CN104914991A - Wearable intelligent bracelet gesture recognition method and device - Google Patents

Wearable intelligent bracelet gesture recognition method and device Download PDF

Info

Publication number
CN104914991A
CN104914991A CN201510117688.6A CN201510117688A CN104914991A CN 104914991 A CN104914991 A CN 104914991A CN 201510117688 A CN201510117688 A CN 201510117688A CN 104914991 A CN104914991 A CN 104914991A
Authority
CN
China
Prior art keywords
gesture
dmp
next step
microprocessor
proceed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510117688.6A
Other languages
Chinese (zh)
Inventor
陈海兵
刘长红
谭梓维
张宏康
单晓明
严一尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN201510117688.6A priority Critical patent/CN104914991A/en
Publication of CN104914991A publication Critical patent/CN104914991A/en
Pending legal-status Critical Current

Links

Landscapes

  • User Interface Of Digital Computer (AREA)

Abstract

The invention relates to a wearable intelligent bracelet gesture recognition device. A control method includes the steps that a gesture instruction sending module sends a gesture needing judging to a microprocessor; the microprocessor drives a position sensor to collect data through a DMP library and judges whether the gesture needs recognizing according to the collected data. The wearable intelligent bracelet gesture recognition device comprises the position sensor, the micro processor and the gesture instruction sending module, wherein the position sensor is an MP9150 module, the microprocessor is an STM32F103 single-chip microcomputer, the gesture instruction sending module comprises a mobile phone app for sending instructions, and instructions are transmitted through a Bluetooth module. When in work, the gesture instruction sending module sends a gesture needing judging to the microprocessor, and the microprocessor drives the position sensor to collect data through the DMP library and judges whether the gesture needs recognizing according to the collected data. The wearable intelligent bracelet gesture recognition device is simple, saves cost and is high in gesture recognition rate.

Description

可穿戴智能手环手势识别方法及其装置Wearable smart bracelet gesture recognition method and device thereof

技术领域 technical field

本发明属于智能可穿戴手环技术领域,具体涉及一种可穿戴智能手环手势识别方法及其装置。 The invention belongs to the technical field of smart wearable bracelets, and in particular relates to a gesture recognition method and a device thereof for a wearable smart bracelet.

背景技术 Background technique

由于人手的动作很多,手势复杂,不同的动作有时会有重叠的部分,使得手势识别成为目前研究的难题之一。目前手势识别的方法有很多,例如Myo手环利用生物电,通过检测肌肉的电位判断手势。再如专利号为CN 103885645里所述手势判断方法,用影像感测装置识别手势。这些识别方法都比较复杂,同时手势识别准确率不高。由于手势识别时如果同时进行各种手势的识别,不同的手势之间干扰非常大,导致识别率低。 Due to the many movements of the human hand, the gestures are complex, and different movements sometimes overlap, making gesture recognition one of the difficult problems in current research. At present, there are many methods of gesture recognition. For example, the Myo bracelet uses bioelectricity to judge gestures by detecting the potential of muscles. Another example is the gesture judgment method described in the patent No. CN 103885645, which uses an image sensing device to recognize gestures. These recognition methods are relatively complicated, and the accuracy of gesture recognition is not high. If various gestures are recognized at the same time during gesture recognition, the interference between different gestures is very large, resulting in a low recognition rate.

目前也有部分用MPU6050进行识别手势的方法(如专利号CN 103593055),但只是使用MPU6050进行原始数据的采集,对数据进行处理时大多用到卡尔曼滤波算法,该算法对微处理器的性能有很高要求,要求速度要快。很多时候必须用两个微处理器才能实现手势识别,一个运用处理数据,一个进行手势识别,这样大大增加了手势识别的成本和硬件电路的复杂度。 At present, there are also some methods for recognizing gestures with MPU6050 (such as patent No. CN 103593055), but only MPU6050 is used to collect raw data, and Kalman filter algorithm is mostly used when data is processed, and this algorithm has great influence on the performance of microprocessor. Very demanding, demanding speed. In many cases, two microprocessors must be used to realize gesture recognition, one for data processing and one for gesture recognition, which greatly increases the cost of gesture recognition and the complexity of hardware circuits.

发明内容 Contents of the invention

本发明为解决上述问题,提供了一种可穿戴智能手环手势识别方法及其装置。 In order to solve the above problems, the present invention provides a gesture recognition method and device thereof for a wearable smart bracelet.

一种可穿戴智能手环手势识别装置,包括位置传感器、微处理器以及手势指令发送模块;所述位置传感器为MP9150模块,所述MPU9150模块集成了三轴陀螺仪,三轴加速度计,三轴磁力计,一个可扩展的数字运动处理器DMP以及一个I2C接口;所述微处理器为STM32F103,所述MPU9150模 块通过I2C接口与所述微处理器电连接;所述手势指令发送模块包括手机APP,其通过蓝牙模块与所述微处理器电连接;所示蓝牙模块为CC2540,其通过串口与所述微处理器电连接。 A wearable smart bracelet gesture recognition device, including a position sensor, a microprocessor, and a gesture command sending module; the position sensor is an MP9150 module, and the MPU9150 module integrates a three-axis gyroscope, a three-axis accelerometer, and a three-axis Magnetometer, an expandable digital motion processor DMP and an I2C interface; The microprocessor is STM32F103, and the MPU9150 module is electrically connected with the microprocessor through the I2C interface; the gesture instruction sending module includes a mobile phone APP, which is electrically connected to the microprocessor through a Bluetooth module; the Bluetooth module shown is CC2540, which is electrically connected to the microprocessor through a serial port.

上述可穿戴智能手环手势识别方法,通过手势指令发送模块发送需要判断的手势到微处理器,微处理器通过DMP库驱动位置传感器采集数据及微处理器通过采集到的数据判断是否是需要识别的手势。 The above-mentioned wearable smart bracelet gesture recognition method sends the gesture that needs to be judged to the microprocessor through the gesture instruction sending module, and the microprocessor drives the position sensor to collect data through the DMP library and the microprocessor judges whether it needs to be recognized through the collected data. gesture.

优选的,所述手势识别方法包括以下步骤: Preferably, the gesture recognition method includes the following steps:

a STM32初始化; a STM32 initialization;

b MPU9150初始化; b MPU9150 initialization;

c STM32将DMP库写入MPU9150; c STM32 writes the DMP library to the MPU9150;

d STM32读取加速度、角速度、四元数,得到欧拉角; d STM32 reads the acceleration, angular velocity, and quaternion to obtain the Euler angle;

e判断手势指令发送模块是否发送指令,若是,则进行下一步骤,若否,则返回上一步骤; e judge whether the gesture instruction sending module sends an instruction, if so, then proceed to the next step, if not, then return to the previous step;

f调用相应手势函数进行判断手势识别; f calls the corresponding gesture function to judge gesture recognition;

g读取到的手势与需要识别的手势是否一致,若是,则进行下一步骤,若否,则返回上一步骤; g Whether the gesture read is consistent with the gesture to be recognized, if so, proceed to the next step, if not, return to the previous step;

h STM32发出相应信息到手势指令发送模块提示手势识别正确。 h STM32 sends corresponding information to the gesture command sending module to prompt that the gesture recognition is correct.

优选的,所述微开启MPU9150内部DMP包括以下步骤: Preferably, the micro-opening of the MPU9150 internal DMP includes the following steps:

a传感器设定;  a sensor setting;

b传感器设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; b Whether the sensor setting is successful, if so, proceed to the next step, if not, the program enters an endless loop;

c Fifo设定并判断是否成功,若是,则进行下一步骤,若否,则程序进入死循环; c Fifo setting and judging whether it is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

d DMP采样速率设定; d DMP sampling rate setting;

e采样速率设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; e Whether the sampling rate setting is successful, if so, proceed to the next step, if not, the program enters an endless loop;

f开启DMP功能; f Turn on the DMP function;

g开启DMP功能是否成功,若是,则进行下一步骤,若否,则程序进入死 循环; g whether the DMP function is opened successfully, if so, proceed to the next step, if not, the program enters an infinite loop;

h初始方向设定偏差; h initial direction setting deviation;

i初始化方向设定偏差是否成功,若是,则进行下一步骤,若否,则程序进入死循环; i Whether the initialization direction setting deviation is successful, if so, proceed to the next step, if not, the program enters an endless loop;

j DMP使能; j DMP enabled;

k DMP使能是否成功,若是,则进行下一步骤,若否,则程序进入死循环; k Whether the DMP enable is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

l Fifo速度设定;  l Fifo speed setting;

m Fifo速度设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; m Whether the Fifo speed setting is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

n DMP自测; n DMP self-test;

o DMP自测是否成功,若是,则进行下一步骤,若否,则程序进入死循环; o Whether the DMP self-test is successful, if so, go to the next step, if not, the program enters an endless loop;

p开启DMP成功。 p Enable DMP successfully.

优选的,所述判断是否是需要识别的手势的过程包括以下步骤: Preferably, the process of judging whether it is a gesture that needs to be recognized includes the following steps:

a读取MPU9150数据; a read MPU9150 data;

b MPU9150起始位置是否在设定起始位置范围内,若是,则进行下一步骤,若否,则返回上一步骤; b Whether the initial position of the MPU9150 is within the range of the set initial position, if yes, proceed to the next step, if not, return to the previous step;

c记下当前位置的欧拉角,加速度,角速度; c Write down the Euler angle, acceleration and angular velocity of the current position;

d延时一小段时间; d Delay for a short period of time;

e再次读取读取MPU9150数据; e read the MPU9150 data again;

f比较两次采集到的数据判断手势是否正确,若是,则进行下一步骤,若否,返回步骤a; f Compare the data collected twice to judge whether the gesture is correct, if so, proceed to the next step, if not, return to step a;

g手势识别结束。 g Gesture recognition ends.

本发明提供的可穿戴智能手环手势识别方法及其装置,通过DMP库驱动MPU9150采集到的数据是已经处理好的数据,可直接得到加速度,角速度,欧拉角,不再需要进行复杂的卡尔曼滤波算法,减轻微处理器的负担,不再需要使用两个微处理器,降低成本。预先在微处理器写入需要判断的动作可以减小手势识别的复杂度,提高手势识别率。 The wearable smart bracelet gesture recognition method and its device provided by the present invention, the data collected by driving the MPU9150 through the DMP library is already processed data, and the acceleration, angular velocity, and Euler angle can be directly obtained, and no complicated Karl The Mann filter algorithm reduces the burden on the microprocessor, no longer needs to use two microprocessors, and reduces the cost. Pre-writing the actions that need to be judged in the microprocessor can reduce the complexity of gesture recognition and improve the gesture recognition rate.

附图说明 Description of drawings

此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中: The accompanying drawings described here are used to provide a further understanding of the present invention, constitute a part of the application, and do not constitute an improper limitation of the present invention. In the accompanying drawings:

图1为本发明实施例的系统原理图; Fig. 1 is the system schematic diagram of the embodiment of the present invention;

图2为手势识别方法的整体工作流程图; Fig. 2 is the overall working flowchart of gesture recognition method;

图3为开启MPU9150内部DMP的流程图; Figure 3 is a flowchart of opening the internal DMP of the MPU9150;

图4为识别手势的流程图。 Fig. 4 is a flowchart of gesture recognition.

具体实施方式 Detailed ways

下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。 The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, where the schematic embodiments and descriptions of the present invention are used to explain the present invention, but not to limit the present invention.

如图1所示,一种可穿戴智能手环手势识别装置,包括位置传感器、微处理器以及手势指令发送模块;所述位置传感器为MP9150模块,所述MPU9150模块集成了三轴陀螺仪,三轴加速度计,三轴磁力计,一个可扩展的数字运动处理器DMP以及一个I2C接口;所述微处理器为STM32F103,所述MPU9150模块通过I2C接口与所述微处理器电连接;所述手势指令发送模块包括手机APP,其通过蓝牙模块与所述微处理器电连接;所示蓝牙模块为CC2540,其通过串口与所述微处理器电连接。 As shown in Figure 1, a wearable smart bracelet gesture recognition device includes a position sensor, a microprocessor and a gesture command sending module; the position sensor is an MP9150 module, and the MPU9150 module integrates a three-axis gyroscope, three Axis accelerometer, three-axis magnetometer, an expandable digital motion processor DMP and an I2C interface; the microprocessor is STM32F103, and the MPU9150 module is electrically connected to the microprocessor through the I2C interface; the gesture The instruction sending module includes a mobile phone APP, which is electrically connected to the microprocessor through a bluetooth module; the bluetooth module shown is CC2540, which is electrically connected to the microprocessor through a serial port.

上述可穿戴智能手环手势识别方法,通过手势指令发送模块发送需要判断的手势到微处理器,微处理器通过DMP库驱动位置传感器采集数据及微处理器通过采集到的数据判断是否是需要识别的手势。 The above-mentioned wearable smart bracelet gesture recognition method sends the gesture that needs to be judged to the microprocessor through the gesture instruction sending module, and the microprocessor drives the position sensor to collect data through the DMP library and the microprocessor judges whether it needs to be recognized through the collected data. gesture.

其中,如图2所示,所述手势识别方法包括以下步骤: Wherein, as shown in Figure 2, the gesture recognition method includes the following steps:

a STM32初始化; a STM32 initialization;

b MPU9150初始化; b MPU9150 initialization;

c STM32将DMP库写入MPU9150; c STM32 writes the DMP library to the MPU9150;

d STM32读取加速度、角速度、四元数,得到欧拉角; d STM32 reads the acceleration, angular velocity, and quaternion to obtain the Euler angle;

e判断手势指令发送模块是否发送指令,若是,则进行下一步骤,若否,则返回上一步骤; e judge whether the gesture instruction sending module sends an instruction, if so, then proceed to the next step, if not, then return to the previous step;

f调用相应手势函数进行判断手势识别; f calls the corresponding gesture function to judge gesture recognition;

g读取到的手势与需要识别的手势是否一致,若是,则进行下一步骤,若否,则返回上一步骤; g Whether the gesture read is consistent with the gesture to be recognized, if so, proceed to the next step, if not, return to the previous step;

h STM32发出相应信息到手势指令发送模块提示手势识别正确。 h STM32 sends corresponding information to the gesture command sending module to prompt that the gesture recognition is correct.

其中,如图3所示,所述开启MPU9150内部DMP包括以下步骤: Wherein, as shown in Figure 3, the described opening MPU9150 internal DMP includes the following steps:

a传感器设定;  a sensor setting;

b传感器设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; b Whether the sensor setting is successful, if so, proceed to the next step, if not, the program enters an endless loop;

c Fifo设定并判断是否成功,若是,则进行下一步骤,若否,则程序进入死循环; c Fifo setting and judging whether it is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

d DMP采样速率设定; d DMP sampling rate setting;

e采样速率设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; e Whether the sampling rate setting is successful, if so, proceed to the next step, if not, the program enters an endless loop;

f开启DMP功能; f Turn on the DMP function;

g开启DMP功能是否成功,若是,则进行下一步骤,若否,则程序进入死循环; g Whether the DMP function is enabled successfully, if so, proceed to the next step, if not, the program enters an infinite loop;

h初始方向设定偏差; h initial direction setting deviation;

i初始化方向设定偏差是否成功,若是,则进行下一步骤,若否,则程序进入死循环; i Whether the initialization direction setting deviation is successful, if so, proceed to the next step, if not, the program enters an endless loop;

j DMP使能; j DMP enabled;

k DMP使能是否成功,若是,则进行下一步骤,若否,则程序进入死循环; k Whether the DMP enable is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

l Fifo速度设定;  l Fifo speed setting;

m Fifo速度设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; m Whether the Fifo speed setting is successful, if so, proceed to the next step, if not, the program enters an infinite loop;

n DMP自测; n DMP self-test;

o DMP自测是否成功,若是,则进行下一步骤,若否,则程序进入死循环; o Whether the DMP self-test is successful, if so, proceed to the next step, if not, the program enters an endless loop;

p开启DMP成功。 p Enable DMP successfully.

其中,如图4所示,所述判断是否是需要识别的手势的过程包括以下步骤: Wherein, as shown in Figure 4, the process of determining whether it is a gesture that needs to be recognized includes the following steps:

a读取MPU9150数据; a read MPU9150 data;

b MPU9150起始位置是否在设定起始位置范围内,若是,则进行下一步骤,若否,则返回上一步骤; b Whether the initial position of the MPU9150 is within the range of the set initial position, if yes, proceed to the next step, if not, return to the previous step;

c记下当前位置的欧拉角,加速度,角速度; c Write down the Euler angle, acceleration and angular velocity of the current position;

d延时一小段时间; d Delay for a short period of time;

e再次读取读取MPU9150数据; e read the MPU9150 data again;

f比较两次采集到的数据判断手势是否正确,若是,则进行下一步骤,若否,返回步骤a; f Compare the data collected twice to judge whether the gesture is correct, if so, proceed to the next step, if not, return to step a;

g手势识别结束。 g Gesture recognition ends.

以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。 The technical solutions provided by the embodiments of the present invention have been introduced in detail above, and the principles and implementation modes of the embodiments of the present invention have been explained by using specific examples in this paper. The descriptions of the above embodiments are only applicable to help understand the embodiments of the present invention At the same time, for those of ordinary skill in the art, according to the embodiment of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the present invention.

Claims (5)

1.一种可穿戴智能手环手势识识别装置,其特征在于: 1. A wearable smart bracelet gesture recognition device, characterized in that: 包括位置传感器、微处理器以及手势指令发送模块; Including position sensor, microprocessor and gesture instruction sending module; 所述位置传感器为MP9150模块,所述MPU9150模块集成了三轴陀螺仪,三轴加速度计,三轴磁力计,一个可扩展的数字运动处理器DMP以及一个I2C接口; The position sensor is an MP9150 module, and the MPU9150 module integrates a three-axis gyroscope, a three-axis accelerometer, a three-axis magnetometer, an expandable digital motion processor DMP and an I2C interface; 所述微处理器为STM32F103,所述MPU9150模块通过I2C接口与所述微处理器电连接; The microprocessor is STM32F103, and the MPU9150 module is electrically connected with the microprocessor through an I2C interface; 所述手势指令发送模块通过蓝牙模块与所述微处理器电连接; The gesture command sending module is electrically connected to the microprocessor through a bluetooth module; 所述蓝牙模块为CC2540,其通过串口与所述微处理器电连接。 The bluetooth module is CC2540, which is electrically connected with the microprocessor through a serial port. 2.一种可穿戴智能手环手势识识别方法,其特征在于包括以下步骤: 2. A wearable intelligent wristband gesture recognition method is characterized in that comprising the following steps: 手势指令发送模块发送需要判断的手势到微处理器,微处理器通过DMP库驱动位置传感器采集数据及微处理器通过采集到的数据判断是否是需要识别的手势。 The gesture command sending module sends the gesture that needs to be judged to the microprocessor, and the microprocessor drives the position sensor to collect data through the DMP library, and the microprocessor judges whether it is a gesture that needs to be recognized through the collected data. 3.如权利要求2所述的可穿戴智能手环手势识识别方法,其特征在于所述手势识别方法包括以下步骤: 3. The wearable smart bracelet gesture recognition method as claimed in claim 2, wherein the gesture recognition method comprises the following steps: a STM32初始化; a STM32 initialization; b MPU9150初始化; b MPU9150 initialization; c STM32将DMP库写入MPU9150; c STM32 writes the DMP library to the MPU9150; d STM32读取加速度、角速度、四元数,得到欧拉角; d STM32 reads the acceleration, angular velocity, and quaternion to obtain the Euler angle; e 判断手势指令发送模块是否发送指令,若是,则进行下一步骤,若否,则返回上一步骤; e judge whether the gesture instruction sending module sends an instruction, if so, proceed to the next step, if not, return to the previous step; f 调用相应手势函数进行判断手势识别; f Call the corresponding gesture function to judge gesture recognition; g 读取到的手势与需要识别的手势是否一致,若是,则进行下一步骤,若否,则返回上一步骤; g Whether the gesture read is consistent with the gesture to be recognized, if so, proceed to the next step, if not, return to the previous step; h STM32发出相应信息到手势指令发送模块提示手势识别正确。 h STM32 sends corresponding information to the gesture command sending module to prompt that the gesture recognition is correct. 4.如权利要求2所述的可穿戴智能手环手势识识别方法,其特征在于所述开启MPU9150内部DMP包括以下步骤: 4. The wearable smart bracelet gesture recognition method according to claim 2, wherein said opening the MPU9150 internal DMP comprises the following steps: a 传感器设定; a sensor setting; b 传感器设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; b Whether the sensor setting is successful, if so, go to the next step, if not, the program enters an endless loop; c Fifo设定并判断是否成功,若是,则进行下一步骤,若否,则程序进入死循环; c Fifo setting and judging whether it is successful, if so, proceed to the next step, if not, the program enters an infinite loop; d DMP采样速率设定; d DMP sampling rate setting; e 采样速率设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; e Whether the sampling rate setting is successful, if so, proceed to the next step, if not, the program enters an infinite loop; f 开启DMP功能; f Turn on the DMP function; g 开启DMP功能是否成功,若是,则进行下一步骤,若否,则程序进入死循环; g Whether the DMP function is enabled successfully, if so, proceed to the next step, if not, the program enters an infinite loop; h 初始方向设定偏差; h initial direction setting deviation; i 初始化方向设定偏差是否成功,若是,则进行下一步骤,若否,则程序进入死循环; i Whether the initialization direction setting deviation is successful, if so, proceed to the next step, if not, the program enters an infinite loop; j DMP使能; j DMP enabled; k DMP使能是否成功,若是,则进行下一步骤,若否,则程序进入死循环; k Whether the DMP enable is successful, if so, proceed to the next step, if not, the program enters an infinite loop; l Fifo速度设定; l Fifo speed setting; m Fifo速度设定是否成功,若是,则进行下一步骤,若否,则程序进入死循环; m Whether the Fifo speed setting is successful, if so, proceed to the next step, if not, the program enters an infinite loop; n DMP自测; n DMP self-test; o DMP自测是否成功,若是,则进行下一步骤,若否,则程序进入死循环; o Whether the DMP self-test is successful, if so, go to the next step, if not, the program enters an endless loop; p 开启DMP成功。 p Open DMP successfully. 5.如权利要求2所述的可穿戴智能手环手势识识别方法,其特征在于所述判断是否是需要识别的手势的过程包括以下步骤: 5. The wearable smart bracelet gesture recognition method according to claim 2, wherein the process of judging whether it is a gesture that needs to be recognized comprises the following steps: a 读取MPU9150数据; a Read MPU9150 data; b MPU9150起始位置是否在设定起始位置范围内,若是,则进行下一步骤,若否,则返回上一步骤; b Whether the initial position of the MPU9150 is within the range of the set initial position, if yes, proceed to the next step, if not, return to the previous step; c 记下当前位置的欧拉角,加速度,角速度; c Write down the Euler angle, acceleration and angular velocity of the current position; d 延时一小段时间; d Delay for a short period of time; e 再次读取读取MPU9150数据; e read the MPU9150 data again; f 比较两次采集到的数据判断手势是否正确,若是,则进行下一步骤,若否,返回步骤a; f Compare the data collected twice to judge whether the gesture is correct, if yes, proceed to the next step, if not, return to step a; g 手势识别结束。 g Gesture recognition ends.
CN201510117688.6A 2015-03-17 2015-03-17 Wearable intelligent bracelet gesture recognition method and device Pending CN104914991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510117688.6A CN104914991A (en) 2015-03-17 2015-03-17 Wearable intelligent bracelet gesture recognition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510117688.6A CN104914991A (en) 2015-03-17 2015-03-17 Wearable intelligent bracelet gesture recognition method and device

Publications (1)

Publication Number Publication Date
CN104914991A true CN104914991A (en) 2015-09-16

Family

ID=54084127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510117688.6A Pending CN104914991A (en) 2015-03-17 2015-03-17 Wearable intelligent bracelet gesture recognition method and device

Country Status (1)

Country Link
CN (1) CN104914991A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106598231A (en) * 2016-11-22 2017-04-26 深圳市元征科技股份有限公司 Gesture identification method and apparatus
CN106774889A (en) * 2016-12-15 2017-05-31 广州大学 The gesture identification method and device of wearable device
CN107247974A (en) * 2017-06-30 2017-10-13 中国科学院计算技术研究所 Fitness sport recognizing method and system based on multisource data fusion
CN108196678A (en) * 2018-01-19 2018-06-22 昆山国显光电有限公司 Gesture operation method and the electronic equipment with gesture operation function
CN109992093A (en) * 2017-12-29 2019-07-09 博世汽车部件(苏州)有限公司 A kind of gesture comparative approach and gesture comparison system
CN109996371A (en) * 2019-04-24 2019-07-09 深圳尚一互联技术有限公司 The method of gesture control light for Intelligent bracelet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336108A (en) * 2013-06-17 2013-10-02 河南省产品质量监督检验院 Wireless measuring and controlling device for cement sample
CN103593055A (en) * 2013-11-27 2014-02-19 北京科技大学 Control system based on gesture controller
CN203838557U (en) * 2014-04-02 2014-09-17 常熟理工学院 A single-legged self-balancing robot
CN104383637A (en) * 2014-12-09 2015-03-04 北京银河润泰科技有限公司 Training assistance equipment and training assistance method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336108A (en) * 2013-06-17 2013-10-02 河南省产品质量监督检验院 Wireless measuring and controlling device for cement sample
CN103593055A (en) * 2013-11-27 2014-02-19 北京科技大学 Control system based on gesture controller
CN203838557U (en) * 2014-04-02 2014-09-17 常熟理工学院 A single-legged self-balancing robot
CN104383637A (en) * 2014-12-09 2015-03-04 北京银河润泰科技有限公司 Training assistance equipment and training assistance method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106598231A (en) * 2016-11-22 2017-04-26 深圳市元征科技股份有限公司 Gesture identification method and apparatus
CN106598231B (en) * 2016-11-22 2019-12-10 深圳市元征科技股份有限公司 gesture recognition method and device
CN106774889A (en) * 2016-12-15 2017-05-31 广州大学 The gesture identification method and device of wearable device
CN106774889B (en) * 2016-12-15 2020-09-11 广州大学 Wearable device gesture recognition method and device
CN107247974A (en) * 2017-06-30 2017-10-13 中国科学院计算技术研究所 Fitness sport recognizing method and system based on multisource data fusion
CN107247974B (en) * 2017-06-30 2020-07-31 中国科学院计算技术研究所 Body-building exercise identification method and system based on multi-source data fusion
CN109992093A (en) * 2017-12-29 2019-07-09 博世汽车部件(苏州)有限公司 A kind of gesture comparative approach and gesture comparison system
CN109992093B (en) * 2017-12-29 2024-05-03 博世汽车部件(苏州)有限公司 Gesture comparison method and gesture comparison system
CN108196678A (en) * 2018-01-19 2018-06-22 昆山国显光电有限公司 Gesture operation method and the electronic equipment with gesture operation function
CN109996371A (en) * 2019-04-24 2019-07-09 深圳尚一互联技术有限公司 The method of gesture control light for Intelligent bracelet

Similar Documents

Publication Publication Date Title
CN104914991A (en) Wearable intelligent bracelet gesture recognition method and device
US10055563B2 (en) Air writing and gesture system with interactive wearable device
US20140002338A1 (en) Techniques for pose estimation and false positive filtering for gesture recognition
EP3073351A1 (en) Controlling a wearable device using gestures
CN107924286B (en) Electronic device and input method of electronic device
US20150177945A1 (en) Adapting interface based on usage context
CN109933191B (en) Gesture recognition and control method and system
US10901529B2 (en) Double-tap event detection device, system and method
JP2014095766A5 (en)
US9885734B2 (en) Method of motion processing and related mobile device and microcontroller unit
CN204009751U (en) Gesture identifying device
CN104965667A (en) Method and mobile terminal for controlling screen-on of mobile terminal
CN113498502A (en) Gesture detection using external sensors
CN106178538A (en) A kind of intelligent toy control system based on attitude detection and method
CN106774889A (en) The gesture identification method and device of wearable device
CN106383644A (en) Voice recognition starting method and device of electronic equipment
CN111524528A (en) Voice wake-up method and device for anti-recording detection
CN113977588B (en) Gesture recognition method and device for intelligent bionic hand, terminal and storage medium
CN116737290A (en) Finger joint knocking event identification method and electronic equipment
WO2021244650A1 (en) Control method and device, terminal and storage medium
WO2022228212A1 (en) Gesture interaction method, system, and apparatus
US9781475B2 (en) Information processing method, system and electronic device
US20150193232A1 (en) Systems and methods for processing sensor data with a state machine
CN114787863A (en) Electronic device and method for capturing operation screen of electronic device
WO2018014432A1 (en) Voice application triggering control method, device and terminal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Liu Changhong

Inventor after: Chen Haibing

Inventor after: Tan Ziwei

Inventor after: Zhang Hongkang

Inventor after: Dan Xiaoming

Inventor after: Yan Yier

Inventor before: Chen Haibing

Inventor before: Liu Changhong

Inventor before: Tan Ziwei

Inventor before: Zhang Hongkang

Inventor before: Dan Xiaoming

Inventor before: Yan Yier

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20150916

RJ01 Rejection of invention patent application after publication