CN104901556B - Synchronous rectification control method capable of programming dead time and synchronous rectification controller - Google Patents
Synchronous rectification control method capable of programming dead time and synchronous rectification controller Download PDFInfo
- Publication number
- CN104901556B CN104901556B CN201410082752.7A CN201410082752A CN104901556B CN 104901556 B CN104901556 B CN 104901556B CN 201410082752 A CN201410082752 A CN 201410082752A CN 104901556 B CN104901556 B CN 104901556B
- Authority
- CN
- China
- Prior art keywords
- signal
- pin
- voltage
- dead time
- synchronous rectification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000005070 sampling Methods 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 238000004088 simulation Methods 0.000 claims 2
- 230000009466 transformation Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
- Rectifiers (AREA)
Abstract
可编程停滞时间的同步整流控制方法以及同步整流控制器。实施例提供一种同步整流控制方法,包含有:提供一同步整流控制器,其具有一第一引脚;采样该第一引脚上的一引脚电压,以产生一采样电压;于产生该采样电压之后,提供一检测电流,从该同步整流控制器,流出该第一引脚;依据该采样电压以及该引脚电压,产生数个数字的停滞时间控制信号,并依据该等停滞时间控制信号,控制一整流开关,以决定该整流开关的一停滞时间。
A synchronous rectification control method with programmable dead time and a synchronous rectification controller. An embodiment provides a synchronous rectification control method, comprising: providing a synchronous rectification controller having a first pin; sampling a pin voltage on the first pin to generate a sampling voltage; after generating the sampling voltage, providing a detection current, which flows out of the first pin from the synchronous rectification controller; generating a plurality of digital dead time control signals according to the sampling voltage and the pin voltage, and controlling a rectification switch according to the dead time control signals to determine a dead time of the rectification switch.
Description
技术领域technical field
本发明大致涉及电源供应器的同步整流的控制方法与控制器。The present invention generally relates to a control method and a controller for synchronous rectification of a power supply.
背景技术Background technique
电源供应器除了要求有精准的输出电压或是输出电流之外,能量转换效率(powerconversion efficiency)往往也是业界非常在乎的规格之一。In addition to requiring precise output voltage or output current for power supplies, power conversion efficiency (power conversion efficiency) is often one of the specifications that the industry cares about most.
图1为已知的一返驰式(flyback)开关式电源供应器10,作为开关式电源供应器的一例子。脉冲宽度调制控制器14使功率开关20导通时,输入电源VIN与输入地26使变压器18储能;功率开关20关闭时,变压器18通过整流二极管12对输出电容17与负载16释放能量,以建立输出电源OUT(具有输出电压VOUT)与输出地28。通过适当的回馈路径,脉冲宽度调制控制器14可以调整功率开关20的工作周期(duty cycle),使输出电源OUT符合想要的规格。FIG. 1 shows a known flyback switch mode power supply 10 as an example of a switch mode power supply. When the pulse width modulation controller 14 turns on the power switch 20, the input power supply V IN and the input ground 26 enable the transformer 18 to store energy; when the power switch 20 is turned off, the transformer 18 releases energy to the output capacitor 17 and the load 16 through the rectifier diode 12, To establish an output power supply OUT (having an output voltage V OUT ) and an output ground 28 . With an appropriate feedback path, the PWM controller 14 can adjust the duty cycle of the power switch 20 to make the output power OUT meet the desired specification.
所有变压器18输出到输出电容17与负载16的次级侧电流ISEC,都必需经过整流二极管12。整流二极管12的顺向偏压大约是1V,固定地耗损能量。为了降低整流二极管12的能量耗损,增加能量转换效率,所以已知技术中,如同图2所示,已经发展了以一个整流开关24取代整流二极管12。这样的技术称为同步整流(synchronous rectification,SR)。开关式电源供应器30中的整流开关24需要被适当地控制,来模仿图1中的整流二极管12的动作。当功率开关20导通、变压器18储能时,整流开关24关闭。当变压器18处于放电状态释能时,整流开关24导通,提供一个低电阻低耗能的放电路径,让变压器18对输出电容17充电。当变压器18放电完毕后,整流开关24也需要关闭,预防输出电源OUT对变压器18储能。All the secondary side current I SEC output from the transformer 18 to the output capacitor 17 and the load 16 must pass through the rectifier diode 12 . The rectifier diode 12 is forward biased at approximately 1V, dissipating energy at a constant rate. In order to reduce the energy loss of the rectifier diode 12 and increase the energy conversion efficiency, in the known technology, a rectifier switch 24 has been developed to replace the rectifier diode 12 as shown in FIG. 2 . Such a technique is called synchronous rectification (synchronous rectification, SR). The rectifier switch 24 in the switching mode power supply 30 needs to be properly controlled to mimic the action of the rectifier diode 12 in FIG. 1 . When the power switch 20 is turned on and the transformer 18 is storing energy, the rectifier switch 24 is turned off. When the transformer 18 is in a discharge state and discharges energy, the rectifier switch 24 is turned on, providing a low-resistance and low-energy discharge path, allowing the transformer 18 to charge the output capacitor 17 . When the transformer 18 is fully discharged, the rectifier switch 24 also needs to be closed to prevent the output power OUT from storing energy on the transformer 18 .
一般而言,在变压器18还没有放电完毕之前,整流开关24就需要关闭,可以预防炸机。在此说明书中,整流开关24关闭后到变压器18完全放电完毕的这段时间,称为停滞时间(dead time)TDEAD。停滞时间TDEAD需要非常小心的控制。如果停滞时间太长,就得不到降低能量耗损的好处。如果停滞时间变成负值,意味着万一整流开关24还在开启时间时,功率开关20就切换成导通,则开关式电源供应器30有炸机的危险。随着系统不同,停滞时间TDEAD的需求也往往不同,因此,停滞时间TDEAD最好能够由系统厂商设定,可以编程。Generally speaking, before the transformer 18 is fully discharged, the rectifier switch 24 needs to be closed, which can prevent the machine from blowing up. In this specification, the period from the closing of the rectifier switch 24 to the complete discharge of the transformer 18 is called dead time T DEAD . The dead time T DEAD needs to be controlled very carefully. If the stagnation time is too long, the benefit of reducing energy consumption will not be obtained. If the dead time becomes a negative value, it means that if the rectifier switch 24 is still on, the power switch 20 is turned on, and the switch mode power supply 30 is in danger of blowing up. Depending on the system, the requirements for the dead time T DEAD are often different. Therefore, the dead time T DEAD is preferably set by the system manufacturer and can be programmed.
当控制整流开关24的一同步整流控制器以集成电路呈现时,如何使同步整流控制器的引脚数目最少化,同时提供适切的可编程的停滞时间,便是业界努力的课题。When a synchronous rectifier controller controlling the rectifier switch 24 is presented as an integrated circuit, how to minimize the number of pins of the synchronous rectifier controller while providing an appropriate programmable dead time is a subject of great effort in the industry.
发明内容Contents of the invention
实施例提供一种同步整流控制方法,包含有:提供一同步整流控制器,其具有一第一引脚;采样该第一引脚上的一引脚电压,以产生一采样电压;在产生该采样电压之后,提供一检测电流,从该同步整流控制器,流出该第一引脚;依据该采样电压以及该引脚电压,产生数个数字的停滞时间控制信号,并依据该等停滞时间控制信号,控制一整流开关,以决定该整流开关的一停滞时间。The embodiment provides a synchronous rectification control method, including: providing a synchronous rectification controller having a first pin; sampling a pin voltage on the first pin to generate a sampling voltage; generating the After the voltage is sampled, a detection current is provided to flow out of the first pin from the synchronous rectification controller; several digital dead time control signals are generated according to the sampled voltage and the pin voltage, and are controlled according to the dead time signal to control a rectifier switch to determine a dead time of the rectifier switch.
实施例提供一种同步整流控制器,用以控制一整流开关。该同步整流控制器包含有一第一引脚、一电流源、一采样电路、一误差放大器、以及一模拟数字转换器。该电流源可选择性的提供一检测电流,流出该第一引脚。该采样电路连接至该第一引脚,用以采样该第一引脚上的一引脚电压,以产生一采样电压。该误差放大器架构来于该检测电流被提供时,依据该引脚电压以及采样电压,产生一模拟的误差信号。该模拟数字转换器架构来将该误差信号转换成数个数字的停滞时间控制信号。该等停滞时间控制信号可以决定该整流开关的一停滞时间。The embodiment provides a synchronous rectification controller for controlling a rectification switch. The synchronous rectification controller includes a first pin, a current source, a sampling circuit, an error amplifier, and an analog-to-digital converter. The current source can selectively provide a detection current to flow out of the first pin. The sampling circuit is connected to the first pin for sampling a pin voltage on the first pin to generate a sampling voltage. The error amplifier structure is used to generate an analog error signal according to the pin voltage and the sampling voltage when the detection current is provided. The ADC architecture is used to convert the error signal into a number of digital dead-time control signals. The dead time control signals can determine a dead time of the rectifier switch.
附图说明Description of drawings
图1为已知的一返驰式开关式电源供应器。FIG. 1 is a known flyback switching power supply.
图2为已知的一同步整流电源供应器。FIG. 2 is a known synchronous rectification power supply.
图3为依序本发明的一实施例的一返驰式开关式电源供应器。FIG. 3 is a flyback switching power supply according to an embodiment of the present invention.
图4举例图3中的同步整流控制器42中的部分电路以及电阻90与92。FIG. 4 illustrates part of the circuit and the resistors 90 and 92 in the synchronous rectification controller 42 in FIG. 3 .
图5为一信号波形图,相关于图4中的一些信号。FIG. 5 is a signal waveform diagram related to some signals in FIG. 4 .
图6显示依据本发明所实施的一控制方法。FIG. 6 shows a control method implemented according to the present invention.
图7显示同步整流控制器42中,关于整流开关24的开启时间控制电路。FIG. 7 shows the turn-on time control circuit of the rectifier switch 24 in the synchronous rectifier controller 42 .
图8为图7中的一些信号时序图。FIG. 8 is a timing diagram of some signals in FIG. 7 .
【符号说明】【Symbol Description】
10 开关式电源供应器10 Switch Mode Power Supplies
12 整流二极管12 rectifier diode
14 脉冲宽度调制控制器14 Pulse Width Modulation Controller
16 负载16 load
17 输出电容17 Output capacitance
18 变压器18 Transformers
20 功率开关20 power switch
24 整流开关24 rectifier switch
26 输入地26 input ground
28 输出地28 output ground
30 开关式电源供应器30 Switch Mode Power Supplies
37 体二极管37 body diode
39 检测电阻39 sense resistor
40 开关式电源供应器40 Switch Mode Power Supplies
42 同步整流控制器42 synchronous rectification controller
44 时序提供装置44 Timing providing device
46 放电时间记录器46 Discharge time recorder
47 更新装置47 Updating the device
48a、48b 开关48 a , 48 b switch
50a 电容50 A capacitance
50b 记录电容50 b recording capacitor
52 电容52 capacitance
53 开关53 switch
56 电压电流转换器56 Voltage to Current Converter
58 启动器58 launcher
60 逻辑电路60 logic circuits
62 比较器62 comparators
90、92 电阻90, 92 resistors
102 电流源102 current source
104 开关104 switch
105 开关105 switch
106 采样电路106 sampling circuit
108 比较器108 Comparators
110 运算放大器110 operational amplifier
112 模拟数字转换器112 Analog to Digital Converter
114 可变电阻114 variable resistor
140、142、144、146、148、150、152 步骤140, 142, 144, 146, 148, 150, 152 steps
DB0、DB1、DB2 数字信号DB0, DB1, DB2 digital signal
DRV 引脚DRV pin
DTB0、DTB1、DTB2 停滞时间控制信号DTB0, DTB1, DTB2 dead time control signals
EN/DT 引脚EN/DT pin
GND 引脚GND pin
ICHG 充电电流I CHG charging current
ISEC 次级侧电流I SEC secondary side current
ISET 检测电流 ISET detection current
OUT 输出电源OUT output power
SBIAS 信号S BIAS signal
SDRV 栅极信号S DRV gate signal
SEN-BIAS 致能信号S EN-BIAS enabling signal
SINI 起始信号S INI start signal
SNB 顺偏压信号S NB forward bias signal
SSAMPLE 信号S SAMPLE signal
SUPD 更新信号S UPD update signal
SYN 引脚SYN pin
tSTART 开始时间t START start time
t0、t1、t2、t4、t5、t6 时间点t 0 , t 1 , t 2 , t 4 , t 5 , t 6 time points
TDEAD 停滞时间T DEAD dead time
TDIS 放电时间T DIS discharge time
TSAMPLE 采样时段T SAMPLE sampling period
TSET 设定时段T SET setting period
VCC 引脚VCC pin
VDS-NO-SYNC 参考信号V DS-NO-SYNC reference signal
VENDT 引脚电压 VENDT pin voltage
VENDT_SEN 误差信号V ENDT_SEN error signal
VQUESS 预估时间信号V QUESS estimated time signal
VIN 输入电源V IN input power supply
VOUT 输出电压V OUT output voltage
VRAISED 电压V RAISED voltage
VREAL 当下时间信号V REAL current time signal
VREF 参考电压V REF reference voltage
VSEC 次级侧电压V SEC Secondary side voltage
VSPL 采样电压V SPL sampling voltage
VSYN 电压V SYN voltage
具体实施方式detailed description
在本说明书中,有一些相同的符号,其表示具有相同或是类似的结构、功能、原理的元件,且本领域技术人员可以依据本说明书的教导而推知。为说明书的简洁度考虑,相同的符号的元件将不再重述。In this specification, there are some same symbols, which represent elements with the same or similar structure, function, and principle, and those skilled in the art can infer based on the teaching of this specification. For the sake of brevity in the description, elements with the same symbols will not be repeated.
尽管本说明书以一返驰式开关式电源供应器作为一实施例,但本发明并不限于此。举例来说,本发明也可实施于降压(buck)电源供应器、升压电源供应器(booster)、或是降升压电源供应器(buck-booster)。Although this description takes a flyback switching power supply as an example, the present invention is not limited thereto. For example, the present invention can also be implemented in a buck power supply, a booster power supply, or a buck-booster power supply.
图3为依序本发明的一实施例的一返驰式开关式电源供应器40,其具有一同步整流控制器42,控制整流开关24。在此实施例中,同步整流控制器42为封装好的一集成电路,具有引脚SYN、DRV、VCC、EN/DT以及GND。在不用来限制本发明的图3中,整流开关24以具有寄生的一体二极管(bodydiode)37的PMOS晶体管为例子。体二极管37连接于整流开关24的体极(body)与漏极(drain)之间。同步整流控制器42的引脚VCC连接到通过整流开关24整流过的输出电源OUT,也是整流开关24的源极(source)。同步整流控制器42的引脚SYN,通过检测电阻39,连接到整流开关24的漏极(drain)。整流开关24的源极短路到体极。同步整流控制器42的引脚GND连接到输出地28。FIG. 3 shows a flyback switching power supply 40 according to an embodiment of the present invention, which has a synchronous rectification controller 42 controlling the rectification switch 24 . In this embodiment, the synchronous rectification controller 42 is a packaged integrated circuit with pins SYN, DRV, VCC, EN/DT and GND. In FIG. 3 , which does not limit the invention, the rectifier switch 24 is exemplified by a PMOS transistor with a parasitic body diode 37 . The body diode 37 is connected between the body and the drain of the rectifier switch 24 . The pin VCC of the synchronous rectification controller 42 is connected to the output power OUT rectified by the rectification switch 24 , which is also the source of the rectification switch 24 . The pin SYN of the synchronous rectification controller 42 is connected to the drain of the rectification switch 24 through the sense resistor 39 . The source of the rectifier switch 24 is shorted to the body. The pin GND of the synchronous rectification controller 42 is connected to the output ground 28 .
同步整流控制器42的引脚EN/DT为一多功能引脚,可以提供致能以及停滞时间设定的两种功能。电阻90与92串连于输出电压VOUT与输出地28之间,而引脚EN/DT为电阻90与92之间的连接点。适当的选择电阻90与92的电阻值,可以大约设定同步整流控制器42致能的条件以及停滞时间。The pin EN/DT of the synchronous rectification controller 42 is a multi-function pin, which can provide two functions of enabling and dead time setting. The resistors 90 and 92 are connected in series between the output voltage V OUT and the output ground 28 , and the pin EN/DT is the connecting point between the resistors 90 and 92 . Properly selecting the resistance values of the resistors 90 and 92 can approximately set the enabling condition and dead time of the synchronous rectification controller 42 .
图4举例图3中的同步整流控制器42中的部分电路以及电阻90与92。FIG. 4 illustrates part of the circuit and the resistors 90 and 92 in the synchronous rectification controller 42 in FIG. 3 .
比较器108比较引脚EN/DT上的引脚电压VENDT与一参考电压VREF,据以提供致能信号SEN-BIAS。当引脚电压VENDT超过参考信号VREF时,致能信号SEN-BIAS致能,同步整流控制器42才开始使内部的电路工作,提供适当的时序。譬如说,在致能信号SEN-BIAS致能后,同步整流控制器42先进行内部停滞时间TDEAD的设定,然后才开始开关同步整流开关24。The comparator 108 compares the pin voltage V ENDT on the pin EN/DT with a reference voltage V REF to provide the enable signal S EN-BIAS . When the pin voltage V ENDT exceeds the reference signal V REF , the enable signal S EN-BIAS is enabled, and the synchronous rectification controller 42 starts to operate the internal circuit to provide proper timing. For example, after the enabling signal S EN-BIAS is enabled, the synchronous rectification controller 42 first sets the internal dead time T DEAD before starting to switch the synchronous rectification switch 24 .
电流源102提供了检测电流ISET。当信号SBIAS致能,开关104导通时,检测电流ISET可以流出引脚EN/DT,成为电流IB,拉高引脚电压VENDT。The current source 102 provides a detection current I SET . When the signal S BIAS is enabled and the switch 104 is turned on, the detection current I SET can flow out of the pin EN/DT to become the current I B , which pulls up the pin voltage V ENDT .
采样电路106在信号SBIAS禁能,开关105关闭时,采样电压VSPL可以是引脚电压VENDT的一个采样结果。When the sampling circuit 106 is disabled with the signal S BIAS and the switch 105 is closed, the sampling voltage V SPL may be a sampling result of the pin voltage V ENDT .
运算放大器110以及周边的电阻可以构成一个误差放大器。采样电压VSPL与引脚电压VENDT-的差,将被比例的放大,产生模拟的误差信号VENDT_SEN。The operational amplifier 110 and surrounding resistors can form an error amplifier. The difference between the sampling voltage V SPL and the pin voltage VENDT- will be proportionally amplified to generate an analog error signal VENDT_SEN.
模拟数字转换器112可以将误差信号VENDT_SEN转换成数个数字信号DB0、DB1与DB2。数个锁存电路可以锁存数字信号DB0、DB1与DB2,产生数字的停滞时间控制信号DTB0、DTB1与DTB2。在一实施例中,当停滞时间控制信号产生后,检测电流ISET即可停止。在一实施例中,当内部停滞时间TDEAD的设定完成后,停滞时间控制信号DTB0、DTB1与DTB2是维持不变。The analog-to-digital converter 112 can convert the error signal VENDT_SEN into a plurality of digital signals DB0 , DB1 and DB2 . Several latch circuits can latch the digital signals DB0, DB1 and DB2 to generate digital dead-time control signals DTB0, DTB1 and DTB2. In one embodiment, after the dead time control signal is generated, the detection current I SET can be stopped. In one embodiment, after the setting of the internal dead time T DEAD is completed, the dead time control signals DTB0 , DTB1 and DTB2 remain unchanged.
可变电阻114的电阻值由停滞时间控制信号DTB0、DTB1与DTB2所决定,如同图4所示。The resistance value of the variable resistor 114 is determined by the dead time control signals DTB0 , DTB1 and DTB2 , as shown in FIG. 4 .
图5为一信号波形图,相关于图4中的一些信号。FIG. 5 is a signal waveform diagram related to some signals in FIG. 4 .
在开始时间tSTART,随着输出电压VOUT的上升,引脚电压VENDT超过参考电压VREF,所以致能信号SEN-BIAS变成致能。同步整流控制器42被致能,所以依序产生了采样时段TSAMPLE以及设定时段TSET。At the start time t START , as the output voltage V OUT rises, the pin voltage V ENDT exceeds the reference voltage V REF , so the enable signal S EN-BIAS becomes enabled. The synchronous rectification controller 42 is enabled, so the sampling period T SAMPLE and the setting period T SET are sequentially generated.
在采样时段TSAMPLE中,信号SSAMPLE致能,信号SBIAS禁能,检测电流ISET无法流出引脚EN/DT。此时,引脚电压VENDT大约与输出电压VOUT成比例,而采样电压VSPL大约等于引脚电压VENDT。也因此,误差信号VENDT_SEN大约为0。举例来说,此时引脚电压VENDT=VOUT*R92/(R90+R92),其中R90与R92分别为电阻90与92的电阻值。During the sampling period T SAMPLE , the signal S SAMPLE is enabled, the signal S BIAS is disabled, and the detection current I SET cannot flow out of the pin EN/DT. At this time, the pin voltage VENDT is approximately proportional to the output voltage VOUT , and the sampling voltage VSPL is approximately equal to the pin voltage VENDT. Therefore, the error signal VENDT_SEN is about 0. For example, the pin voltage V ENDT =V OUT *R 92 /(R 90 +R 92 ), where R 90 and R 92 are the resistance values of the resistors 90 and 92 respectively.
在设定时段TSET中,信号SSAMPLE禁能,信号SBIAS致能。此时,检测电流ISET流出引脚EN/DT,所以引脚电压VENDT大约会等于VOUT*R92/(R90+R92)+ISET*(R92||R90),其中,R92||R90表示电阻90与92并联的电阻值。因为信号SSAMPLE禁能,所以采样电压VSPL大致不变,等于VOUT*R92/(R90+R92)。误差信号VENDT_SEN将大约等于ISET*(R92||R90)*K,其中K为运算放大器110以及周边的电阻所构成的误差放大器的电压增益(voltage gain)。此时数字信号DB0、DB1与DB2会反映出误差信号VENDT_SEN的模拟数字转换结果,但是因为锁存电路的阻隔,停滞时间控制信号DTB0、DTB1与DTB2维持在跟采样时段TSAMPLE中一样的状态。During the set period T SET , the signal S SAMPLE is disabled and the signal S BIAS is enabled. At this time, the detection current I SET flows out of the pin EN/DT, so the pin voltage V ENDT is approximately equal to V OUT *R 92 /(R 90 +R 92 )+I SET *(R 92 ||R 90 ), where , R 92 ||R 90 represents the resistance value of resistors 90 and 92 connected in parallel. Because the signal S SAMPLE is disabled, the sampling voltage V SPL is approximately unchanged, which is equal to V OUT *R 92 /(R 90 +R 92 ). The error signal V ENDT_SEN is approximately equal to I SET *(R 92 ||R 90 )*K, where K is the voltage gain of the error amplifier formed by the operational amplifier 110 and the surrounding resistors. At this time, the digital signals DB0, DB1, and DB2 will reflect the analog-to-digital conversion result of the error signal VENDT_SEN, but due to the blocking of the latch circuit, the dead time control signals DTB0, DTB1, and DTB2 maintain the same state as in the sampling period T SAMPLE .
在设定时段TSET之后,信号SSAMPLE致能,信号SBIAS禁能。因此,检测电流ISET停止流出引脚EN/DT。引脚电压VENDT大约与输出电压VOUT成比例,而采样电压VSPL大约等于引脚电压VENDT。信号SSAMPLE的上升沿使得锁存电路锁存了数字信号DB0、DB1与DB2,产生停滞时间控制信号DTB0、DTB1与DTB2。在一实施例中,当停滞时间控制信号产生后,检测电流ISET即可停止。如同图5所示。停滞时间控制信号DTB0、DTB1与DTB2决定了可变电阻114的电阻值。在设定时段TSET之后,如果输出电压VOUT低于参考信号VREF,比较器108便可以据以禁能同步整流控制器42。After the set period T SET , the signal S SAMPLE is enabled and the signal S BIAS is disabled. Therefore, the sense current I SET stops flowing out of the pin EN/DT. The pin voltage V ENDT is approximately proportional to the output voltage V OUT , and the sampling voltage V SPL is approximately equal to the pin voltage V ENDT . The rising edge of the signal S SAMPLE makes the latch circuit latch the digital signals DB0 , DB1 and DB2 to generate dead time control signals DTB0 , DTB1 and DTB2 . In one embodiment, after the dead time control signal is generated, the detection current I SET can be stopped. As shown in Figure 5. The dead time control signals DTB0 , DTB1 and DTB2 determine the resistance value of the variable resistor 114 . After the set period T SET , if the output voltage V OUT is lower than the reference signal V REF , the comparator 108 can disable the synchronous rectification controller 42 accordingly.
在设定时段TSET之后,同步整流控制器42依据可变电阻114,控制同步整流开关24。可变电阻114决定了同步整流开关24的开启时间(On time),也同时决定了同步整流开关24的停滞时间TDEAD。因此,停滞时间TDEAD大致是关联于ISET*(R92||R90)*K。系统厂商可以选择适当的电阻90与92,来设定停滞时间TDEAD。After the set period T SET , the synchronous rectification controller 42 controls the synchronous rectification switch 24 according to the variable resistor 114 . The variable resistor 114 determines the on time (On time) of the synchronous rectification switch 24 , and also determines the dead time T DEAD of the synchronous rectification switch 24 . Therefore, the dead time T DEAD is roughly related to I SET *(R 92 ||R 90 )*K. System manufacturers can select appropriate resistors 90 and 92 to set the dead time T DEAD .
依据以上的分析可知,引脚EN/DT是一多功能引脚。只要选择适当的电阻90与92,便可以决定输出电压VOUT何时可以致能同步整流控制器42,以及停滞时间TDEAD的期望值。According to the above analysis, the pin EN/DT is a multi-function pin. As long as the resistors 90 and 92 are selected properly, the timing of the output voltage V OUT enabling the synchronous rectification controller 42 and the desired value of the dead time T DEAD can be determined.
图6显示依据本发明所实施的一控制方法,其说明请同时参阅图4与图5。FIG. 6 shows a control method implemented according to the present invention, and please refer to FIG. 4 and FIG. 5 for description.
步骤140确认引脚电压VENDT超过参考信号VREF,所以致能同步整流控制器42。Step 140 confirms that the pin voltage V ENDT exceeds the reference signal V REF , so the synchronous rectification controller 42 is enabled.
在步骤142中,引脚电压VENDT被采样,所以产生了采样电压VSPL。In step 142, the pin voltage VENDT is sampled, so that a sampled voltage VSPL is generated.
步骤144提供了检测电流ISET,使其流出引脚EN/DT。因此,引脚电压VENDT会被拉高,变得跟采样电压VSPL不同。Step 144 provides a sense current I SET to flow out of pin EN/DT. Therefore, the pin voltage V ENDT will be pulled high and become different from the sampling voltage V SPL .
步骤146依据引脚电压VENDT与采样电压VSPL的差异,产生误差信号VENDT_SEN。误差信号VENDT_SEN的数字转换结果,在步骤148中被锁存,而产生停滞时间控制信号DTB0、DTB1与DTB2。Step 146 generates an error signal VENDT_SEN according to the difference between the pin voltage VENDT and the sampling voltage VSPL . The digital conversion result of the error signal VENDT_SEN is latched in step 148 to generate dead time control signals DTB0 , DTB1 and DTB2 .
步骤150使检测电流ISET不再流出引脚EN/DT。Step 150 stops the detection current I SET from flowing out of the pin EN/DT.
步骤152依据停滞时间控制信号DTB0、DTB1与DTB2,决定可变电阻114的电阻值,所以决定了同步整流开关24的开启时间(On time),也同时决定了同步整流开关24的停滞时间TDEAD。Step 152 determines the resistance value of the variable resistor 114 according to the dead time control signals DTB0, DTB1 and DTB2, so the on time (On time) of the synchronous rectification switch 24 is determined, and the dead time T DEAD of the synchronous rectification switch 24 is also determined at the same time .
图7显示同步整流控制器42中,关于整流开关24的开启时间控制电路,作为一个例子,说明可变电阻114如何影响停滞时间TDEAD。FIG. 7 shows the turn-on time control circuit of the rectifier switch 24 in the synchronous rectification controller 42 , as an example, how the variable resistor 114 affects the dead time T DEAD .
时序提供装置44依据引脚VCC上的输出电压VOUT与引脚SYN上的电压VSYN,提供顺偏压信号SNB、起始信号SINI、以及更新信号SUPD。放电时间记录器46提供当下时间信号VREAL,其大约表示体二极管37处于顺偏压时的时间,其大约是次级侧电流ISEC大于零的时间,也可以大约是变压器18对输出电容17的放电时间TDIS。记录电容50b提供预估时间信号VQUESS。更新装置47在放电时间TDIS后的一预设时间(稍后将解释),依据当下时间信号VREAL来更新预估时间信号VQUESS,使其逼近当下时间信号VREAL。比较器62与逻辑电路60可以视为一开关控制器,依据预估时间信号VQUESS以及电压VRAISED,在引脚DRV产生栅极信号SDRV,控制整流开关24。The timing providing device 44 provides the forward bias signal S NB , the start signal S INI , and the update signal S UPD according to the output voltage V OUT on the pin VCC and the voltage V SYN on the pin SYN . The discharge time recorder 46 provides the current time signal V REAL , which approximately represents the time when the body diode 37 is in forward bias, which is approximately the time when the secondary side current I SEC is greater than zero, and may also be approximately the time when the transformer 18 is connected to the output capacitor 17 The discharge time T DIS . The recording capacitor 50b provides the estimated time signal V QUESS . The updating device 47 updates the estimated time signal V QUESS according to the current time signal V REAL at a preset time (to be explained later) after the discharge time T DIS so as to approach the current time signal V REAL . The comparator 62 and the logic circuit 60 can be regarded as a switch controller. According to the estimated time signal V QUESS and the voltage V RAISED , the gate signal S DRV is generated at the pin DRV to control the rectifier switch 24 .
预估时间信号VQUESS代表的是体二极管37在此开关周期中,放电时间TDIS的一猜测值。稍后将解释,在此实施例中,预估时间信号VQUESS会用来决定整流开关24关闭的时间点,且预估时间信号VQUESS会随着开关周期的增加,快速地往真实的放电时间TDIS逼近。The estimated time signal V QUESS represents a guess value of the discharge time T DIS of the body diode 37 during the switching cycle. It will be explained later that in this embodiment, the estimated time signal V QUESS will be used to determine the time point at which the rectifier switch 24 is turned off, and the estimated time signal V QUESS will quickly discharge toward the real one as the switching period increases. Time T DIS approaches.
图8为图7中的一些信号时序图,用以解释图7中的一些可能的操作。请同时参阅图3的开关式电源供应器40。FIG. 8 is a timing diagram of some signals in FIG. 7 to explain some possible operations in FIG. 7 . Please also refer to the switch mode power supply 40 in FIG. 3 .
图8的最上面的波形代表输出电压VOUT对次级侧电压VSEC的电压差。在时间点t0,因为图3中的功率开关20转为关闭,次级侧电压VSEC开始高过输出电压VOUT,时序提供装置44提供一脉冲作为起始信号SINI。当次级侧电压VSEC大于输出电压VOUT时,体二极管37处于顺偏压,顺偏压信号SNB为逻辑上的1;相反的,当体二极管37处于逆偏压时,顺偏压信号SNB为逻辑上的0。顺偏压信号SNB为1的时段,可以称之为放电时间TDIS,如同图8所示。在图8中,于时间点t4,体二极管37变为逆偏压,所以顺偏压信号SNB转为逻辑上的0,宣告放电时间TDIS的结束。于时间点t4后的时间点t5,时序提供装置44提供另一脉冲作为更新信号SUPD。The uppermost waveform of FIG. 8 represents the voltage difference of the output voltage V OUT to the secondary side voltage V SEC . At time point t 0 , because the power switch 20 in FIG. 3 is turned off, the secondary side voltage V SEC starts to be higher than the output voltage V OUT , and the timing providing device 44 provides a pulse as the start signal S INI . When the secondary side voltage V SEC is greater than the output voltage V OUT , the body diode 37 is in the forward bias, and the forward bias signal S NB is logic 1; on the contrary, when the body diode 37 is in the reverse bias, the forward bias Signal S NB is logically zero. The period during which the forward bias signal S NB is 1 may be referred to as the discharge time T DIS , as shown in FIG. 8 . In FIG. 8 , at the time point t 4 , the body diode 37 becomes reverse biased, so the forward bias signal S NB turns to logic 0, declaring the end of the discharge time T DIS . At a time point t 5 after the time point t 4 , the timing providing device 44 provides another pulse as the update signal S UPD .
在时间点t0,因为起始信号SINI的脉冲,开关53将当下时间信号VREAL重置为0V。在时间点t1,起始信号SINI的脉冲结束。时间点t0到t1之间的时段,可以称为一启始时间(initialtime)。At time t 0 , the switch 53 resets the current time signal V REAL to 0V due to the pulse of the start signal S INI . At time t 1 , the pulse of start signal S INI ends. The period between the time point t0 and t1 may be called an initial time (initial time).
在时间点t1,电压电流转换器56依据引脚电压VENDT,产生充电电流ICHG,通过可变电阻114,开始对电容52充电,在电容52的一端产生当下时间信号VREAL。当下时间信号VREAL会随着放电时间TDIS增加而上升,直到放电时间TDIS结束。因此,当下时间信号VREAL可以视为一斜坡信号。在时间点t4之后,当下时间信号VREAL维持在其峰值,其代表了体二极管37在此开关周期中,处于顺偏压状态的时段,也就是放电时间TDIS。At time point t 1 , the voltage-to-current converter 56 generates a charging current I CHG according to the pin voltage V ENDT , and starts to charge the capacitor 52 through the variable resistor 114 , and generates a current time signal V REAL at one end of the capacitor 52 . The current time signal V REAL will rise as the discharge time T DIS increases until the discharge time T DIS ends. Therefore, the current time signal V REAL can be regarded as a ramp signal. After the time point t4 , the current time signal V REAL maintains its peak value, which represents the time period when the body diode 37 is in the forward bias state during the switching cycle, that is, the discharge time T DIS .
如同图7所示,电压VRAISED与当下时间信号VREAL,分别表示可变电阻114的两端的电压。在顺偏压信号SNB为逻辑上的1时,因为充电电流ICHG流经可变电阻114,所以电压VRAISED会大于当下时间信号VREAL,如同图8所示。相对于当下时间信号VREAL,电压VRAISED可视为一升压信号。可变电阻114可以视为一偏压提供器,分别提供一偏压(offset voltage),加给当下时间信号VREAL,来产生电压VRAISED。而此偏压的大小,受控于停滞时间控制信号DTB0、DTB1与DTB2。As shown in FIG. 7 , the voltage V RAISED and the current time signal V REAL respectively represent the voltages at both ends of the variable resistor 114 . When the forward bias signal S NB is logic 1, the voltage V RAISED is greater than the current time signal V REAL because the charging current I CHG flows through the variable resistor 114 , as shown in FIG. 8 . Relative to the current time signal V REAL , the voltage V RAISED can be regarded as a boosted signal. The variable resistor 114 can be regarded as a bias voltage provider, respectively providing a bias voltage (offset voltage) to the current time signal V REAL to generate the voltage V RAISED . The magnitude of the bias voltage is controlled by the dead time control signals DTB0, DTB1 and DTB2.
在时间点t1,由于起始信号SINI的脉冲结束,启动器58可以设置(set)逻辑电路60中的SR触发器,使栅极信号SDRV开始为逻辑上的1,如同图8所示。在此实施例中,因为整流开关24为一PMOS晶体管,所以栅极信号SDRV为逻辑上的1时,栅极信号SDRV为一相对的低电压,整流开关24导通;当栅极信号SDRV为逻辑上的0时,栅极信号SDRV为一相对的高电压,整流开关24关闭。整流开关24导通会使输出电压VOUT对次级侧电压VSEC两者的差异突然的减小。图5上也显示了参考信号VDS-NO-SYNC,其表示整流开关24没有导通时,应该的输出电压VOUT对次级侧电压VSEC之间的差异。At time point t1 , since the pulse of the start signal S INI ends, the initiator 58 can set (set) the SR flip-flop in the logic circuit 60, so that the gate signal S DRV starts to be logic 1, as shown in FIG. 8 Show. In this embodiment, since the rectifier switch 24 is a PMOS transistor, when the gate signal S DRV is logic 1, the gate signal S DRV is a relatively low voltage, and the rectifier switch 24 is turned on; When S DRV is logic 0, the gate signal S DRV is a relatively high voltage, and the rectifier switch 24 is turned off. Turning on the rectifier switch 24 will cause the difference between the output voltage V OUT and the secondary side voltage V SEC to suddenly decrease. FIG. 5 also shows the reference signal V DS-NO-SYNC , which represents the difference between the output voltage V OUT and the secondary side voltage V SEC when the rectifier switch 24 is not turned on.
在时间点t2,电压VRAISED超过了预估时间信号VQUESS,所以比较器62重设(reset)逻辑电路60中的SR触发器,使栅极信号SDRV成为逻辑上的0,整流开关24关闭。输出电压VOUT对次级侧电压VSEC的差,此时回复到跟参考信号VDS-NO-SYNC一样。简单来说,当预估时间信号VQUESS与当下时间信号VREAL的差,低于可变电阻114所提供的偏压时,整流开关24关闭。At time t 2 , the voltage V RAISED exceeds the estimated time signal V QUESS , so the comparator 62 resets the SR flip-flop in the logic circuit 60 to make the gate signal S DRV a logic 0, and the rectifier switch 24 off. The difference between the output voltage V OUT and the secondary side voltage V SEC returns to be the same as the reference signal V DS-NO-SYNC at this time. In simple terms, when the difference between the estimated time signal V QUESS and the current time signal V REAL is lower than the bias voltage provided by the variable resistor 114 , the rectifier switch 24 is turned off.
时间点t2到t4之间的时段,如同图8所标示的,为停滞时间TDEAD。The period between time t 2 and time t 4 , as marked in FIG. 8 , is the dead time T DEAD .
在时间点t5,更新信号SUPD的脉冲先关闭开关48a,而后导通开关48b。因此,当开关48a关闭时,电容50a可以先行记忆住当下时间信号VREAL。在开关48b导通时,因为电容50a与50b彼此短路,所以发生了电荷分享(charge sharing),预估时间信号VQUESS因此被更新。举例来说,如果电容50a与50b的电容值大约相等。更新后的预估时间信号VQUESS大约会等于更新前的预估时间信号VQUESS与当下时间信号VREAL的平均,如同图8所示。简单来说,VQUESS=w*VQUESS+(1-w)*VREAL,其中w为介于0与1之间的一比例值,由电容50a与50b的电容值所决定。At time point t 5 , the pulse of the update signal S UPD first turns off the switch 48 a , and then turns on the switch 48 b . Therefore, when the switch 48 a is turned off, the capacitor 50 a can memorize the current time signal V REAL in advance. When the switch 48 b is turned on, since the capacitors 50 a and 50 b are shorted to each other, charge sharing occurs, and the estimated time signal V QUESS is updated accordingly. For example, if the capacitance values of the capacitors 50 a and 50 b are approximately equal. The updated estimated time signal V QUESS is approximately equal to the average of the pre-updated estimated time signal V QUESS and the current time signal V REAL , as shown in FIG. 8 . In simple terms, V QUESS =w * V QUESS +(1-w)*V REAL , wherein w is a proportional value between 0 and 1, which is determined by the capacitance values of the capacitors 50 a and 50 b .
在时间点t6,图3中的功率开关20再度转为关闭,所以起始信号SINI的脉冲出现,顺偏压信号SNB转为逻辑上的1。时间点t0到t6之前的时段,可以视为一个开关周期。在时间点t6之后的开关周期,预估时间信号VQUESS也被更新,继续往当下时间信号VREAL逼近,如同图8所示。At time point t 6 , the power switch 20 in FIG. 3 is turned off again, so the pulse of the start signal S INI appears, and the forward bias signal S NB turns to logic 1. The period before the time point t 0 to t 6 can be regarded as a switching period. In the switching cycle after the time point t6, the estimated time signal V QUESS is also updated, and continues to approach the current time signal V REAL , as shown in FIG. 8 .
从以上电路操作的说明可知,每经过一个开关周期,预估时间信号VQUESS可能以电荷分享的方式,往当下时间信号VREAL的峰值逼近。这样的逼近方式将会非常快速的使预估时间信号VQUESS很接近当下时间信号VREAL。可变电阻114所提供的偏压,可以使得栅极信号SDRV适时地在体二极管37变成逆偏压前就关闭同步整流开关24,增加同步整流的能源转换效率。因此,可变电阻114决定了同步整流开关24的开启时间结束点,所以也决定了停滞时间TDEAD。采用可变电阻114来提供的偏压,也比较不会受到制程、温度等变化所影响。可变电阻114的电阻值,如同先前所述的,可以通过电阻90与92来编程。It can be seen from the description of the circuit operation above that the estimated time signal V QUESS may approach the peak value of the current time signal V REAL by way of charge sharing every time a switching cycle passes. Such an approximation method will make the estimated time signal V QUESS very close to the current time signal V REAL very quickly. The bias voltage provided by the variable resistor 114 can enable the gate signal S DRV to close the synchronous rectification switch 24 before the body diode 37 becomes reverse biased, thereby increasing the energy conversion efficiency of the synchronous rectification. Therefore, the variable resistor 114 determines the end point of the turn-on time of the synchronous rectification switch 24 , thus also determines the dead time T DEAD . The bias voltage provided by the variable resistor 114 is relatively unaffected by process, temperature and other changes. The resistance of variable resistor 114 is programmable via resistors 90 and 92 as previously described.
在稳定状态(负载16长时间不变)时,停滞时间TDEAD的长度,是由可变电阻114的电阻值决定。In a steady state (the load 16 does not change for a long time), the length of the dead time T DEAD is determined by the resistance value of the variable resistor 114 .
以上所述仅为本发明的优选实施例,凡依本发明权利要求书所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410082752.7A CN104901556B (en) | 2014-03-07 | 2014-03-07 | Synchronous rectification control method capable of programming dead time and synchronous rectification controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410082752.7A CN104901556B (en) | 2014-03-07 | 2014-03-07 | Synchronous rectification control method capable of programming dead time and synchronous rectification controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104901556A CN104901556A (en) | 2015-09-09 |
CN104901556B true CN104901556B (en) | 2017-07-21 |
Family
ID=54034008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410082752.7A Active CN104901556B (en) | 2014-03-07 | 2014-03-07 | Synchronous rectification control method capable of programming dead time and synchronous rectification controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104901556B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108390568B (en) * | 2018-04-13 | 2020-10-23 | 成都矽芯科技有限公司 | Synchronous rectification BOOST type power supply modulation circuit using low-voltage PMOS rectifier tube |
CN112583269A (en) * | 2019-09-27 | 2021-03-30 | 通嘉科技(深圳)有限公司 | Power Supplier |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07274494A (en) * | 1994-04-01 | 1995-10-20 | Oki Electric Ind Co Ltd | Switching power circuit of synchronous commutating circuit |
US6961256B2 (en) * | 2004-02-13 | 2005-11-01 | Niko Semiconductor Co., Ltd. | Synchronous rectifier with dead time adjusting function |
CN101232248A (en) * | 2007-10-26 | 2008-07-30 | 崇贸科技股份有限公司 | Synchronous rectification device, circuit and method for flexible switching power converter |
DE102009001531A1 (en) * | 2008-03-13 | 2009-09-17 | Infineon Technologies Austria Ag | Rectifier circuit |
CN201352771Y (en) * | 2008-11-26 | 2009-11-25 | 天宝电子(惠州)有限公司 | Synchronous rectifier circuit |
CN102342007A (en) * | 2009-01-19 | 2012-02-01 | 伟创力国际美国公司 | Controller for a power converter |
-
2014
- 2014-03-07 CN CN201410082752.7A patent/CN104901556B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07274494A (en) * | 1994-04-01 | 1995-10-20 | Oki Electric Ind Co Ltd | Switching power circuit of synchronous commutating circuit |
US6961256B2 (en) * | 2004-02-13 | 2005-11-01 | Niko Semiconductor Co., Ltd. | Synchronous rectifier with dead time adjusting function |
CN101232248A (en) * | 2007-10-26 | 2008-07-30 | 崇贸科技股份有限公司 | Synchronous rectification device, circuit and method for flexible switching power converter |
DE102009001531A1 (en) * | 2008-03-13 | 2009-09-17 | Infineon Technologies Austria Ag | Rectifier circuit |
CN201352771Y (en) * | 2008-11-26 | 2009-11-25 | 天宝电子(惠州)有限公司 | Synchronous rectifier circuit |
CN102342007A (en) * | 2009-01-19 | 2012-02-01 | 伟创力国际美国公司 | Controller for a power converter |
Also Published As
Publication number | Publication date |
---|---|
CN104901556A (en) | 2015-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI514741B (en) | Synchronous rectification control method and synchronous rectification controller capable of providing a programmable dead time | |
US10038382B2 (en) | Current mode 3-state buck-boost PWM control architecture | |
CN108494253B (en) | Hysteretic current mode buck-boost control architecture | |
US9812856B2 (en) | Modulation mode control circuit, switch control circuit including the modulation mode control circuit and power supply device including the switch control circuit | |
US10298110B2 (en) | Power converter controller with stability compensation | |
US20170049150A1 (en) | Power converter, power control circuit and power control method of electronic cigarette | |
TWI613883B (en) | Constant on-time converter having fast transient response | |
CN103856055B (en) | Dc/dc converter and control method thereof | |
US20160006352A1 (en) | Control circuit, switching power supply and control method | |
TWI487258B (en) | Soft start circuit and method for a switching regulator | |
US20150381032A1 (en) | Soft-off control circuit, power converter and associated control method | |
TWI555320B (en) | Method for providing switch-timing, synchronous rectifier controller, and adaptive timing controller | |
TWI473400B (en) | Dc-dc controller and control method thereof | |
CN112865525B (en) | Adaptive frequency adjustment system | |
CN110768533B (en) | Power controller and related control method | |
JP2014161146A (en) | Switching power supply device | |
CN104167905B (en) | Time generator for power converter and time signal generating method | |
TWI454035B (en) | Switching regulator | |
CN104901556B (en) | Synchronous rectification control method capable of programming dead time and synchronous rectification controller | |
TWI548185B (en) | Power control method and related apparatus capable of providing compensation to inductance variation | |
US11165337B2 (en) | Integrated circuit for power factor correction and power supply circuit containing the same | |
TW201545452A (en) | Pulse width modulation controller, voltage regulator and control method thereof | |
KR101822039B1 (en) | Power Converter For Improving Speed of Blocking Inductor Current | |
CN104901564B (en) | Switch timing sequence providing method, synchronous rectification controller and adaptive timing controller | |
KR101583024B1 (en) | Control apparatus of Switching Mode Power Supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |