CN104897341B - 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统 - Google Patents

底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统 Download PDF

Info

Publication number
CN104897341B
CN104897341B CN201510125182.XA CN201510125182A CN104897341B CN 104897341 B CN104897341 B CN 104897341B CN 201510125182 A CN201510125182 A CN 201510125182A CN 104897341 B CN104897341 B CN 104897341B
Authority
CN
China
Prior art keywords
shear stress
type fluid
stress sensor
iris type
wall shear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510125182.XA
Other languages
English (en)
Other versions
CN104897341A (zh
Inventor
马炳和
马骋宇
邓进军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201510125182.XA priority Critical patent/CN104897341B/zh
Publication of CN104897341A publication Critical patent/CN104897341A/zh
Application granted granted Critical
Publication of CN104897341B publication Critical patent/CN104897341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统,共包括微位移装置、底层隔板式流体壁面剪应力传感器、精密恒温箱以及数据采集系统;微位移装置为底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构提供精密可控的位移量加载;精密恒温箱为研究传感器的电学量输出与温度变化关系提供可调可控的温度环境;数据采集系统测量并记录底层隔板式流体壁面剪应力传感器的电学量输出,最终进行数据分析并实现传感器的温度特性研究。本发明为了克服底层隔板式流体壁面剪应力传感器温度特性研究工作较难开展的问题,可为实验研究全量程大温度范围下的底层隔板式流体壁面剪应力传感器电学量输出与温度变化关系提供极大的便利。

Description

底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统
技术领域:
本发明涉及一种底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统。
背景技术:
近壁流动参数,尤其是壁面剪应力是研究、判断流场形态以及边界层状态等的重要参数,也是对飞行器以及水下航行器开展外形优化设计以及减阻降噪设计的重要参考依据。国内外研究工作者为壁面剪应力传感器的研发投入了大量精力,其中以底层隔板式流体壁面剪应力传感器为代表的压阻式壁面剪应力传感器正是现如今剪应力传感器的发展热点。
底层隔板式流体壁面剪应力传感器的工作性能受外界温度波动影响较大,为提高传感器的工作性能需采取各种温补措施,故对底层隔板剪应力传感器的温度特性研究十分重要,但该剪应力传感器的温度特性研究工作较难开展,国内外研究人员都对此鲜有提及,主要原因在于该传感器的温度特性研究有两点苛刻要求:第一,传感器输入量可控可调且复现性高;第二,大范围环境温度变化且精密可控。底层隔板式流体壁面剪应力传感器所监测的输入量为流场壁面的剪应力值,该输入剪应力与风洞实验风速相关,而风洞实验的风速是难以保持理想恒定的,故常规风洞实验条件下,剪应力输入量的复现性较差;风洞虽有较好的恒温控制能力,但无法满足温度特性研究所需的大范围温度可控可调要求。
发明内容:
发明目的:
为了克服底层隔板式流体壁面剪应力传感器温度特性研究工作较难开展的问题,本发明提出了一种底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统,可为实验研究全量程大温度范围下的底层隔板式流体壁面剪应力传感器电学量输出与温度变化关系提供极大的便利。
技术方案:
底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统,共包括微位移装置、底层隔板式流体壁面剪应力传感器、精密恒温箱以及数据采集系统;微位移装置为底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构提供精密可控的位移量加载;微位移装置和底层隔板式流体壁面剪应力传感器均完全位于精密恒温箱内部,精密恒温箱为研究传感器的电学量输出与温度变化关系提供可调可控的温度环境;数据采集系统位于精密恒温箱以外,其作用为测量并记录底层隔板式流体壁面剪应力传感器的电学量输出。
参阅图1、图2、图3,上述的微位移装置主要包括以下结构:水平导轨1、大楔块2、小楔块3、滑块4、基座5、垂直导轨6、微探针7、深度千分尺8、角铁9;通过数个螺丝,将水平导轨1和垂直导轨6固定在带有螺纹孔的基座5上,并保持水平导轨1与垂直导轨6之间相互垂直,且两者之间具有一定间距;滑块4分为水平滑块和垂直滑块,其中,水平滑块的底面加工有滚珠滑槽,可与水平导轨1进行装配并实现水平方向的自由滑动,垂直滑块的底面加工有滚珠滑槽,可与垂直导轨6进行装配并实现垂直方向的自由滑动;上述滑块4的底面的相对面上还加工有若干个螺纹沉孔,通过螺丝可将小楔块3和大楔块2分别完全固定在垂直滑块和水平滑块结构上,继而实现大楔块2和小楔块3分别在水平导轨1和垂直导轨6上的自由滑动;角铁9为不等边长角铁,其长边结构加工有数个通孔,用于通过螺丝将角铁9的长边与水平导轨1完全固定,并保证长边结构与基座5保持水平关系,短边结构与基座5保持垂直关系;深度千分尺8的基座结构上加工有两个通孔,孔径方向保持与深度千分尺8的基座结构的平直贴合面相垂直,两个通孔分别位于深度千分尺8的测量杆的左右两侧;角铁9的短边加工有两个螺纹孔和一个通孔,通过螺丝将深度千分尺8完全固定在角铁9的短边结构上,且保证深度千分尺8的测量杆与角铁9的短边加工的通孔同轴,角铁9的短边加工的通孔的直径需稍大于深度千分尺8的测量杆的直径,以保证当旋动深度千分尺8的微分筒时,伸长的测量杆可以自由伸出角铁9短边处所加工的通孔,保证深度千分尺8的测量杆可自由推动大楔块2;小楔块3与微探针7之间通过自卡装置完全固定在一起,并且保持与传感器的敏感悬臂梁端面垂直,微探针7的垂直高度与传感器的敏感悬臂梁上端面高度持平;大楔块2的斜边与小楔块3的斜边始终保持紧密贴合,当旋动深度千分尺8的微分筒时,深度千分尺8的测量杆将推动大楔块2沿水平导轨1移动,此时小楔块3受力将沿垂直导轨6方向位移,带动微探针7逐渐靠近底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构,并最终推动传感器的敏感悬臂梁,实现可控位移量加载;深度千分尺8的测量杆的位移量与微探针7沿垂直导轨6方向的位移量的比例,是通过所加工的楔块斜边的倾斜角度控制的;调节深度千分尺8的微分筒,使微探针7推动底层隔板式流体壁面剪应力传感器的敏感悬臂梁发生挠曲,当数据采集系统测量记录的电学量与该传感器在风洞试验中某一特定风速下的电学输出量基本一致时,可以认定此时微探针7给传感器悬臂梁结构加载的位移量模拟了风洞试验中该特定风速下流体对传感器的敏感悬臂梁结构的作用,此后,保持该位移量不变的条件下,控制精密恒温箱内温度,即可以通过数据采集系统得到的数据来对该特定风速下传感器的温度特性进行研究。同理,可模拟出传感器在其他特定风速条件下随温度影响的输出变化,实现全量程大温度范围下的底层隔板式流体壁面剪应力传感器的温度特性研究。
有益效果:
本发明提出的底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统有以下优点:(1)简单实用、成本低;底层隔板式流体壁面剪应力传感器的温度特性研究需要大量风洞实验的支持,实验花费相当巨大,而搭建本发明提出的可控变温模拟加载系统不需要过多的前期准备,常规实验室内即可完成搭建,操作简单、小巧、实用性强且实验成本很低。(2)输入量可控可调且复现性高;为准确把握全量程大温度范围条件下底层隔板壁面剪应力传感器的温度特性,环境温度和所加载输入量都必须严格控制且方便调节,而常规风洞实验无法满足要求。本发明提出的可控变温模拟加载系统可实现对底层隔板式流体壁面剪应力传感器应力敏感单元的微米量级挠曲的精准控制,结合精密恒温箱提供的温度环境,建立了复现性高、可控可调的模拟加载输入环境。
附图说明:
图1是安装了底层隔板式流体壁面剪应力传感器的微位移装置结构装配图的俯视图
图2是微位移装置结构装配图的正视图
图3是微位移装置结构装配图的左侧视图
图中:1-水平导轨、2-大楔块、3-小楔块、4-滑块、5-基座、6-垂直导轨、7-微探针、8-深度千分尺、9-角铁
具体实施方式:
实施例:
底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统,共包括微位移装置、底层隔板式流体壁面剪应力传感器、精密恒温箱以及数据采集系统;微位移装置为底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构提供精密可控的位移量加载;微位移装置和底层隔板式流体壁面剪应力传感器均完全位于精密恒温箱内部,精密恒温箱为研究传感器的电学量输出与温度变化关系提供可调可控的温度环境;数据采集系统位于精密恒温箱以外,其作用为测量并记录底层隔板式流体壁面剪应力传感器的电学量输出。
两条导轨相互垂直并间距一定距离的安装在基底5上;深度千分尺8通过角铁9固定在水平导轨1上;滑块4分为水平滑块和垂直滑块,水平滑块作为水平导轨1和大楔块2之间的连接及传动结构,垂直滑块作为垂直导轨6和小楔块3之间的连接及传动结构;旋转深度千分尺8的微分筒,其测量杆沿水平导轨1方向推动大楔块2,大楔块2的水平位移带动小楔块3和垂直滑块组成的微传动结构产生位移,使得小楔块3上的微探针7沿垂直导轨6方向移动并使其逐渐靠近并接触到底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构,引起底层隔板式流体壁面剪应力传感器的敏感悬臂梁发生挠曲。随着深度千分尺8的测量杆的伸长,敏感悬臂梁的所受的位移量加载逐步增大,当采集的电学量与该传感器早先在风洞试验中某一特定风速下的电学输出量相等时,认定此时微探针7对传感器敏感悬臂梁加载的位移量成功模拟了风洞试验中该特定风速下流体对传感器敏感悬臂梁的作用。此后,保持该位移量不变,再控制精密恒温箱内温度,即可针对性的研究该风速条件下的特定剪应力输入时的传感器温度特性。利用数据采集系统记录传感器输出,通过对比早先风洞试验中的传感器输出和采用微位移装置模拟加载时的电学量输出,找到特定风速下特定剪应力与微位移量的关系,模拟实际风洞中传感器受流场作用而产生电学量输出,再通过精密恒温箱控制环境温度,达到研究全量程大温度范围下的底层隔板式流体壁面剪应力传感器温度特性的目的。
微位移装置的结构安装要求如下:两条导轨通过螺钉相互垂直并间距一定距离的安装于基底5之上;角铁9长边紧贴于水平导轨1上并用螺丝定位,深度千分尺8的基座与角铁9短边紧贴并通过提前钻好的孔用螺丝固定在一起;滑块4分为水平滑块和垂直滑块,大楔块2和小楔块3分别通过螺丝固定在水平滑块和垂直滑块上,滑块4底面滚珠滑槽与导轨尺寸相配合,滑块4作为大楔块2和小楔块3的传动结构可沿各自导轨自由移动;微探针7通过自卡装置安装在小楔块3上并且保持与垂直导轨6平行,微探针7的垂直高度与传感器的敏感悬臂梁上端面高度持平;底层隔板式流体壁面剪应力传感器固定在基座5上,并保持微位移装置的微探针7垂直正对于传感器的应力敏感单元。
将底层隔板式流体壁面剪应力传感器安装于微位移装置上,并完全置于精密恒温箱内,传感器电输出引线与数据采集系统进行连接,即完成了可控变温模拟加载系统的搭建。示例操作可参考如下过程:旋转深度千分尺8的微分筒,对传感器的敏感悬臂梁结构加载位移量输入,观察数据采集系统记录的电学量输出,当电学量输出等于风洞试验中某特定风速时的传感器输出时,保持深度千分尺8的微分筒不动,关闭精密恒温箱舱门。此时,调节精密恒温箱温度为0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃,在上述每个温度条件下,采用数据采集系统记录对应温度点以及相应挠曲的传感器输出值,该过程便模拟了特定剪应力输出下,环境温度大范围变化时的传感器输出变化过程。同理,可模拟出传感器在其他特定风速条件下随温度影响的输出变化,实现全量程大温度范围下的底层隔板式流体壁面剪应力传感器的温度特性研究。
上述温度点、温度范围的选定以及操作过程可根据实际传感器工作要求和温度特性研究需求而定。
上述深度千分尺8的精度选择可根据底层隔板式流体壁面剪应力传感器的最大量程以及微传动结构的位移传动比共同决定,其中微传动结构的位移传动比由大小楔块的斜边角度决定。假设以楔块斜边为长边构造直角三角形,且其短直角边和长直角边的长度比是1:10,则若选用精度为0.01mm的常规的深度千分尺时,可实现微探针7的最小步进为1微米位移量加载。

Claims (1)

1.底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统,其特征在于,包括微位移装置、底层隔板式流体壁面剪应力传感器、精密恒温箱以及数据采集系统;所述微位移装置为底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构提供精密可控的位移量加载;所述微位移装置和底层隔板式流体壁面剪应力传感器均完全位于精密恒温箱内部,精密恒温箱为研究传感器的电学量输出与温度变化关系提供可调可控的温度环境;数据采集系统位于精密恒温箱以外,测量并记录底层隔板式流体壁面剪应力传感器的电学量输出;
所述微位移装置主要包括以下:水平导轨(1)、大楔块(2)、小楔块(3)、滑块(4)、基座(5)、垂直导轨(6)、微探针(7)、深度千分尺(8)、角铁(9);水平导轨(1)和垂直导轨(6)固定在基座(5)上,两者之间相互垂直且具有间距;滑块(4)分为水平滑块和垂直滑块,水平滑块的底面加工有滚珠滑槽,可与水平导轨(1)进行装配并实现水平方向的自由滑动,垂直滑块的底面加工有滚珠滑槽,可与垂直导轨(6)进行装配并实现垂直方向的自由滑动;小楔块(3)和大楔块(2)分别固定在上述垂直滑块和水平滑块结构上,继而实现大楔块(2)和小楔块(3)分别在水平导轨(1)和垂直导轨(6)上的自由滑动;角铁(9)固定在基座(5),深度千分尺(8)则固定在角铁(9)上,旋动深度千分尺(8)的微分筒,深度千分尺(8)的测量杆自由推动大楔块(2);小楔块(3)与微探针(7)之间通过自卡装置完全固定在一起,并且保持与传感器的敏感悬臂梁端面垂直,微探针(7)的垂直高度与传感器的敏感悬臂梁上端面高度持平;大楔块(2)的斜边与小楔块(3)的斜边始终保持紧密贴合,当旋动深度千分尺(8)的微分筒时,深度千分尺(8)的测量杆将推动大楔块(2)沿水平导轨(1)移动,此时小楔块(3)受力沿垂直导轨(6)方向位移,带动微探针(7)逐渐靠近底层隔板式流体壁面剪应力传感器的敏感悬臂梁结构,并最终推动传感器的敏感悬臂梁,实现可控位移量加载;深度千分尺(8)的测量杆的位移量与微探针(7)沿垂直导轨(6)方向的位移量的比例,是通过所加工的楔块斜边的倾斜角度控制的;调节深度千分尺(8)的微分筒,使微探针(7)推动底层隔板式流体壁面剪应力传感器的敏感悬臂梁发生挠曲。
CN201510125182.XA 2015-03-20 2015-03-20 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统 Active CN104897341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510125182.XA CN104897341B (zh) 2015-03-20 2015-03-20 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510125182.XA CN104897341B (zh) 2015-03-20 2015-03-20 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统

Publications (2)

Publication Number Publication Date
CN104897341A CN104897341A (zh) 2015-09-09
CN104897341B true CN104897341B (zh) 2017-10-13

Family

ID=54030147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510125182.XA Active CN104897341B (zh) 2015-03-20 2015-03-20 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统

Country Status (1)

Country Link
CN (1) CN104897341B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2059082A (en) * 1979-09-04 1981-04-15 Tonnes Force Services Ltd Load measuring apparatus
JPH10206264A (ja) * 1997-01-27 1998-08-07 Matsushita Electric Works Ltd 圧力センサ
CN102519646B (zh) * 2011-12-15 2013-08-28 大连理工大学 非线性压电微能源采集器的微力加载测试方法
CN103308223B (zh) * 2013-05-20 2014-12-10 西北工业大学 基于柔性热敏传感器的壁面剪应力测试装置及其测量方法
CN103954383B (zh) * 2014-04-28 2016-10-26 西北工业大学 一种可用于高温环境下壁面剪应力测量的底层隔板微传感器及其制造方法
CN204128889U (zh) * 2014-10-10 2015-01-28 中国科学院工程热物理研究所 一种梁构件弯扭试验加载装置

Also Published As

Publication number Publication date
CN104897341A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
CN102445336B (zh) 岩石掘进机多刀多角度破岩装置
Zhang et al. A model for water flow through rock fractures based on friction factor
CN104713496A (zh) 用于微形貌测量的磁悬浮触针式位移传感器
CN205373627U (zh) 电梯导轨直线度测量装置
CN102692312A (zh) 一种大气边界层风洞的准三维自动测量系统
CN203658169U (zh) 一种沥青混合料半圆弯拉强度测试装置
CN106767608A (zh) 磁悬浮式支座水平位移测量装置及其测量方法
CN103267477A (zh) 可调节变阻式结构面三维形貌测量装置
CN114659908B (zh) 岩石结构面多向自由剪切实验系统与实验方法
CN103091070A (zh) 气体静压节流器流场参数测试装置
CN206774052U (zh) 一种能量转化演示仪
CN106525366B (zh) 磁悬浮式桥梁挠度测量装置及其测量方法
CN104897341B (zh) 底层隔板式流体壁面剪应力传感器的可控变温模拟加载系统
Wang et al. Experimental study on evolution characteristics of the heat storage of surrounding soil in subway tunnels
CN102998043A (zh) 用于监测悬浮状态下直线电机动态推力的装置及方法
CN102922066B (zh) 一种平板间微纳液膜厚度测试调平方法和装置
CN206321226U (zh) 磁悬浮式支座水平位移测量装置
CN206862350U (zh) 一种超高精度倾斜测试平台
Zhang et al. Bed shear stress in non-uniform flow
CN206321398U (zh) 磁悬浮式桥梁挠度测量装置
CN101738166B (zh) 一种高压润滑油界面滑移长度测量方法
Dong et al. Deformation analysis of hydrostatic guideways based on the cantilever plate bending calculation method
CN106989723A (zh) 超高精度倾斜测试平台
US11125552B2 (en) Method for the rapid detection of the geometric accuracy of the linear motion axis of an NC machine tool
CN208818234U (zh) 桥梁监测传感器在线校准用测量系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Yuan Weizheng

Inventor after: Ma Binghe

Inventor after: Ma Chengyu

Inventor after: Deng Jinjun

Inventor before: Ma Binghe

Inventor before: Ma Chengyu

Inventor before: Deng Jinjun