CN104933446A - 一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 - Google Patents
一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 Download PDFInfo
- Publication number
- CN104933446A CN104933446A CN201510413961.XA CN201510413961A CN104933446A CN 104933446 A CN104933446 A CN 104933446A CN 201510413961 A CN201510413961 A CN 201510413961A CN 104933446 A CN104933446 A CN 104933446A
- Authority
- CN
- China
- Prior art keywords
- text
- image
- feature
- img
- rbm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/03—Recognition of patterns in medical or anatomical images
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510413961.XA CN104933446B (zh) | 2015-07-15 | 2015-07-15 | 一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510413961.XA CN104933446B (zh) | 2015-07-15 | 2015-07-15 | 一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104933446A true CN104933446A (zh) | 2015-09-23 |
CN104933446B CN104933446B (zh) | 2018-09-18 |
Family
ID=54120606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510413961.XA Expired - Fee Related CN104933446B (zh) | 2015-07-15 | 2015-07-15 | 一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104933446B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106203488A (zh) * | 2016-07-01 | 2016-12-07 | 福州大学 | 一种基于受限玻尔兹曼机的乳腺图像特征融合方法 |
CN106407992A (zh) * | 2016-09-20 | 2017-02-15 | 福建省妇幼保健院 | 一种基于堆叠降噪自编码器的乳腺超声图像特征自学习提取方法及系统 |
CN109833061A (zh) * | 2017-11-24 | 2019-06-04 | 无锡祥生医疗科技股份有限公司 | 基于深度学习的优化超声成像系统参数的方法 |
CN110728674A (zh) * | 2019-10-21 | 2020-01-24 | 清华大学 | 图像处理方法及装置、电子设备和计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009017483A1 (en) * | 2007-08-01 | 2009-02-05 | The Trustees Of The University Of Penssylvania | Malignancy diagnosis using content-based image retreival of tissue histopathology |
CN101501712A (zh) * | 2006-08-11 | 2009-08-05 | 皇家飞利浦电子股份有限公司 | 将系统数据缩放集成到基于遗传算法的特征子集选择中的方法和装置 |
CN101727568A (zh) * | 2008-10-10 | 2010-06-09 | 索尼(中国)有限公司 | 前景动作估计装置和前景动作估计方法 |
CN102165454A (zh) * | 2008-09-29 | 2011-08-24 | 皇家飞利浦电子股份有限公司 | 用于提高计算机辅助诊断对图像处理不确定性的鲁棒性的方法 |
-
2015
- 2015-07-15 CN CN201510413961.XA patent/CN104933446B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101501712A (zh) * | 2006-08-11 | 2009-08-05 | 皇家飞利浦电子股份有限公司 | 将系统数据缩放集成到基于遗传算法的特征子集选择中的方法和装置 |
WO2009017483A1 (en) * | 2007-08-01 | 2009-02-05 | The Trustees Of The University Of Penssylvania | Malignancy diagnosis using content-based image retreival of tissue histopathology |
CN102165454A (zh) * | 2008-09-29 | 2011-08-24 | 皇家飞利浦电子股份有限公司 | 用于提高计算机辅助诊断对图像处理不确定性的鲁棒性的方法 |
CN101727568A (zh) * | 2008-10-10 | 2010-06-09 | 索尼(中国)有限公司 | 前景动作估计装置和前景动作估计方法 |
Non-Patent Citations (1)
Title |
---|
张军红等: "乳腺干细胞培养基的建立及有效性验证", 《中国组织工程研究》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106203488A (zh) * | 2016-07-01 | 2016-12-07 | 福州大学 | 一种基于受限玻尔兹曼机的乳腺图像特征融合方法 |
CN106203488B (zh) * | 2016-07-01 | 2019-09-13 | 福州大学 | 一种基于受限玻尔兹曼机的乳腺图像特征融合方法 |
CN106407992A (zh) * | 2016-09-20 | 2017-02-15 | 福建省妇幼保健院 | 一种基于堆叠降噪自编码器的乳腺超声图像特征自学习提取方法及系统 |
CN106407992B (zh) * | 2016-09-20 | 2019-04-02 | 福建省妇幼保健院 | 一种基于堆叠降噪自编码器的乳腺超声图像特征自学习提取方法及系统 |
CN109833061A (zh) * | 2017-11-24 | 2019-06-04 | 无锡祥生医疗科技股份有限公司 | 基于深度学习的优化超声成像系统参数的方法 |
CN110728674A (zh) * | 2019-10-21 | 2020-01-24 | 清华大学 | 图像处理方法及装置、电子设备和计算机可读存储介质 |
CN110728674B (zh) * | 2019-10-21 | 2022-04-05 | 清华大学 | 图像处理方法及装置、电子设备和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN104933446B (zh) | 2018-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Roslidar et al. | A review on recent progress in thermal imaging and deep learning approaches for breast cancer detection | |
CN110111313B (zh) | 基于深度学习的医学图像检测方法及相关设备 | |
Kisilev et al. | Medical image description using multi-task-loss CNN | |
Le et al. | Pancreatic cancer detection in whole slide images using noisy label annotations | |
Kisilev et al. | From medical image to automatic medical report generation | |
CN105913086A (zh) | 一种应用特征权重自适应选择的计算机辅助诊断乳腺的方法 | |
Wu et al. | Scale-aware transformers for diagnosing melanocytic lesions | |
CN104933446B (zh) | 一种用于计算机辅助诊断乳腺b超特征有效性验证的方法 | |
Zheng et al. | Learning to learn by yourself: Unsupervised meta‐learning with self‐knowledge distillation for COVID‐19 diagnosis from pneumonia cases | |
CN105023023A (zh) | 一种用于计算机辅助诊断的乳腺b超图像特征自学习提取方法 | |
Ma et al. | Rectify vit shortcut learning by visual saliency | |
Ashwath et al. | TS-CNN: a three-tier self-interpretable CNN for multi-region medical image classification | |
Habeeb et al. | Breast cancer detection using image processing and machine learning | |
Gallardo-Caballero et al. | Independent component analysis to detect clustered microcalcification breast cancers | |
Hatano et al. | Classification of osteoporosis from phalanges CR images based on DCNN | |
Ramamurthy et al. | A deep learning network for Gleason grading of prostate biopsies using EfficientNet | |
Ji et al. | ResDSda_U-Net: A novel U-Net based residual network for segmentation of pulmonary nodules in lung CT images | |
Nahar et al. | A robust model for translating arabic sign language into spoken arabic using deep learning | |
Güldoğan et al. | Transfer learning-based classification of breast cancer using ultrasound images | |
Perkonigg et al. | Detecting bone lesions in multiple myeloma patients using transfer learning | |
CN114529759B (zh) | 一种甲状腺结节的分类方法、装置及计算机可读介质 | |
Sowmya et al. | Vision transformer based ResNet model for pneumonia prediction | |
CN113379691B (zh) | 一种基于先验引导的乳腺病灶深度学习分割方法 | |
Corbin et al. | Assessing bias in skin lesion classifiers with contemporary deep learning and post-hoc explainability techniques | |
Cahyani et al. | COVID-19 classification using CNN-BiLSTM based on chest X-ray images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yu Chunyan Inventor after: Teng Baoqiang Inventor after: Liu Shu Inventor after: Lin Mingan Inventor after: Chen Zhuangwei Inventor after: Zhang Dong Inventor after: He Zhenfeng Inventor before: Yu Chunyan Inventor before: Teng Baoqiang Inventor before: Lin Mingan Inventor before: Chen Zhuangwei Inventor before: Zhang Dong Inventor before: He Zhenfeng |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180918 Termination date: 20210715 |