CN104917714A - Method for reducing peak-to-average power ratio of large-scale MIMO-OFDM down link - Google Patents

Method for reducing peak-to-average power ratio of large-scale MIMO-OFDM down link Download PDF

Info

Publication number
CN104917714A
CN104917714A CN201510309345.XA CN201510309345A CN104917714A CN 104917714 A CN104917714 A CN 104917714A CN 201510309345 A CN201510309345 A CN 201510309345A CN 104917714 A CN104917714 A CN 104917714A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msubsup
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510309345.XA
Other languages
Chinese (zh)
Other versions
CN104917714B (en
Inventor
方俊
包恒耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510309345.XA priority Critical patent/CN104917714B/en
Publication of CN104917714A publication Critical patent/CN104917714A/en
Application granted granted Critical
Publication of CN104917714B publication Critical patent/CN104917714B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

The invention belongs to the field of signal processing for wireless communication, and particularly relates to a method for reducing a signal peak-to-average power ratio (PAPR) in a large-scale MIMO-OFDM down link. The method comprises the steps of: expressing precoding constraint and OFDM modulation jointly into an underdetermined equation set; establishing a prior model which can promote low PAPR characteristics; and utilizing an Expectation-Maximization (EM) and Generalized Approximate Message Passing (GAMP) algorithm to design an algorithm capable of solving a low PAPR solution. The method provided by the invention utilizes the degree of freedom provided by a large number of antennas at a base station side in a MIMO-OFDM system, and reduces the PAPR of signal transmission of the downlink. The energy of the obtained transmitted signals is concentrated, and the signals tend to be in a constant envelope under the condition that the transmission antennas are enough, so that an RF circuit does not require an expensive linear power amplifier, thereby the construction cost of base stations in future can be effectively reduced.

Description

Method for reducing large-scale MIMO-OFDM downlink power peak-to-average ratio
Technical Field
The invention belongs to the field of signal processing of wireless communication, and particularly relates to a method for reducing a Peak-to-Average Power Ratio (PAPR) of a signal in a large-scale MIMO-OFDM downlink.
Background
Massive MIMO has received widespread attention in the industry as it is able to meet the ever-increasing communication rate and capacity requirements. MIMO-OFDM has been defaulted to the air interface scheme of next generation wireless communication systems because OFDM technology can be easily applied to MIMO systems. OFDM modulation is a technique for mapping different data onto mutually orthogonal subcarriers, can effectively combat frequency selective fading, is simple to implement, and is widely used in various communication systems, for example: LTE and WIFI. However, the OFDM modulated signal is a linear superposition of multiple independent carriers, and usually has a high PAPR, so that a high-cost linear amplifier is required for the radio frequency circuit of the OFDM system.
In the conventional SISO-OFDM system, there are many mature methods for reducing PAPR, which usually compress the original high PAPR signal into a low PAPR signal at the transmitting end for transmission, and at the same time transmit an additional information to the user, which can demodulate the signal correctly. However, in the multi-user MIMO system, it is impossible for a user at a receiving end to cooperatively demodulate a compressed PAPR signal, so that the conventional method is difficult to be extended to the multi-user MIMO system.
In a large-scale MIMO system, the number of antennas owned by a base station is far larger than the number of users served by the base station, so that an underdetermined equation set can be jointly established by multi-user precoding constraint and OFDM modulation of the MIMO-OFDM system, and infinite modulation signals without interference among users can be met. Thus, the large-scale transmit antennas provide an additional degree of freedom to find OFDM modulated signals with low PAPR characteristics. At present, an optimal solution is generally found by using a convex optimization scheme, but the complexity is high and the convergence speed is slow.
Disclosure of Invention
In view of the deficiencies of the prior art, the present invention provides a low complexity algorithm for reducing the PAPR of a signal using the statistical properties of a low PAPR signal.
The idea of the invention is as follows: firstly, precoding constraint and OFDM modulation are jointly expressed into an underdetermined equation set, then a prior model capable of promoting low PAPR characteristics is established, and finally an algorithm capable of solving a low PAPR solution is designed by utilizing an Expectation-Maximization (EM) algorithm and a Generalized Approximation Message Passing (GAMP) algorithm.
For convenience of describing the contents of the present invention, terms used in the present invention are first defined.
Massive MIMO-OFDM downlink: as shown in FIG. 1, snQAM modulated signals transmitted for N subcarriers, N1,Is a vector after precoding without interference among users,(M1.., M) is a frequency domain signal transmitted on M base station transmit antennas,the time domain signals transmitted on the antennas are transmitted by M base stations, K is the number of users in the large-scale MIMO, K is less than M,representing a complex field.
Pre-coding: in the MIMO-OFDM system, in order to ensure the interference-free receiving signals among a plurality of users in the same time-frequency domain resource, the transmitting signal s needs to be transmittednAnd carrying out precoding. The channel isThen the encoded vectorShould satisfy sn=Hnwn. Thus, the signal received by the user is free of interference from other users.
The power peak-to-average ratio: the PAPR of the mth transmitting antenna is defined asI.e., the ratio of the peak to average energy of the transmitted signal, wherein,representing the real part of the parameter,representing the imaginary part of the parameter,is an operator two-norm.
Normal distribution: mean μ and variance σ2Is defined as a probability density function of a normal distribution (Gaussian distribution)The cumulative distribution function of a standard normal distribution is defined as Φ (f), where f represents an argument.
And (3) protecting the bandwidth: in order to protect the frequency band used in OFDM modulation from interference of adjacent frequency bands, subcarriers located at both ends of the frequency band are not generally used. Thus, the N subcarriers are divided into two sets:andfor sub-carriersThe transmitted signal is a QAM modulated signal,for sub-carrierssnIs an M-dimensional zero vector.
Maximum expectation: an iterative algorithm for finding a maximum likelihood estimate. And continuously establishing a lower bound of the likelihood function, and optimizing the lower bound so as to maximize the likelihood function.
Generalized approximate messaging: an algorithm for solving a variable approximation a posteriori distribution function.
The Digamma function: defined as the derivative of the natural logarithm of the Gamma function, i.e. <math> <mrow> <mi>&psi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>f</mi> </mrow> </mfrac> <mi>l</mi> <mi>n</mi> <mi>&Gamma;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>d</mi> <mrow> <mi>d</mi> <mi>f</mi> </mrow> </mfrac> <mi>l</mi> <mi>n</mi> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>&infin;</mi> </msubsup> <msup> <mi>t</mi> <mrow> <mi>f</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mi>t</mi> </mrow> </msup> <mi>d</mi> <mi>t</mi> <mo>.</mo> </mrow> </math>
The method for reducing the power peak-to-average ratio of the large-scale MIMO-OFDM downlink comprises the following specific steps:
s1, calculating a signal model y of joint precoding and OFDM modulation as Ax, specifically:
s11, jointly representing precoding constraint of massive MIMO-OFDM downlink and OFDM modulation of massive MIMO-OFDM downlink into a linear equation systemWherein, is a block diagonal momentArray, theByA channel matrix HnAndthe unit matrix of M dimension is formed,t is a permutation matrix for allocating the precoded signals to the respective transmit antennas,is a block diagonal matrix, saidConsists of M N-dimensional inverse discrete Fourier transform matrixes,as an unknown quantity [. sup. ] [. ]]TRepresenting the transpose of the matrix, | represents the number of elements in the set;
s12, using the complex equation set of S11Transformation to the real number domain: let x be dimension I and y be dimension J, where,
s2, introducing a prior model, specifically:
s21, making each element of the x in S1 independent, and introducing a truncated Gaussian mixture model prior to the xWherein i is 1,., I, the ith element x of said xi∈[-v,v],αi1And alphai2Is the inverse Gaussian variance, κiFor discrete variables with values of 0 and 1, v is a priori boundary, normalization factor <math> <mrow> <msub> <mi>&eta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <mi>v</mi> <msqrt> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </msqrt> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Normalization factor <math> <mrow> <msub> <mi>&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>v</mi> <msqrt> <msub> <mo>&Proportional;</mo> <mn>2</mn> </msub> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>;</mo> </mrow> </math>
S22, linear equation for S11Introducing a Gaussian noise with a mean value of zero and an inverse variance of beta;
s3, iterative updating and outputtingThe method comprises the following specific steps:
s31, initializing, and for all J ═ 1.1, for all I:αi1(0)=αi2(0)=1,κi(0)=1/2,v(0)=||y||/||A||making the iteration number t equal to 1;
s32, calculating approximate posterior distribution by using GAMP, which comprises the following steps:
j is equal to 1, J,
wherein, the upper markpThe function of distinguishing is realized,representing the function, A, associated with x as stated at S12jiThe jth row and ith column elements of the matrix a are represented S12,represents S12 the square of the element of the ith column of the jth row of the matrix a,
<math> <mrow> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&beta;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </math> wherein, the upper markzThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mi>&beta;</mi> <mo>+</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>s</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, the upper marksThe function of distinguishing is realized,
for all I1, 1., I,
wherein, the upper markrThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <munder> <mo>&Sigma;</mo> <mi>j</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,is an intermediate parameter;
s33, updating signal xiAnd parameter alphai1,αi2And kappai <math> <mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mrow> </math> κi(t+1)=q(κi=1),
Wherein,
<math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>(</mo> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>/</mo> <msub> <mi>&sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>(</mo> <mo>-</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>/</mo> <msub> <mi>&sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <mn>2</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>x</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
for kappaiA posterior probability q (k) ofi) Is provided with
<math> <mrow> <mi>ln</mi> <mi>q</mi> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>></mo> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>></mo> <mo>+</mo> <mn>4</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mi>ln</mi> <mi>&eta;</mi> </mrow> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ln&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>tan</mi> <mi>t</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>&gt;</mo> <mo>=</mo> <mi>&psi;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>;</mo> </mrow> </math>
S34, updating the inverse variance beta of S22: <math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>J</mi> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </msubsup> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>y</mi> <mi>j</mi> </msub> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
s35, updating the boundary v of S21: v (t +1) ═ v (t) + Δ v, where, <math> <mrow> <msub> <mi>&gamma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
s36, judging, if T is T, jumping out iteration and outputtingIf T < T, then let T +1 go to S31, where T is the maximum number of iterations and T is an empirical threshold.
The invention has the beneficial effects that:
the invention reduces the PAPR of the downlink sending signal by utilizing the degree of freedom provided by a large number of antennas at the base station end in a large-scale MIMO-OFDM system. The energy of the obtained transmission signal is very concentrated, and the signal tends to a constant envelope state under the condition that the transmission antenna is enough, so that an expensive linear power amplifier is not needed in a radio frequency circuit, and the construction cost of a future base station can be effectively reduced.
Drawings
Fig. 1 is a downlink block diagram of a MIMO-OFDM system.
Fig. 2 shows a transmitted time domain signal and a corresponding frequency domain signal, (a) the time domain signal, and (b) the frequency domain signal, where EM-TGM-gam represents the invented method, and ZF is a conventional precoding method without PAPR processing.
FIG. 3 is a complementary cumulative distribution graph of the PAPR.
Detailed Description
The technical solution of the present invention will be described in detail below with reference to the embodiments and the accompanying drawings.
The base station end is provided with 100 transmitting antennas; the number of service users is K equal to 10; the number of OFDM subcarriers is 128, wherein the effective number of subcarriers is
Assuming that the channel is perfectly known, a 16QAM modulation scheme is selected.
Firstly, calculating A and y in a signal model according to a channel matrix and user data; then, algorithm parameters are initialized:αi1(0)=αi2(0)=1、κi(0)=1/2、v(0)=||y||/||A||and (4) iteratively updating signals and model parameters according to GAMP and EM algorithms, jumping out when the maximum iteration times are reached, and outputting the solved result.
S1, calculating a signal model y of joint precoding and OFDM modulation as Ax, specifically:
s11, jointly representing precoding constraint of massive MIMO-OFDM downlink and OFDM modulation of massive MIMO-OFDM downlink into a linear equation systemWherein, is a block diagonal matrix, saidByA channel matrix HnAndthe unit matrix of M dimension is formed,t is a permutation matrix for allocating the precoded signals to the respective transmit antennas,is a block diagonal matrix, saidConsists of M N-dimensional inverse discrete Fourier transform matrixes,as an unknown quantity [. sup. ] [. ]]TRepresenting the transpose of the matrix, | represents the number of elements in the set;
s12, using the complex equation set of S11Transformation to the real number domain: let x be dimension I and y be dimension J, where,since K < M, A is underdetermined, the equation has infinite solutions, and the next step is used to find the PAPR-best among themA small solution;
s2, introducing a prior model, specifically:
s21, in order to realize the low PAPR characteristic of rent solution, each element of the x is independent in S1, and a truncated Gaussian mixture model prior is introduced to the xWherein I1.. I, the ith element x of said xi∈[-v,v],αi1And alphai2Is the inverse Gaussian variance, κiFor discrete variables with values of 0 and 1, v is a priori boundary, normalization factorNormalization factor <math> <mrow> <msub> <mi>&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>v</mi> <msqrt> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>;</mo> </mrow> </math>
S22, linear equation for S11Introducing a Gaussian noise with zero mean value and beta inverse variance, and jointly estimating x and alpha by using the following iterative algorithm1、α2Kappa, v, beta, thereby obtaining a low PAPR signal;
s3, iterative updating and outputtingThe method comprises the following specific steps:
s31, initializing, and for all J ═ 1.1, for all I:αi1(0)=αi2(0)=1,κi(0)=1/2,v(0)=||y||/||A||making the iteration number t equal to 1;
s32, calculating approximate posterior distribution by using GAMP, which comprises the following steps:
j is equal to 1, J,
wherein, the upper markpThe function of distinguishing is realized,representing the function, A, associated with x as stated at S12jiThe jth row and ith column elements of the matrix a are represented S12,represents S12 the square of the element of the ith column of the jth row of the matrix a,
<math> <mrow> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
wherein, the upper markzThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mi>&beta;</mi> <mo>+</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>s</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, the upper marksThe function of distinguishing is realized,
for all I1, 1., I,
wherein, the upper markrThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <munder> <mo>&Sigma;</mo> <mi>j</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,is an intermediate parameter;
s33, updating signal xiAnd parameter alphai1,αi2And kappai <math> <mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mrow> </math> κi(t+1)=q(κi=1),
Wherein,
<math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>=</mo> <mo>(</mo> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>&phi;</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>/</mo> <msub> <mi>&sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>(</mo> <mo>-</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>/</mo> <msub> <mi>&sigma;</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <mn>2</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>x</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
for kappaiA posterior probability q (k) ofi) Is provided with
<math> <mrow> <mi>ln</mi> <mi>q</mi> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mrow> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&gt;</mo> <mo>-</mo> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&gt;</mo> <mo>+</mo> <mn>4</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>ln&eta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ln&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>tan</mi> <mi>t</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>&gt;</mo> <mo>=</mo> <mi>&psi;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>;</mo> </mrow> </math>
S34, updating the inverse variance beta of S22: <math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>J</mi> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>y</mi> <mi>j</mi> </msub> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
s35, updating the boundary v of S21: v (t +1) ═ v (t) + Δ v, where, <math> <mrow> <mi>&Delta;</mi> <mi>v</mi> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mi>y</mi> <mo>-</mo> <mi>A</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>A</mi> <mi>&gamma;</mi> </mrow> <mrow> <mo>|</mo> <mo>|</mo> <mi>A</mi> <mi>y</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>&gamma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
s36, judging, if T is T, jumping out iteration and outputtingIf T < T, then let T +1 go to S31, where T is the maximum number of iterations and T is an empirical threshold.
After the iterative operation, the sending signal with low PAPR can be obtained, and the signal can ensure no interference among users and no signal energy on the protection bandwidth.
As shown in fig. 2, the time domain signal and its spectrum on the 1 st transmit antenna. Wherein, the curve shown by EM-TGM-GAMP is the signal obtained by the method of the invention, ZF is a common Zero Forcing (ZF) algorithm without PAPR processing. From fig. 2(a), it can be seen that most of the energy of the signal samples obtained by the present invention is concentrated in one peak, and the energy of the remaining samples is less than this peak, so the PAPR of the signal is very small, only 0.6dB, and the PAPR of the signal without PAPR processing is as high as 11.9 dB. Fig. 2(b) is a frequency spectrum of a signal, and it can be seen that on some subcarriers used as guard bandwidth, EM-TGM-gam has no energy as does ZF.
Fig. 3 shows the comparison of the complementary cumulative distribution of PAPR of signals of two schemes, and it can be seen that the PAPR of the modulated signal obtained by the present invention is basically always less than 1dB and more than 10dB better than ZF. Therefore, the scheme of the invention can effectively reduce the construction cost of the future base station antenna radio frequency.

Claims (1)

1. The method for reducing the power peak-to-average ratio of the large-scale MIMO-OFDM downlink is characterized by comprising the following steps of:
s1, calculating a signal model y of joint precoding and OFDM modulation as Ax, specifically:
s11, jointly representing precoding constraint of massive MIMO-OFDM downlink and OFDM modulation of massive MIMO-OFDM downlink into a linear equation systemWherein, is a block diagonal matrix, saidByA channel matrix HnAndthe unit matrix of M dimension is formed,t is a permutation matrix for allocating the precoded signals to the respective transmit antennas,is a block diagonal matrix, saidConsists of M N-dimensional inverse discrete Fourier transform matrixes,as an unknown quantity [. sup. ] [. ]]TRepresenting the transpose of the matrix, | represents the number of elements in the set;
s12, using the complex equation set of S11Transformation to the real number domain: x, and x is the dimension I and y is the dimension J, wherein,
S2, introducing a prior model, specifically:
s21, making each element of the x in S1 independent, and introducing a truncated Gaussian mixture model prior to the xWherein I1.. I, the ith element x of said xi∈[-v,v],αi1And alphai2Is the inverse Gaussian variance, κiFor discrete variables with values of 0 and 1, v is a priori boundary, normalization factor <math> <mrow> <msub> <mi>&eta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>-</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>2</mn> <mi>v</mi> <msqrt> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </msqrt> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Normalization factor <math> <mrow> <msub> <mi>&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>v</mi> <msqrt> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> </msqrt> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>;</mo> </mrow> </math>
S22, linear equation for S11Introducing a Gaussian noise with a mean value of zero and an inverse variance of beta;
s3, iterative updating and outputtingThe method comprises the following specific steps:
s31, initializing, and for all J ═ 1.1, for all I:αi1(0)=αi2(0)=1,κi(0)=1/2,v(0)=||y||/||A||making the iteration number t equal to 1;
s32, calculating approximate posterior distribution by using GAMP, which comprises the following steps:
j is equal to 1, J,
wherein, the upper markpThe function of distinguishing is realized,representing the function, A, associated with x as stated at S12jiThe jth row and ith column elements of the matrix a are represented S12,represents S12 the square of the element of the ith column of the jth row of the matrix a,
<math> <mrow> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mi>i</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>&beta;</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> </mrow> </math> wherein, the upper markzThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mi>&beta;</mi> <mo>+</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>p</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,as an intermediate parameter, the parameter is,
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>s</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein, the upper marksThe function of distinguishing is realized,
for all I1, 1., I,
wherein, the upper markrThe function of distinguishing is realized,
<math> <mrow> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <munder> <mo>&Sigma;</mo> <mi>j</mi> </munder> <msub> <mi>A</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <msub> <mover> <mi>s</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,is an intermediate parameter;
s33, updating signal xiAnd parameter alphai1,αi2And kappai <math> <mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mrow> </math> κi(t+1)=q(κi=1),
Wherein,
<math> <mrow> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>&mu;</mi> <mi>i</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&alpha;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mover> <mi>r</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>r</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <msubsup> <mi>&sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>,</mo> </mrow> </math>
φi=Φ((v(t)-μi)/σi)-Φ((-v(t)-μi)/σi),
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <mn>2</mn> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>b</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>(</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>+</mo> <mn>2</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mi>v</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>&tau;</mi> <mi>i</mi> <mi>x</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lt;</mo> <msubsup> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </math>
for kappaiA posterior probability q (k) ofi) Is provided with
<math> <mrow> <mi>ln</mi> <mi>q</mi> <mrow> <mo>(</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>></mo> <mo>-</mo> <mo>&lt;</mo> <mrow> <mo></mo> <msub> <mrow> <mi>ln</mi> <mi>&alpha;</mi> </mrow> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>></mo> <mo></mo> </mrow> <mo>+</mo> <mn>4</mn> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>ln&eta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>ln&eta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <msub> <mi>&kappa;</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>tan</mi> <mi>t</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <mo>&lt;</mo> <msub> <mi>ln&alpha;</mi> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>></mo> <mo>=</mo> <mi>&psi;</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>a</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>~</mo> </mover> <mi>il</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>;</mo> </mrow> </math>
S34, updating the inverse variance beta of S22: <math> <mrow> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>J</mi> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>y</mi> <mi>j</mi> </msub> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>^</mo> </mover> <mi>j</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>&tau;</mi> <mi>j</mi> <mi>z</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
s35, updating the boundary v of S21: v (t +1) ═ v (t) + Δ v, where, <math> <mrow> <msub> <mi>&gamma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
s36, judging, if T is T, jumping out iteration and outputtingIf T < T, then let T +1 go to S31, where T is the maximum number of iterations and T is an empirical threshold.
CN201510309345.XA 2015-06-08 2015-06-08 The method for reducing extensive MIMO OFDM downlinks work(peak-to-average force ratio Expired - Fee Related CN104917714B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510309345.XA CN104917714B (en) 2015-06-08 2015-06-08 The method for reducing extensive MIMO OFDM downlinks work(peak-to-average force ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510309345.XA CN104917714B (en) 2015-06-08 2015-06-08 The method for reducing extensive MIMO OFDM downlinks work(peak-to-average force ratio

Publications (2)

Publication Number Publication Date
CN104917714A true CN104917714A (en) 2015-09-16
CN104917714B CN104917714B (en) 2018-03-06

Family

ID=54086427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510309345.XA Expired - Fee Related CN104917714B (en) 2015-06-08 2015-06-08 The method for reducing extensive MIMO OFDM downlinks work(peak-to-average force ratio

Country Status (1)

Country Link
CN (1) CN104917714B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812038A (en) * 2016-03-17 2016-07-27 东南大学 Multi-user downlink jointed pre-coding method in multi-beam mobile satellite communication system
CN106487738A (en) * 2016-09-27 2017-03-08 哈尔滨工程大学 A kind of underwater sound ofdm communication system selected mapping method peak-to-average force ratio Restrainable algorithms based on orthogonal pilot frequency sequence
CN106534025A (en) * 2016-10-14 2017-03-22 西安电子科技大学 Carrier injection peak-to-average power ratio suppression method based on improved cross entropy
CN107231216A (en) * 2017-07-04 2017-10-03 电子科技大学 Phase noise compensation suppressing method based on GAMP algorithms
CN108366035A (en) * 2018-05-21 2018-08-03 东南大学 A kind of method for precoding reducing ADMA system signal peak-to-average power ratios
CN108712189A (en) * 2018-05-29 2018-10-26 电子科技大学 The multi-user test method of combination approximation message transmission for interlacing multi-address system
CN110135492A (en) * 2019-05-13 2019-08-16 山东大学 Equipment fault diagnosis and method for detecting abnormality and system based on more Gauss models
WO2020093203A1 (en) * 2018-11-05 2020-05-14 Nokia Shanghai Bell Co., Ltd. Papr reduction of mimo-ofdm
CN115173905A (en) * 2022-07-28 2022-10-11 江苏科技大学 Method for reducing peak-to-average ratio and out-of-band radiation of multi-user MIMO-OFDM system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796498B2 (en) * 2008-06-29 2010-09-14 Intel Corporation Weighted tone reservation for OFDM PAPR reduction
CN102185823A (en) * 2011-06-02 2011-09-14 中国科学技术大学 Sub-carrier remaining method for reducing peak-to-average power ratio and bit error rate in combined way
CN103107971A (en) * 2013-03-06 2013-05-15 电子科技大学 Phase factor preferred pair method for reducing PAPR of OFDM signal
CN103227769A (en) * 2013-05-06 2013-07-31 西南石油大学 Novel method for reducing peak-to-average ratio of STBC MIMO-OFDM system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796498B2 (en) * 2008-06-29 2010-09-14 Intel Corporation Weighted tone reservation for OFDM PAPR reduction
CN102185823A (en) * 2011-06-02 2011-09-14 中国科学技术大学 Sub-carrier remaining method for reducing peak-to-average power ratio and bit error rate in combined way
CN103107971A (en) * 2013-03-06 2013-05-15 电子科技大学 Phase factor preferred pair method for reducing PAPR of OFDM signal
CN103227769A (en) * 2013-05-06 2013-07-31 西南石油大学 Novel method for reducing peak-to-average ratio of STBC MIMO-OFDM system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105812038A (en) * 2016-03-17 2016-07-27 东南大学 Multi-user downlink jointed pre-coding method in multi-beam mobile satellite communication system
CN105812038B (en) * 2016-03-17 2018-11-23 东南大学 Multi-beam mobile satellite communication system multiuser downstream combines method for precoding
CN106487738A (en) * 2016-09-27 2017-03-08 哈尔滨工程大学 A kind of underwater sound ofdm communication system selected mapping method peak-to-average force ratio Restrainable algorithms based on orthogonal pilot frequency sequence
CN106487738B (en) * 2016-09-27 2019-09-27 哈尔滨工程大学 A kind of underwater sound ofdm communication system selected mapping method peak-to-average force ratio restrainable algorithms based on orthogonal pilot frequency sequence
CN106534025A (en) * 2016-10-14 2017-03-22 西安电子科技大学 Carrier injection peak-to-average power ratio suppression method based on improved cross entropy
CN106534025B (en) * 2016-10-14 2019-07-16 西安电子科技大学 Carrier signal injection method for suppressing peak to average ratio based on modified cross entropy
CN107231216A (en) * 2017-07-04 2017-10-03 电子科技大学 Phase noise compensation suppressing method based on GAMP algorithms
CN107231216B (en) * 2017-07-04 2019-09-27 电子科技大学 Phase noise compensation suppressing method based on GAMP algorithm
CN108366035A (en) * 2018-05-21 2018-08-03 东南大学 A kind of method for precoding reducing ADMA system signal peak-to-average power ratios
CN108366035B (en) * 2018-05-21 2020-09-22 东南大学 Precoding method for reducing ADMA system signal peak-to-average power ratio
CN108712189A (en) * 2018-05-29 2018-10-26 电子科技大学 The multi-user test method of combination approximation message transmission for interlacing multi-address system
CN108712189B (en) * 2018-05-29 2019-12-27 电子科技大学 Multi-user detection method combined with approximate message transmission for interleaving multi-address system
WO2020093203A1 (en) * 2018-11-05 2020-05-14 Nokia Shanghai Bell Co., Ltd. Papr reduction of mimo-ofdm
CN110135492A (en) * 2019-05-13 2019-08-16 山东大学 Equipment fault diagnosis and method for detecting abnormality and system based on more Gauss models
CN110135492B (en) * 2019-05-13 2020-12-22 山东大学 Equipment fault diagnosis and abnormality detection method and system based on multiple Gaussian models
CN115173905A (en) * 2022-07-28 2022-10-11 江苏科技大学 Method for reducing peak-to-average ratio and out-of-band radiation of multi-user MIMO-OFDM system
CN115173905B (en) * 2022-07-28 2023-11-21 江苏科技大学 Method for reducing peak-to-average ratio and out-of-band radiation of multi-user MIMO-OFDM system

Also Published As

Publication number Publication date
CN104917714B (en) 2018-03-06

Similar Documents

Publication Publication Date Title
CN104917714B (en) The method for reducing extensive MIMO OFDM downlinks work(peak-to-average force ratio
US8462864B2 (en) OFDM transmitter and methods for reducing the effects of severe interference with symbol loading
US8811145B2 (en) Detection method and apparatus for multiple-input multiple-output single carrier block transmission system
KR100918717B1 (en) Sequence estimating method and device in mimo ofdm communication system
US11206713B2 (en) Sub-band compression domain processing for uplink MIMO systems
CN102510368B (en) Wireless orthogonal frequency division multiplexing (OFDM) signal peak-to-average ratio inhibition method based on amplitude distribution variation
EP2449694B1 (en) Method and arrangement for adapting a signal in a wireless communications network
CN103312652B (en) A kind of space-frequency coding SFBC MIMO-OFDM system based on F matrix carries out the method for selected mapping method SLM
CN102006144B (en) Precoding method and device as well as frequency domain balancing method and device
CN103297111A (en) Multiple input multiple output (MIMO) uplink multi-user signal detection method, detection device and receiving system
CN102142875B (en) Adaptive bit loading and power allocation method for broadband CoMP (coordinative multiple point) transmission
CN108712198B (en) Mixed precoding method based on sub-band equivalent channel matrix condition number
CN101951678A (en) Power allocation method and device in multi-user MIMO (Multiple Input Multiple Output) system
Yenilmez et al. Performance of GFDM-maximal ratio transmission over Nakagami-m fading channels
CN113726697A (en) OTFS symbol detection method based on confidence space dynamic decision
CN108365875B (en) Method for reducing PAPR (peak to average power ratio) of multiple antennas based on precoding and MIMO (multiple input multiple output) system
CN106789822B (en) Method and system for reducing peak-to-average power ratio of multi-user large-scale MIMO-OFDM system
Jada et al. Investigation On GFDM System For 5G Applications Over Fading Channels.
CN102355431B (en) Selective limited feedback method for cooperative multicast transmission system
Gulo et al. Implementation of Tiny Machine Learning (TinyML) as Pre-distorter for High Power Amplifier (HPA) Linearization of SDR-based MIMO-OFDM
CN110798249B (en) Signal fast convergence joint precoding method and signal transmission method in Massive MIMO system
Islam et al. Performance Analysis of MIMO-OFDM System Using Singular Value Decomposition and Water Filling Algorithm
Mamun et al. A UAV-Assisted Multiuser Non-terrestrial Cyclic Postfixed Windowed OFDM System
CN115173905B (en) Method for reducing peak-to-average ratio and out-of-band radiation of multi-user MIMO-OFDM system
Wang et al. Full rate orthogonal space-time block coding in OFDM transmission using time reversal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180306