CN104897655A - Method for rapidly detecting oxygen vacancy in titanium oxide - Google Patents
Method for rapidly detecting oxygen vacancy in titanium oxide Download PDFInfo
- Publication number
- CN104897655A CN104897655A CN201510346373.9A CN201510346373A CN104897655A CN 104897655 A CN104897655 A CN 104897655A CN 201510346373 A CN201510346373 A CN 201510346373A CN 104897655 A CN104897655 A CN 104897655A
- Authority
- CN
- China
- Prior art keywords
- titanium oxide
- oxygen vacancies
- titanium dioxide
- oxygen
- ceramic rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 65
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000001301 oxygen Substances 0.000 title claims abstract description 52
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 23
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title abstract description 39
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 29
- 238000004020 luminiscence type Methods 0.000 claims abstract description 13
- 239000007789 gas Substances 0.000 claims abstract description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 25
- 239000000919 ceramic Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000010453 quartz Substances 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 230000008016 vaporization Effects 0.000 claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 239000012159 carrier gas Substances 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 2
- 238000010998 test method Methods 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims 7
- 239000003708 ampul Substances 0.000 claims 3
- 239000006200 vaporizer Substances 0.000 claims 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical class [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 1
- 150000001455 metallic ions Chemical class 0.000 claims 1
- IYVLHQRADFNKAU-UHFFFAOYSA-N oxygen(2-);titanium(4+);hydrate Chemical compound O.[O-2].[O-2].[Ti+4] IYVLHQRADFNKAU-UHFFFAOYSA-N 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 4
- 238000011156 evaluation Methods 0.000 abstract description 3
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 abstract description 2
- 239000003574 free electron Substances 0.000 abstract description 2
- 230000005283 ground state Effects 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 8
- 238000009834 vaporization Methods 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000000523 sample Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003068 molecular probe Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 241000143437 Aciculosporium take Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000027734 detection of oxygen Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种快速检测氧化钛中氧空位的方法。该方法先将气体分子乙醚和氧气扩散到氧化钛表面;由于氧化钛表面的氧空位具有强吸附氧气分子的能力,吸附到氧空位的氧气通过捕获一个自由电子形成具有较强氧化性的超氧种类(O2 -),然后,化学吸附态的乙醚分子与O2 -反应生成激发态的乙醛分子(CH3CHO*),激发态的乙醛分子回到基态的过程会产生一定的能量,该能量以光学的形式释放出来,由化学发光分析仪检测其发光信号值,根据氧空位的量与发光信号成正比的关系,得到氧化钛中氧空位的值。该方法具有设备简单、快速、易于操作的优点。其对于在缺陷氧化物中具有广泛研究意义的氧空位的评价具有广阔的应用前景。The invention discloses a method for rapidly detecting oxygen vacancies in titanium oxide. In this method, the gas molecule ether and oxygen are first diffused onto the surface of titanium oxide; since the oxygen vacancies on the surface of titanium oxide have a strong ability to adsorb oxygen molecules, the oxygen adsorbed to the oxygen vacancies forms superoxide with strong oxidative properties by capturing a free electron. species (O 2 - ), and then, the chemically adsorbed ether molecules react with O 2 - to generate excited acetaldehyde molecules (CH 3 CHO * ), and the process of returning the excited acetaldehyde molecules to the ground state will generate a certain amount of energy , the energy is released in the form of optics, and the luminescence signal value is detected by a chemiluminescence analyzer. According to the relationship between the amount of oxygen vacancies and the luminescence signal, the value of oxygen vacancies in titanium oxide is obtained. The method has the advantages of simple equipment, rapidity and easy operation. It has broad application prospects for the evaluation of oxygen vacancies, which are widely studied in defect oxides.
Description
技术领域technical field
本发明属于氧化钛催化剂研究领域,具体涉及一种利用氧化钛的氧空位与乙醚催化发光反应的相关性,以乙醚作为分子探针来快速检测氧化钛中氧空位的方法。The invention belongs to the research field of titanium oxide catalysts, and in particular relates to a method for rapidly detecting oxygen vacancies in titanium oxide by utilizing the correlation between oxygen vacancies of titanium oxide and ether-catalyzed luminescent reactions, and using ether as a molecular probe.
背景技术Background technique
氧化钛具有十分优异的光学特性,高的化学稳定性,热稳定性,无毒性且在自然界中储存量大,在很多领域都显示出很好的发展前景。研究发现,氧化钛的性质不仅仅依赖于其几何以及电子结构,同时也受到其缺陷结构的影响。目前,已经有很多的科学工作者致力于氧化钛缺陷的化学、电学以及光学性质研究,以更好的调控氧空位的浓度,从而来促进催化反应。在这些氧化钛的缺陷中,氧空位被认为是有突出研究意义的缺陷。理论计算和实验表征显示,二氧化钛中的氧空位能作为光生电子陷阱,从而有效的增强其光催化活性。因此,有效的评价氧化钛中氧空位的浓度对于通过合适的手段调控氧化钛的性质具有非常重要的意义。Titanium oxide has excellent optical properties, high chemical stability, thermal stability, non-toxicity and large storage capacity in nature, and has shown good development prospects in many fields. The study found that the properties of titanium oxide are not only dependent on its geometry and electronic structure, but also affected by its defect structure. At present, many scientific workers have devoted themselves to the research on the chemical, electrical and optical properties of titanium oxide defects in order to better control the concentration of oxygen vacancies to promote catalytic reactions. Among these TiO defects, oxygen vacancies are considered to be of outstanding research significance. Theoretical calculations and experimental characterization show that the oxygen vacancies in TiO2 can act as photogenerated electron traps, thereby effectively enhancing its photocatalytic activity. Therefore, it is of great significance to effectively evaluate the concentration of oxygen vacancies in titania to regulate the properties of titania by appropriate means.
然而,由于氧空位具有不稳定,浓度低的性质,导致其很难被检测。目前用于氧空位检测的方法主要有表面滴定法,电子顺磁光谱(ESR),X-射线光电子能谱法(XPS)。例如:A.N.Petrov,Solid State Ionics 1995,80,189-199该文献采用表面滴定法,该方法为传统的氧空位定性和定量分析方法,其缺点是当TiO2催化剂颜色较深时,滴定终点容易受到干扰而产生一定的误差。文献Xu,X.Inorg.Chem.2015,54,1556-1562利用电子顺磁光谱(ESR)对氧空位进行了有效的表征,但是通常这种方法对系统的要求比较高,同时需要专业的技术人员操作;文献Murray,C.B.J.Am.Chem.Soc.2012,134,6751-6761采用X-射线光电子能谱法(XPS),利用O 1s的XPS结合能很好的表征了TiO2表面的氧空位,但是这种方法相对成本较高,耗时长,这就限制了该技术的广泛应用性。研究一种快速、简便的评价氧化钛中氧空位的方法是相当重要的。However, oxygen vacancies are difficult to detect due to their unstable and low-concentration nature. The methods currently used for oxygen vacancy detection mainly include surface titration, electron paramagnetic spectroscopy (ESR), and X-ray photoelectron spectroscopy (XPS). For example: AN Petrov, Solid State Ionics 1995, 80, 189-199 This document uses the surface titration method, which is a traditional qualitative and quantitative analysis method for oxygen vacancies. A certain error occurs. Literature Xu, X.Inorg.Chem.2015, 54, 1556-1562 used electron paramagnetic spectroscopy (ESR) to effectively characterize oxygen vacancies, but usually this method has relatively high system requirements and requires professional technology Personnel operation; Literature Murray, CBJAm.Chem.Soc.2012, 134, 6751-6761 uses X-ray photoelectron spectroscopy (XPS), and uses the XPS binding energy of O 1s to characterize the oxygen vacancies on the surface of TiO 2 well, However, this method is relatively expensive and time-consuming, which limits the wide applicability of this technology. It is very important to develop a quick and easy method to evaluate oxygen vacancies in titanium oxide.
发明内容Contents of the invention
本发明的目的是克服现有技术中的不足,提供一种快速检测氧化钛中氧空位的方法,该方法简便、快捷,具有较高的实际应用前景。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a method for rapidly detecting oxygen vacancies in titanium oxide, which is simple and quick, and has high practical application prospects.
该方法以乙醚分子作为探针,利用金属离子掺杂的TiO2以及氢气热处理过的TiO2的催化活性与其氧空位含量的相关性,结合气体催化发光来快速检测氧化钛的氧空位,进而对氧化钛的催化活性进行筛选评价。在气体状态下,首先,气体分子乙醚和氧气扩散到氧化钛表面;氧化钛表面的氧空位具有较强的吸附氧气分子的能力,吸附到氧空位的氧气可以通过捕获一个自由电子形成具有较强氧化性的超氧种类(O2 -),然后,化学吸附态的乙醚分子与O2 -反应生成激发态的乙醛分子(CH3CHO*),激发态的乙醛分子回到基态的过程会产生一定的能量,该能量以光学的形式释放出来,并由光电倍增管放大信号检测。根据氧化钛中氧空位的量与发光信号成正比,通过测定发光信号的强弱,实现氧化钛中氧空位的快速检测,同时可以筛选到适合的氧化钛催化剂。In this method, ether molecules are used as probes, and the correlation between the catalytic activity of TiO 2 doped with metal ions and hydrogen heat-treated TiO 2 and its oxygen vacancy content is used, combined with gas catalytic luminescence to quickly detect the oxygen vacancies of titanium oxide, and then to The catalytic activity of titanium oxide was screened and evaluated. In the gaseous state, firstly, the gas molecules ether and oxygen diffuse to the surface of titanium oxide; the oxygen vacancies on the surface of titanium oxide have a strong ability to adsorb oxygen molecules, and the oxygen adsorbed to the oxygen vacancies can be formed by capturing a free electron. Oxidative superoxide species (O 2 - ), then, chemically adsorbed ether molecules react with O 2 - to generate excited acetaldehyde molecules (CH 3 CHO * ), the process of excited acetaldehyde molecules returning to the ground state A certain amount of energy will be generated, which is released in the form of optics and detected by the amplified signal of the photomultiplier tube. According to the amount of oxygen vacancies in titanium oxide is directly proportional to the luminescent signal, the rapid detection of oxygen vacancies in titanium oxide can be realized by measuring the strength of the luminescent signal, and a suitable titanium oxide catalyst can be screened at the same time.
检测氧化钛中氧空位的装置如图1所示,其中空气泵、气化室、石英管通过硅胶管连接,石英管置于化学发光分析仪中;石英管内有一个可拆卸陶瓷棒,一个接触变压器给陶瓷棒加热;化学发光分析仪与电脑连接。The device for detecting oxygen vacancies in titanium oxide is shown in Figure 1, in which the air pump, vaporization chamber, and quartz tube are connected by a silicone tube, and the quartz tube is placed in a chemiluminescence analyzer; there is a detachable ceramic rod in the quartz tube, and a contact A transformer heats the ceramic rod; a chemiluminescence analyzer is connected to a computer.
氧化钛中氧空位的具体测试方法如下:The specific test method for oxygen vacancies in titanium oxide is as follows:
A.将氧化钛粉末加入去离子水中配成0.50-0.55g/mL的浆液,均匀涂覆到陶瓷棒上,涂覆的厚度为0.45-0.50mm。A. Add titanium oxide powder into deionized water to make a slurry of 0.50-0.55g/mL, and evenly coat it on the ceramic rod with a thickness of 0.45-0.50mm.
所述的氧化钛是掺杂了M金属离子的,M为Cu,Fe,Co,Cr离子之一,M的掺杂量占TiO2的质量百分含量是0.5%-2.0%以及经过250℃-400℃氢气气氛下焙烧处理30-60分钟的氧化钛。The titanium oxide is doped with M metal ions, M is one of Cu, Fe, Co, Cr ions, the doping amount of M accounts for 0.5%-2.0% of the mass percentage of TiO 2 and after 250 ° C Titanium oxide calcined for 30-60 minutes under hydrogen atmosphere at -400°C.
B.待步骤A陶瓷棒上的浆液微干,将陶瓷棒装入化学发光分析仪器内部的石英管中;除去空气泵中的水、用经活性炭过滤后的空气作为反应的载气,控制流速在200-300mL/min,使得气体流速均匀的通过石英管中陶瓷棒的表面;用接触变压器给陶瓷棒施以100-110V的电压,将陶瓷棒的温度升至检测的温度150-200℃;B. When the slurry on the ceramic rod in step A is slightly dry, put the ceramic rod into the quartz tube inside the chemiluminescence analysis instrument; remove the water in the air pump, use the air filtered by activated carbon as the carrier gas for the reaction, and control the flow rate At 200-300mL/min, make the gas flow rate evenly pass through the surface of the ceramic rod in the quartz tube; use a contact transformer to apply a voltage of 100-110V to the ceramic rod, and raise the temperature of the ceramic rod to the detected temperature of 150-200°C;
C.开启汽化室内升温度装置使温度升至150-200℃,将0.1摩尔乙醚溶液注入汽化室中,空气泵中的空气流经汽化室并将其中汽化的乙醚带入石英管,乙醚与陶瓷棒上的氧化钛反应并产生发光,由化学发光分析仪采集数据,记录并分析数据。根据氧化钛中氧空位的量与反应产生的发光信号成正比的现象,从而可比较氧化钛催化剂中氧空位含量的高低。C. Turn on the temperature raising device in the vaporization chamber to raise the temperature to 150-200°C, inject 0.1 mole ether solution into the vaporization chamber, the air in the air pump flows through the vaporization chamber and bring the vaporized ether into the quartz tube, ether and ceramics The titanium oxide on the rod reacts and produces luminescence, and the data is collected, recorded and analyzed by a chemiluminescence analyzer. According to the phenomenon that the amount of oxygen vacancies in titanium oxide is directly proportional to the luminescent signal generated by the reaction, the content of oxygen vacancies in titanium oxide catalysts can be compared.
所述的汽化室是外部有加热套的体积为1-2mL的金属容器。The vaporization chamber is a metal container with a volume of 1-2 mL with a heating jacket outside.
图2显示的是不同质量分数的Cu掺杂氧化钛的催化发光信号,随着Cu掺杂含量的增多,化学发光信号值呈现先升高后降低的趋势,这一趋势与表1所示Cu掺杂氧化钛样品中氧空位的含量的变化趋势是一致的;图3显示的是Cu,Fe,Co,Cr四种金属离子掺杂的氧化钛的催化发光信号,其中Cu/TiO2发光信号最高,依次为Co/TiO2,Fe/TiO2,Cr/TiO2;图4显示的是氢气气氛下不同温度焙烧处理后的氧化钛样品的化学发光信号,化学发光信号强度随着焙烧温度的升高呈现增大趋势。Figure 2 shows the catalytic luminescence signals of Cu-doped titania with different mass fractions. With the increase of Cu-doped content, the chemiluminescence signal values show a trend of first increasing and then decreasing. This trend is consistent with that of Cu in Table 1. The change trend of the content of oxygen vacancies in doped titanium oxide samples is consistent; Fig. 3 shows the catalytic luminescence signals of titanium oxide doped with Cu, Fe, Co and Cr four metal ions, in which Cu/TiO 2 luminescence signal The highest, followed by Co/TiO 2 , Fe/TiO 2 , Cr/TiO 2 ; Figure 4 shows the chemiluminescence signals of titanium oxide samples calcined at different temperatures under hydrogen atmosphere, the chemiluminescence signal intensity varies with the calcining temperature There is an increasing trend.
本发明的有益效果是:采用乙醚作为分子探针来快速评价氧化钛中氧空位的方法,这种方法简便、快捷,同时设备简单、成本低、反应时间短,可广泛应用于氧化钛中氧空位的评价。The beneficial effects of the present invention are: using ether as a molecular probe to quickly evaluate the oxygen vacancy method in titanium oxide. Evaluation of the vacancy.
附图说明Description of drawings
图1氧化钛催化剂中氧空位评价的反应装置图。Figure 1 Schematic diagram of the reaction setup for the evaluation of oxygen vacancies in titania catalysts.
1为空气泵,2为气化室,3为化学发光分析仪,4为电脑,5为石英管,6为陶瓷加热棒,7为变压器。1 is an air pump, 2 is a gasification chamber, 3 is a chemiluminescence analyzer, 4 is a computer, 5 is a quartz tube, 6 is a ceramic heating rod, and 7 is a transformer.
图2实施例1中氧化钛中Cu掺杂量与催化发光信号的对应图。Fig. 2 is a graph corresponding to Cu doping amount in titanium oxide and catalytic luminescence signal in Example 1.
图3实施例2中氧化钛中掺杂的金属离子与催化发光信号的对应图。Fig. 3 is a corresponding graph of metal ions doped in titanium oxide and catalytic luminescence signals in Example 2.
图4实施例3中氧化钛在氢气中的焙烧温度与催化发光信号的对应图。Fig. 4 is a graph corresponding to the calcination temperature of titanium oxide in hydrogen and the catalytic luminescent signal in Example 3.
具体实施方式Detailed ways
实施例1Example 1
采用图1所述实验装置。The experimental setup described in Figure 1 was used.
A.取不掺杂的TiO2以及1.0%,1.5%,2.0%Cu掺杂的TiO2粉末分别加入去离子水中搅拌均匀,配成0.50g/mL的浆液;将其涂抹在陶瓷棒上且厚度约为0.50mm,将陶瓷棒插入到石英管中,对陶瓷棒施以105V电压,然后用经空气泵中硅胶,活性炭处理过的空气作为反应的载气通气30min,气体流速为250mL/min,当陶瓷棒的温度达到170℃时,启动气化室升温装置,至汽化室温度为170℃。保证化学发光分析仪的稳定运行。A. Take undoped TiO 2 and 1.0%, 1.5%, 2.0% Cu-doped TiO 2 powder and add them into deionized water and stir evenly to make a 0.50g/mL slurry; apply it on the ceramic rod and The thickness is about 0.50mm, insert the ceramic rod into the quartz tube, apply a voltage of 105V to the ceramic rod, and then use the air treated with silica gel and activated carbon in the air pump as the carrier gas for reaction for 30min, and the gas flow rate is 250mL/min , when the temperature of the ceramic rod reaches 170°C, start the heating device of the vaporization chamber until the temperature of the vaporization chamber is 170°C. Ensure the stable operation of the chemiluminescence analyzer.
B.将25μL 0.1mol/L的乙醚溶液注入汽化室中,由空气泵中的空气载入石英管并在陶瓷棒上的Cu/TiO2上与化学吸附在催化剂上的氧气反应,产生发光,由化学发光分析仪采集数据。结果如图2所示,化学发光信号强弱大小为:TiO2<1.0%Cu/TiO2<1.5%Cu/TiO2>2.0%Cu/TiO2,随着Cu掺杂量的增加发光信号增加,掺杂量为1.5%时,化学发光信号达到最大值;继续增加掺杂量至2.0%,化学发光信号降低。说明发光信号强度随着Cu掺杂量的变化趋势与氧化钛中氧空位含量随Cu掺杂量的变化趋势是一致的,由此得出发光信号强度与氧空位的含量呈正相关的关系的结论。B. Inject 25 μL of 0.1mol/L ether solution into the vaporization chamber, the air from the air pump is loaded into the quartz tube and reacts with the oxygen chemisorbed on the catalyst on the Cu/ TiO2 on the ceramic rod to produce luminescence, Data were collected by a chemiluminescence analyzer. The results are shown in Figure 2. The strength of the chemiluminescence signal is: TiO 2 <1.0%Cu/TiO 2 <1.5%Cu/TiO 2 >2.0%Cu/TiO 2 , and the luminescent signal increases with the increase of Cu doping amount , when the doping amount is 1.5%, the chemiluminescence signal reaches the maximum; continue to increase the doping amount to 2.0%, and the chemiluminescence signal decreases. It shows that the change trend of the luminescence signal intensity with the amount of Cu doping is consistent with the change trend of the content of oxygen vacancies in titanium oxide with the amount of Cu doping, so it is concluded that the intensity of the luminescence signal is positively correlated with the content of oxygen vacancies .
对比例1Comparative example 1
取实施例1中的不掺杂的TiO2和Cu掺杂质量分数分别为1.0%,1.5%,2.0%粉末采用传统的XPS分析方法进行对比试验:Get the undoped TiO in embodiment 1 and Cu doping mass fraction is respectively 1.0%, 1.5%, 2.0% powder adopts traditional XPS analytical method to carry out comparative test:
使用Thermo ESCALAB 250仪器,取30-60mg上述粉末分别压片后放入过渡室,抽真空并补充氮气三次后,将样品转入手套箱主体中,再装入反应器,进行预处理;预处理完毕后,将片状样品从反应器中取出,用导电胶粘到样品台上,氮气气氛下转入能谱仪抽真空室进行抽真空处理,待真空度高于10-4Pa后,再转入能谱仪分析室进行检测。根据XPS数据测试结果,利用如下公式(Vo:氧空位)计算Cu/TiO2中氧空位的百分含量:Using a Thermo ESCALAB 250 instrument, take 30-60 mg of the above powder, press them into tablets, and put them into the transition chamber. After evacuating and replenishing nitrogen three times, transfer the sample into the main body of the glove box, and then put it into the reactor for pretreatment; After the completion, take the flake sample out of the reactor, stick it on the sample stage with conductive adhesive, and transfer it to the vacuum chamber of the energy spectrometer under nitrogen atmosphere for vacuum treatment. After the vacuum degree is higher than 10 -4 Pa, then Transfer to the analysis room of the energy spectrometer for detection. According to the XPS data test results, the following formula (Vo: oxygen vacancies) is used to calculate the percentage of oxygen vacancies in Cu/TiO 2 :
氧空位的百分数={[(Ti原子百分数×4)–(晶格氧原子百分数×2)]*灵敏度因子}/2×100.Percentage of oxygen vacancies = {[(Ti atomic percentage×4)–(lattice oxygen atomic percentage×2)]*sensitivity factor}/2×100.
(Wagner,C.D.;Moulder,J.F.;Davis,L.E.;Riggs,W.M.Perkin-Elmer Corporation:EdenPrairie,MN,1979;You,M.;Kim,T.G.;Sung,Y.M.Growth Des.2010,10,983-987)(Wagner, C.D.; Moulder, J.F.; Davis, L.E.; Riggs, W.M. Perkin-Elmer Corporation: Eden Prairie, MN, 1979; You, M.; Kim, T.G.; Sung, Y.M. Growth Des. 2010, 10, 983-987)
结果见表1:The results are shown in Table 1:
表1Table 1
由表1可知,XPS法所检测出来的不同Cu掺杂量的氧化钛中氧空位量的变化趋势为TiO2<1.0%Cu/TiO2<1.5%Cu/TiO2>2.0%Cu/TiO2,这一结果与图2所测化学发光信号变化趋势是一样的。由此可知,化学发光信号强度与氧空位的含量呈正相关的关系。本发明所采用的方法与传统的XPS法的检测结果相一致。It can be seen from Table 1 that the change trend of oxygen vacancies in titanium oxide with different Cu doping amounts detected by XPS method is TiO 2 <1.0%Cu/TiO 2 <1.5%Cu/TiO 2 >2.0%Cu/TiO 2 , this result is the same as the change trend of the chemiluminescent signal measured in Figure 2. It can be seen that there is a positive correlation between the intensity of chemiluminescent signal and the content of oxygen vacancies. The method adopted in the present invention is consistent with the detection result of the traditional XPS method.
实施例2Example 2
取质量分数为1.0%的Cu,Co,Fe,Cr四种金属离子掺杂的TiO2。其他步骤同实施例1,测试结果见图3,化学发光信号强弱大小为:Cu/TiO2>Co/TiO2>Fe/TiO2>Cr/TiO2。TiO 2 doped with Cu, Co, Fe, Cr four metal ions with a mass fraction of 1.0% was used. Other steps are the same as in Example 1. The test results are shown in FIG. 3 . The magnitude of the chemiluminescence signal is: Cu/TiO 2 >Co/TiO 2 >Fe/TiO 2 >Cr/TiO 2 .
实施例3Example 3
将实施例1中无掺杂的TiO2粉末分别在氢气气氛下250℃,300℃,350℃,400℃焙烧处理2h,得到的样品分别记为H-250,H-300,H-350,H-400。其他步骤同实施例1,测试结果见图4,化学发光信号强弱大小为:H-400>H-350>H-300>H-250。The undoped TiO2 powders in Example 1 were calcined at 250°C, 300°C, 350°C, and 400°C for 2h under a hydrogen atmosphere, and the obtained samples were respectively designated as H-250, H-300, H-350, H-400. The other steps are the same as in Example 1. The test results are shown in Figure 4. The intensity of the chemiluminescent signal is: H-400>H-350>H-300>H-250.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510346373.9A CN104897655B (en) | 2015-06-19 | 2015-06-19 | A kind of method of Lacking oxygen in quick detection titanium oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510346373.9A CN104897655B (en) | 2015-06-19 | 2015-06-19 | A kind of method of Lacking oxygen in quick detection titanium oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104897655A true CN104897655A (en) | 2015-09-09 |
CN104897655B CN104897655B (en) | 2017-07-18 |
Family
ID=54030456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510346373.9A Expired - Fee Related CN104897655B (en) | 2015-06-19 | 2015-06-19 | A kind of method of Lacking oxygen in quick detection titanium oxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104897655B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109115940A (en) * | 2018-10-22 | 2019-01-01 | 北京科技大学 | A kind of iodine number method measuring oxygen vacancy concentration in bismuth ferrite based leadless piezoelectric ceramics |
CN111693590A (en) * | 2020-06-03 | 2020-09-22 | 同济大学 | Device and method for measuring gas oxidability |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8502343B1 (en) * | 2010-11-17 | 2013-08-06 | The University Of Toledo | Nanoelectric memristor device with dilute magnetic semiconductors |
CN103265067A (en) * | 2013-05-03 | 2013-08-28 | 上海中科高等研究院 | A Treatment Method for Enhancing the Electrochemical Performance of TiO2 Electrode |
CN104609467A (en) * | 2015-01-21 | 2015-05-13 | 武汉理工大学 | Photoinduced red-turning titanium oxide as well as preparation method and application thereof |
-
2015
- 2015-06-19 CN CN201510346373.9A patent/CN104897655B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8502343B1 (en) * | 2010-11-17 | 2013-08-06 | The University Of Toledo | Nanoelectric memristor device with dilute magnetic semiconductors |
CN103265067A (en) * | 2013-05-03 | 2013-08-28 | 上海中科高等研究院 | A Treatment Method for Enhancing the Electrochemical Performance of TiO2 Electrode |
CN104609467A (en) * | 2015-01-21 | 2015-05-13 | 武汉理工大学 | Photoinduced red-turning titanium oxide as well as preparation method and application thereof |
Non-Patent Citations (4)
Title |
---|
LIJUAN ZHANG等: "Detection of Oxygen Vacancies in Oxides by Defect-Dependent Cataluminescence", 《ANAL. CHEM》 * |
THOMAS R.GORDON等: "Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity", 《J.AM.CHEM.SOC.》 * |
WEIWEI JI等: "Role of Oxygen Vacancy on the Photoluminescence of BaMgSiO4:Eu Phosphors: Experimental and Theoretical Analysis", 《INORG.CHEM.》 * |
YONGFA ZHU等: "Development of a Gas Sensor Utilizing Chemiluminescence on Nanosized Titanium Dioxide", 《ANAL. CHEM》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109115940A (en) * | 2018-10-22 | 2019-01-01 | 北京科技大学 | A kind of iodine number method measuring oxygen vacancy concentration in bismuth ferrite based leadless piezoelectric ceramics |
CN109115940B (en) * | 2018-10-22 | 2020-12-22 | 北京科技大学 | A kind of iodine amount method for measuring oxygen vacancy concentration in bismuth ferrite-based lead-free piezoelectric ceramics |
CN111693590A (en) * | 2020-06-03 | 2020-09-22 | 同济大学 | Device and method for measuring gas oxidability |
CN111693590B (en) * | 2020-06-03 | 2021-05-11 | 同济大学 | A kind of device and method for measuring gas oxidation |
Also Published As
Publication number | Publication date |
---|---|
CN104897655B (en) | 2017-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102879346B (en) | Measuring method for content of metal elements in polymer resin | |
CN104880490B (en) | Pd‑SnO2Oxide semiconductor carbon monoxide transducer | |
Chi et al. | Enhanced formaldehyde-sensing properties of mixed Fe2O3–In2O3 nanotubes | |
Sha et al. | Development of cataluminescence sensor system for benzene and toluene determination | |
CN107175090B (en) | Porous carbon solid phase micro-extraction coating and preparation method and application thereof | |
Landau et al. | Microstructure evolution of TiO2 gas sensors produced by electrospinning | |
CN105910881A (en) | Miniaturized thermal-assisted sample pretreatment device for surface enhanced Raman spectroscopy detection and application thereof | |
CN105806899A (en) | Preparation and Application of Pt-SnO2 Oxide Semiconductor Carbon Monoxide Sensor | |
CN105181762A (en) | Co-Sn composite oxide ethyl alcohol sensor and preparation and application thereof | |
CN110823965A (en) | Room temperature detection NO2Gas sensitive material and preparation method thereof | |
CN104897655B (en) | A kind of method of Lacking oxygen in quick detection titanium oxide | |
Amiri et al. | Multivariate optimization, preconcentration and determination of mercury ions with (1-(p-acetyl phenyl)-3-(o-methyl benzoate)) triazene in aqueous samples using ICP-AES | |
Yang et al. | UiO-66 metal–organic framework-derived ZrO 2/ZnO mesoporous materials for high-efficiency detection of NO 2 at room temperature | |
Liu et al. | Efficient triethylamine sensing achieved by in-situ Zn2+ doping regulated Mo-MOFs derived MoO3/ZnMoO4 heterostructures | |
CN106404862B (en) | Electrochemical sensing of lead ion check with high sensitivity and preparation method thereof and application method | |
CN106349248B (en) | A kind of Metalloporphyrins and its preparation method and application | |
CN105712405A (en) | Preparation method of molybdenum-doped tungsten oxide gas-sensitive material | |
CN105859799B (en) | A kind of nitrogenous two-dimentional pi-conjugated metal organic frame composites of AgNPs@for being used to detect Cr VI | |
CN111610227B (en) | 2D ZnO @3D CF nano composite material and preparation method and application thereof | |
CN109626441B (en) | Multilevel structure α -Fe2O3Preparation method of hollow sphere nano material | |
Haidry et al. | Excellent acetone sensing enabled by tunable metal organic framework derived TiO2 nanodisks | |
CN113637943B (en) | Preparation method of photosensitive carbon disulfide sensor | |
CN110412105B (en) | Application of electrochemical sensor of MIL-53 derived cementite in detection of chromate ions | |
Chen et al. | Electrochemical Detection of Cd2+ and Pb2+ in Wastewater by Amino C-dot-MOF/GCE | |
CN105929003B (en) | A kind of preparation method of catalysis filter membrane for improving gas sensor selectivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170718 Termination date: 20180619 |