103279948B (en) A kind of data processing method of high-spectrum remote sensing data True color synthesis
US9140608B2 (en) Device and method for processing image for substantially accurately reproduced color images from a camera
CN104180908B (en) RAW image radiation temperature measuring apparatus and method
CN102801984B (en) The method of color image sensor and acquisition color digital image
CN101088297A (en) Automatic white balance control
Zhbanova EVALUATION AND SELECTION OF COLOUR SPACES FOR DIGITAL SYSTEMS.
CN102946501B (en) Color distortion correction method and device in imaging system or image output system
US9036030B2 (en) Color calibration of an image capture device in a way that is adaptive to the scene to be captured
CN114268774A (en) Image acquisition method, image sensor, device, equipment and storage medium
Cheung et al. Accurate estimation of the nonlinearity of input/output response for color cameras
EP3993382A1 (en) Colour calibration of an imaging device
Kretkowski et al. Development of an XYZ digital camera with embedded color calibration system for accurate color acquisition
Khandual et al. Colorimetric processing of digital colour image!
CN108322723A (en) A kind of compensation method of color distortion, device and television set
JPH0678947B2 (en) Mutual conversion method of emission control signal of CRT color display and object color CIE tristimulus value
JP2011095386A (en) Lookup table forming method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171201