CN104931218B - 一种非接触式测量柔性结构的模态振型的系统 - Google Patents

一种非接触式测量柔性结构的模态振型的系统 Download PDF

Info

Publication number
CN104931218B
CN104931218B CN201510384761.6A CN201510384761A CN104931218B CN 104931218 B CN104931218 B CN 104931218B CN 201510384761 A CN201510384761 A CN 201510384761A CN 104931218 B CN104931218 B CN 104931218B
Authority
CN
China
Prior art keywords
measured
laser sensor
measurement point
measurement
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510384761.6A
Other languages
English (en)
Other versions
CN104931218A (zh
Inventor
娄军强
廖江江
杨依领
邱辉
孙涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201510384761.6A priority Critical patent/CN104931218B/zh
Publication of CN104931218A publication Critical patent/CN104931218A/zh
Application granted granted Critical
Publication of CN104931218B publication Critical patent/CN104931218B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种非接触式测量柔性结构的模态振型的系统,包括夹持装置,激振器和测量机构及处理器;夹持装置夹持待测量件一端呈悬臂梁;激振器的输出端紧贴待测量件;测量机构主要由激光传感器组,驱动机构和导向机构;激光传感器组的多个激光传感器沿待测量件的高度方向从上到下沿直线排列;驱动机构每步进一次,激光传感器组从当前测量点到达下一测量点;每个激光传感器在各个测量点获取的振幅值输入处理器中,处理器按照各测量点的位置关系将激光传感器组中各个激光传感器所测得的振幅值成网状连接起来获得待测量件在激振频率下的固有振型。本发明具有无需在待测量件上粘贴传感器,也无需移动激振器,测量精度高,使用方便的优点。

Description

一种非接触式测量柔性结构的模态振型的系统
技术领域
[0001] 本发明涉及一种非接触式测量柔性结构的模态振型的系统。 技术背景
[0002] 模态分析是研究结构动态特性的重要研究方法。在机械,汽车,航天,土木等工程 领域中,常常需要考虑到结构的模态参数。而结构的动态参数是通过模态测试和模态分析 的方法来确定。一种操作简单精度高的模态测试装置就成为模态参数测试的关键。目前国 内外对模态测试主要采用以下方法:
[0003] —,锤击法模态测试:锤击法能量较小,敲击力大小及方向不易控制,一般锤击法 都需要采用多次平均以获得较稳定的测量数据。锤击法测试结构的的模态,存在以下难点: (1)难以保证每次敲击力相同和敲在同一位置。(2)锤击法无法直接测出柔性结构的振型。
[0004] 二,激振法模态测试:主要是通过分析仪器输出信号源来控制激振器,激励被测试 件。输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SBTO)与多 点同时激励法(ΜΙΜΟ)。而激振器对被测试件击振时,是通过控制激振器的位置来进行不同 点的击振,这种击振方法操作繁琐,精度低,也有可能定位在节点处,这使得击振效果不明 显。
[0005] 以上方法都是一种接触式间接的测量方法,由于都是由人为的去敲击或者是移动 激振器,操作过程中必然存在误差,使得测试精度低,以致达不到测试要求。
[0006] 目前的模态测试方法中大都主要关注柔性结构的模态频率的测试,而对反应柔性 结构振动特性的重要指标-振型的测试却非常少见。而即使在现有的测量方法中,主要是通 过移动激振器对结构上的不同位置进行测试,然后通过分析所测数据得出结构的模态频率 和振型,操作过程繁琐,测试精度低,并且是通过固定的传感器间接测量。这种测量方法存 在以下显著缺点:
[0007] (1)通常在待测结构上粘贴传感器,这就给待测结构带来了附加质量,从而改变了 结构的质量分布,影响结构的固有特性,导致测试结果与实际相差甚远;
[0008] (2)通过移动激振器,整个过程非常麻烦,而且只能测量有限的几个点的振幅值, 测量结构比较粗糙,不能精确刻画柔性结构的固有振型;
[0009] (3)是一种间接测量方法,不能直观形象揭示结构的固有振型。
[0010] 在击振测量的过程中,往往只关注对弯曲模态的测量,而对振动产生的扭转模态 的测量却无法检测反映出来。这就对模态检测形成了局限性,无法客观直接的反映结构在 振动过程中产生的动态效果,对结构的动态分析也受到限制。
发明内容
[0011] 为了克服现有技术的上述缺点,本发明提供了一种无需在待测量件上粘贴传感 器,也无需移动激振器的非接触式直接测量待测量件的模态振型的系统。
[0012] —种非接触式测量柔性结构的模态振型的系统,包括固定待测量件的夹持装置, 对待测量件进行激振的激振器和测量待测量件各测量点的振幅值的测量机构,以及将各测 量点的振幅值转换为待测量件的模态振型的处理器;
[0013] 待测量件为柔性结构;
[0014] 夹持装置夹持待测量件一端、使待测量件呈一端固定的悬臂梁;
[0015] 激振器的输出端紧贴待测量件;
[0016] 测量机构主要由测量各测量点的振幅值的激光传感器组,驱动激光传感器组沿待 测量件的长度方向步进式运动的驱动机构和导向机构;导向机构由直线导轨和滑块组成, 激光传感器组通过安装支架固定于滑块上,直线导轨与待测量件平行;激光传感器组的多 个激光传感器沿待测量件的高度方向从上到下沿直线排列;驱动机构每步进一次,激光传 感器组从当前测量点到达下一测量点,激光传感器组在每一个测量点的测量时间大于待测 量件的固有振动周期;
[0017] 每个激光传感器在各个测量点获取的振幅值输入处理器中,处理器按照各测量点 的位置关系将激光传感器组中各个激光传感器所测得的振幅值成网状连接起来获得待测 量件在激振频率下的固有振型。
[0018] 进一步,驱动机构由步进电机和带传动机构组成,激光传感器组的安装支架与传 动带固定。
[0019] 进一步,导轨的两端分别设置第一限位开关和第二限位开关,激光传感器组从第 一限位开关运动到第二限位开关、或从第二限位开关运动到第一限位开关。
[0020] 本发明的有益效果是:
[0021] 1)、本发明所采用激光传感器直接测量待测量件在模态振动时各测量点的振动幅 值;激光检测是一种非接触式的测量,不会给系统带来附加质量,即不会影响柔性结构的固 有特性,提高了测试的准确性。
[0022] 2)、在确定待测量件的振型精度后,通过控制步进电机输入的脉冲数和频率,步进 电机运转带动同步带运动,激光传感器随滑块沿直线导轨可精确的依次通过设置的测量 点,即可实现对柔性结构的高精度非接触测量,而无需移动激振器的位置。
[0023] 3)、在直线导轨的两端设置限位开关,来控制激光传感器的行程。
[0024] 4)、激光传感器组的各传感器沿待测量件的高度设置,可以测量待测量件不同高 度的模态,不仅能检测待测量件的弯曲模态,而且还能检测其扭转模态,更直观更精确的反 映柔性结构的动态特性。该测试系统降低了操作的难度,提高了测试的精度和准确性。
附图说明
[0025] 图1是本发明的系统的示意图。
[0026] 图2是图1的俯视图。
[0027] 图3是系统的传动装置。
[0028] 图4是待测量件的测量点分布。
[0029] 图5是待测量件为柔性板时的一阶弯曲振型。
[0030] 图6是待测量件为柔性板时的二阶弯曲振型。
[0031] 图7是待测量件为柔性板时的三阶弯曲振型。
具体实施方式
[0032] 如图1、图2所示,一种非接触式测量柔性结构的模态振型的系统,包括固定待测量 件1的夹持装置4,对待测量件1进行激振的激振器3和测量待测量件1各测量点的振幅值的 测量机构,以及将各测量点的振幅值转换为待测量件1的模态振型的处理器。
[0033] 待测量件1为柔性结构。
[0034] 夹持装置4夹持待测量件1 一端、使待测量件1呈一端固定的悬臂梁或悬臂板。
[0035] 激振器3的输出端紧贴待测量件1。
[0036] 如图3所示,测量机构主要由测量各测量点的振幅值的激光传感器组2,驱动激光 传感器组2沿待测量件1的长度方向步进式运动的驱动机构和导向机构;导向机构由直线导 轨9和滑块8组成,滑块8与直线导轨9配套使用。
[0037] 激光传感器组2通过安装支架固定于滑块8上,直线导轨9与待测量件1平行;激光 传感器组2的多个激光传感器沿待测量件1的高度方向从上到下沿直线排列;驱动机构每步 进一次,激光传感器组2从当前测量点到达下一测量点,激光传感器组2在每一个测量点的 测量时间大于待测量件1的固有振动周期;
[0038] 每个激光传感器在各个测量点获取的振幅值输入处理器中,处理器按照各测量点 的位置关系将激光传感器组2中各个激光传感器所测得的振幅值成网状连接起来获得待测 量件1在激振频率下的固有振型。
[0039] 驱动机构由步进电机6和带传动机构组成,激光传感器组2的安装支架7与传动带5 固定。带传动机构为同步带传动机构。在步进驱动器接收到脉冲信号时,步进电机6运转,根 据接收到的脉冲个数,即可得到具体的角位移量,即转化为同步带的移动量,也即实现了激 光传感器高精度的准确定位。
[0040] 直线导轨9的两端分别设置第一限位开关11和第二限位开关12,激光传感器组2从 第一限位开关11运动到第二限位开关12、或从第二限位开关12运动到第一限位开关11。
[0041] 直线导轨9与待测量件1之间严格平行,提高了测试的准确性。直线导轨9 一方面对 激光传感器组2的安装支架7的运动方向作导向作用,另一方面可以增加激光传感器组2在 运动过程中的平稳性。在步进电机6的带动下,激光传感器组2沿着导轨做直线运动;在直线 导轨9的两端安装有限位开关11、12,两者之间的距离即为激光传感器组2的行程。
[0042] 使用上述非接触式测量柔性结构的模态振型的系统的方法,包括以下步骤:
[0043] 1)、将待测量件1 一端装夹固定于夹持机构,待测量件1形成悬臂梁或悬臂板。
[0044] 2)、确定待测量件1的振型测量精度,根据测量精度沿待测量件1的长度方向细分 为一系列等距离设置的测量点,如图4所示。
[0045] 测量点的具体数量根据所需要的振型精度而定,而间隔的长度跟待测构件的长度 也有直接关系,一般建议划分的点数不得少于10个。所谓振型精度,指的是能获取到振幅坐 标的点的数量,即激光传感器组在测量过程中,多个激光传感器沿高度方向分布,测量点沿 长度方向设置,因而在测量过程中激光传感器在测量点停留的位置形成网格,每个传感器 停留在每个测量点的位置,形成网格上的一个能够获取到振幅坐标的点。
[0046] 步进电机的运动是一个间歇运动,由扫频实验得出待测量件1的各阶固有频率,激 光传感器组2在每一个测量点的停留时间为固有振动周期的两倍,测试完后再移动至下一 测试点,依次完成待测试件的测量。
[0047] 3)、多个激光传感器(不小于3个)沿待测量件1的高度方向排列形成激光传感器组 2;使激光传感器组2位于测量起始位置,测量起始位置为待测量件1的任意一端,测量结束 位置为待测量件的另一端。
[0048] 4)、激发待测量件1的在第η阶固有频率下的多模态振动,激光传感器组2步进式运 动,依次通过每个测量点并获取该测量点的振幅,激光传感器组2在每一个测量点的测量时 间大于待测量件1的固有振动周期;处理器获取所有振幅、并将振幅呈网状连接形成C2连续 的连接面,该连接面为待测量件在第η阶固有频率下的固有振型。
[0049] (4. 1)以激光传感器组2的最下面的一个激光传感器在测量起始位置的点作为原 点,以待测量件1的长度方向为X轴,从测量起始位置向测量结束位置的方向为X轴的正向; 以待测量件1的高度方向为Y轴,从下向上为Y轴的正向;以待测量件1的振动方向为Z轴建立 OXYZ坐标系。
[0050] (4. 2)根据各激光传感器与原点处的激光传感器之间的距离计算得到第i个激光 传感器在测量起始位置的坐标(〇;乃功;根据每个测量点与测量起始位置的距离,计算第i 个激光传感器在第j个测量点的坐标。
[0051] (4. 3)确定需要测量的振型是待测量件1在第η阶固有频率下的振型,使激振器3 的激振频率等于待测量件1的第η阶固有频率,激振器3将激励信号施加于待测量件1;激励 信号施加在激振器3上激起待测量件1的多模态振动。
[0052] (4.4)激光传感器组2步进式运动、依次通过每个测量点,激光传感器组2在每一个 测量点的测量时间大于待测量件1的固有振动周期;第i个激光传感器在第j个测量点测得 振幅㉟,该点的振幅坐标为(巧、%);振幅的坐标输入处理器中。
[0053] (4.5)处理器连接所有振幅坐标形成C2连续的连接面;该连接面为待测量件在第η 阶固有频率下的固有振型。
[0054] 由于待测量件1的η阶固有频率是待测量件1的固有属性,因此其第η阶固有频率是 可获知的。通过本发明的系统和方法,可以对待测量件1的任一阶固有频率进行模态振型的 测量。
[0055] 本发明的有益效果是:
[0056] 1)、本发明所采用激光传感器直接测量待测量件在模态振动时各测量点的振动幅 值;激光检测是一种非接触式的测量,不会给系统带来附加质量,即不会影响柔性结构的固 有特性,提高了测试的准确性。
[0057] 2)、在确定待测量件的振型精度后,通过控制步进电机输入的脉冲数和频率,步进 电机运转带动同步带运动,激光传感器随滑块沿直线导轨可精确的依次通过设置的测量 点,即可实现对柔性结构的高精度非接触测量,无需移动激振器的位置。
[0058] 3)、在直线导轨的两端设置限位开关,来控制激光传感器的行程。
[0059] 4)、激光传感器组的各传感器沿待测量件的高度设置,可以测量待测量件不同高 度的模态,不仅能检测待测量件的弯曲模态,而且还能检测其扭转模态,更直观更精确的反 映柔性结构的动态特性。该测试系统降低了操作的难度,提高了测试的精度和准确性。
[0060] 本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护 范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术 人员根据本发明构思所能够想到的等同技术手段。

Claims (3)

1. 一种非接触式测量柔性结构的模态振型的系统,其特征在于:包括固定待测量件的 夹持装置,对待测量件进行激振的激振器和测量待测量件各测量点的振幅值的测量机构, 以及将各测量点的振幅值转换为待测量件的模态振型的处理器; 待测量件为柔性结构; 夹持装置夹持待测量件一端、使待测量件呈一端固定的悬臂梁; 激振器的输出端紧贴待测量件; 测量机构主要由测量各测量点的振幅值的激光传感器组,驱动激光传感器组沿待测量 件的长度方向步进式运动的驱动机构和导向机构;导向机构由直线导轨和滑块组成,激光 传感器组通过安装支架固定于滑块上,直线导轨与待测量件平行;激光传感器组的多个激 光传感器沿待测量件的高度方向从上到下沿直线排列;驱动机构每步进一次,激光传感器 组从当前测量点到达下一测量点,激光传感器组在每一个测量点的测量时间大于待测量件 的固有振动周期; 每个激光传感器在各个测量点获取的振幅值输入处理器中,处理器按照各测量点的位 置关系将激光传感器组中各个激光传感器所测得的振幅值成网状连接起来获得待测量件 在激振频率下的固有振型。
2. 如权利要求1所述的非接触式测量柔性结构的模态振型的系统,其特征在于:驱动机 构由步进电机和带传动机构组成,激光传感器组的安装支架与传动带固定。
3. 如权利要求2所述的非接触式测量柔性结构的模态振型的系统,其特征在于:导轨的 两端分别设置第一限位开关和第二限位开关,激光传感器组从第一限位开关运动到第二限 位开关、或从第二限位开关运动到第一限位开关。
CN201510384761.6A 2015-06-30 2015-06-30 一种非接触式测量柔性结构的模态振型的系统 Active CN104931218B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510384761.6A CN104931218B (zh) 2015-06-30 2015-06-30 一种非接触式测量柔性结构的模态振型的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510384761.6A CN104931218B (zh) 2015-06-30 2015-06-30 一种非接触式测量柔性结构的模态振型的系统

Publications (2)

Publication Number Publication Date
CN104931218A CN104931218A (zh) 2015-09-23
CN104931218B true CN104931218B (zh) 2018-03-13

Family

ID=54118492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510384761.6A Active CN104931218B (zh) 2015-06-30 2015-06-30 一种非接触式测量柔性结构的模态振型的系统

Country Status (1)

Country Link
CN (1) CN104931218B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105606145B (zh) * 2015-12-28 2017-12-08 南京农业大学 车载式作物长势传感方法及装置
US10539437B2 (en) 2015-12-28 2020-01-21 Nanjing Agricultural University Crop growth sensing apparatus and method supporting agricultural machinery variable-quantity fertilization operations
CN105606197A (zh) * 2016-01-26 2016-05-25 宁波大学 基于多激光位移传感器的异形柔性结构振动测量系统
CN105929866B (zh) * 2016-06-21 2018-06-29 华南理工大学 基于多激光位移传感器的铰接板振动控制装置及方法
CN107860539B (zh) * 2017-10-13 2019-07-26 郑州轻工业学院 一种消除附加质量影响的模态试验方法
CN110108504A (zh) * 2019-05-13 2019-08-09 桂林电子科技大学 载货汽车车身模态非接触激励与非接触测量获取方法
CN110554683B (zh) * 2019-09-09 2020-12-18 北京航天自动控制研究所 一种周期性控制过程中多模态自适应动态激励添加方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142125A (zh) * 2014-07-23 2014-11-12 华南理工大学 基于激光位移传感器的压电板振动检测控制装置与方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061017A (en) * 1975-11-17 1977-12-06 Time/Data Corporation Structural analysis system
FR2666656A1 (fr) * 1990-09-11 1992-03-13 Thomson Csf Procede et dispositif d'inspection d'une structure par analyse modale.
CN103048103A (zh) * 2012-04-23 2013-04-17 北京航空航天大学 非接触式模态测试系统和方法
CN103226053A (zh) * 2013-03-25 2013-07-31 河海大学 非线性材料结构运行模态振型测试系统
CN103575382B (zh) * 2013-11-28 2016-04-27 重庆长安汽车股份有限公司 一种汽车薄板件的局部模态测试方法
CN104132792B (zh) * 2014-07-22 2018-03-13 湖南大学 一种利用激光位移信号测试桥面柔度装置及其方法
CN104176230B (zh) * 2014-07-25 2016-10-05 华南理工大学 基于涡电流位移传感器的梯形翼振动控制装置及方法
CN104568354A (zh) * 2015-01-22 2015-04-29 华南理工大学 一种基于超声波传感器柔性铰接板振动测量装置
CN204903118U (zh) * 2015-06-30 2015-12-23 宁波大学 一种非接触式测量柔性结构的模态振型的系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142125A (zh) * 2014-07-23 2014-11-12 华南理工大学 基于激光位移传感器的压电板振动检测控制装置与方法

Also Published As

Publication number Publication date
CN104931218A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
McLaskey et al. Acoustic emission sensor calibration for absolute source measurements
KR101464148B1 (ko) 측정기, 및 측정 오차 보상 방법
CN102016498B (zh) 用于活节臂坐标测量机的测量方法
KR101804484B1 (ko) 센서 장치 및 상기 장치를 사용한 잔류 응력 검측 시스템
Kundu et al. Locating point of impact in anisotropic fiber reinforced composite plates
EP2447665A1 (en) Calibration method and apparatus
US20150177194A1 (en) Dual Robot Detection Apparatus For Non-Damage Detection
CN104614064B (zh) 一种基于条纹靶的高速多维度振动测量装置及方法
CN106989812A (zh) 基于摄影测量技术的大型风机叶片模态测试方法
CN202018279U (zh) 一种弯折件的弯折角度测量设备
CN205656070U (zh) 一种纤维拉伸测试装置
EP2616761A1 (en) Method and apparatus for controlling a surface scanning coordinate measuring machine
CN103300890A (zh) 用于测量组织机械特性的系统及方法
CN1975370B (zh) 超声弹性模量计算和成像的方法
CN100424506C (zh) 相控阵超声波仪器及其检测方法
CN104777054A (zh) 一种基于软测量技术的谐振式疲劳裂纹扩展试验振动系统的参数识别方法
CN104007175B (zh) 一种悬臂柔性梁多裂缝损伤识别装置及方法
CN102947671B (zh) 用于测量坐标测量装置上的工件的坐标的方法
CN104142125A (zh) 基于激光位移传感器的压电板振动检测控制装置与方法
CN102435980A (zh) 一种基于解析求解的声发射源或微震源定位方法
CN103676240B (zh) 表面检测装置
CN103175602B (zh) 基于单点激光连续平面扫描测振的模态测试系统及方法
CN107014480B (zh) 线性马达位移振幅检测方法和检测装置
CN101387546A (zh) 基于视觉的太空帆板弯曲和扭转低频模态检测方法与装置
CN103328162B (zh) 控制坐标测量仪的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant