CN104892815A - Luminescent nano micro-spheres with positive charge on surface and possessing aggregation induced fluorescence enhancement property and biological application thereof - Google Patents
Luminescent nano micro-spheres with positive charge on surface and possessing aggregation induced fluorescence enhancement property and biological application thereof Download PDFInfo
- Publication number
- CN104892815A CN104892815A CN201510226607.6A CN201510226607A CN104892815A CN 104892815 A CN104892815 A CN 104892815A CN 201510226607 A CN201510226607 A CN 201510226607A CN 104892815 A CN104892815 A CN 104892815A
- Authority
- CN
- China
- Prior art keywords
- fluorescent
- nanospheres
- nano
- aggregation
- induced fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004005 microsphere Substances 0.000 title claims abstract description 40
- 230000002776 aggregation Effects 0.000 title claims abstract description 20
- 238000004220 aggregation Methods 0.000 title claims abstract description 20
- 239000002077 nanosphere Substances 0.000 claims abstract description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000008367 deionised water Substances 0.000 claims description 32
- 229910021641 deionized water Inorganic materials 0.000 claims description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 20
- 239000000178 monomer Substances 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000003999 initiator Substances 0.000 claims description 13
- 238000003756 stirring Methods 0.000 claims description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 9
- IBIJBHDRUKUWAM-UHFFFAOYSA-M trimethyl(1-phenylprop-2-enyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)C(C=C)C1=CC=CC=C1 IBIJBHDRUKUWAM-UHFFFAOYSA-M 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 238000012984 biological imaging Methods 0.000 claims description 5
- 238000003760 magnetic stirring Methods 0.000 claims description 5
- -1 (styryl) anthracene sulfonic acid salt Chemical class 0.000 claims description 4
- 238000000703 high-speed centrifugation Methods 0.000 claims description 4
- SVYHMICYJHWXIN-UHFFFAOYSA-N 2-[di(propan-2-yl)amino]ethyl 2-methylprop-2-enoate Chemical compound CC(C)N(C(C)C)CCOC(=O)C(C)=C SVYHMICYJHWXIN-UHFFFAOYSA-N 0.000 claims description 3
- XSHISXQEKIKSGC-UHFFFAOYSA-N 2-aminoethyl 2-methylprop-2-enoate;hydron;chloride Chemical compound Cl.CC(=C)C(=O)OCCN XSHISXQEKIKSGC-UHFFFAOYSA-N 0.000 claims description 3
- KBKNKFIRGXQLDB-UHFFFAOYSA-N 2-fluoroethenylbenzene Chemical compound FC=CC1=CC=CC=C1 KBKNKFIRGXQLDB-UHFFFAOYSA-N 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 abstract description 3
- 239000000839 emulsion Substances 0.000 abstract description 2
- 231100000053 low toxicity Toxicity 0.000 abstract description 2
- 239000002861 polymer material Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 22
- 238000006116 polymerization reaction Methods 0.000 description 13
- 238000001878 scanning electron micrograph Methods 0.000 description 11
- 238000002296 dynamic light scattering Methods 0.000 description 8
- 239000007850 fluorescent dye Substances 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 208000005718 Stomach Neoplasms Diseases 0.000 description 4
- 231100000263 cytotoxicity test Toxicity 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 206010017758 gastric cancer Diseases 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000002096 quantum dot Substances 0.000 description 4
- 201000011549 stomach cancer Diseases 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 238000000799 fluorescence microscopy Methods 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 239000008055 phosphate buffer solution Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- QOJNLMARVTYICL-UHFFFAOYSA-N 9,10-bis(2-phenylethenyl)anthracene-1-sulfonic acid Chemical compound C(=CC1=CC=CC=C1)C=1C2=CC=CC=C2C(=C2C=CC=C(C=12)S(=O)(=O)O)C=CC1=CC=CC=C1 QOJNLMARVTYICL-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000029918 bioluminescence Effects 0.000 description 1
- 238000005415 bioluminescence Methods 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical class CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
一种表面带正电荷具有聚集诱导荧光增强性质的荧光纳米微球及其在细胞成像方面的应用,属于高分子材料技术领域。本发明首先合成出一种表面带正电荷的纳米微球乳液,将带有负电荷的具有AIE效应的荧光分子通过静电作用力修饰到纳米微球表面。荧光分子由于受到库仑力的作用分子内转动受到限制,吸收的能量基本通过荧光辐射释放出来,因此荧光分子修饰到纳米微球上荧光百倍增强,表现出优异的AIE性质。我们所制得的荧光纳米微球荧光性质稳定,生物相容性好,毒性低,表面带正电荷易于进入细胞和生物检测。因此,我们制得的表面带正电荷的荧光纳米微球在细胞成像等生物领域具有广阔的应用前景。
The invention relates to a fluorescent nano-microsphere with positive charges on the surface and the property of aggregation-induced fluorescence enhancement and its application in cell imaging, belonging to the technical field of polymer materials. The invention firstly synthesizes a positively charged nano-microsphere emulsion on the surface, and modifies the negatively-charged fluorescent molecules with AIE effect on the surface of the nano-microspheres through electrostatic force. The intramolecular rotation of fluorescent molecules is limited by the Coulomb force, and the absorbed energy is basically released through fluorescent radiation. Therefore, the fluorescence of fluorescent molecules modified on nano-microspheres is enhanced hundreds of times, showing excellent AIE properties. The fluorescent nanospheres we prepared have stable fluorescent properties, good biocompatibility, low toxicity, positive charges on the surface and easy entry into cells and biological detection. Therefore, the positively charged fluorescent nanospheres we prepared have broad application prospects in biological fields such as cell imaging.
Description
技术领域technical field
本发明属于高分子材料技术领域,具体涉及一种表面带正电荷具有聚集诱导荧光增强性质的荧光纳米微球及其在细胞成像和生物检测等方面的应用。The invention belongs to the technical field of polymer materials, and in particular relates to a fluorescent nano-microsphere with a positive charge on the surface and an aggregation-induced fluorescence enhancement property and its application in cell imaging, biological detection and the like.
背景技术Background technique
生物成像是一个集合多种技术、交融多种学科、应用广泛、发展迅速的新兴领域。近些年来随着生物化学和生命科学的发展,人们对生物体的研究逐渐从宏观转向了微观。因此其分支领域之一的生物荧光成像成为人们研究和关注的焦点。荧光技术具有快捷、灵敏、实时、无放射性、重复性好,多个光物理参量(如发射波长、激发波长、荧光强度、荧光寿命)可用于检测等优点。荧光探针是实现生物荧光成像的核心技术。传统的荧光探针以有机荧光染料为主,但由于有机荧光染料耐光性差、水溶性差、生物相容性差以及聚集荧光诱导淬灭等缺点,而难以在实际中应用。随着生物荧光成像应用的日益广泛,研发出新型的荧光探针以克服传统探针的缺点变得刻不容缓。因此,荧光纳米粒子探针作为解决这一问题的有效手段被提出。Bioimaging is an emerging field that integrates multiple technologies, integrates multiple disciplines, has wide applications, and develops rapidly. In recent years, with the development of biochemistry and life sciences, people's research on organisms has gradually shifted from the macroscopic to the microscopic. Therefore, bioluminescent imaging, one of its branches, has become the focus of research and attention. Fluorescence technology has the advantages of fast, sensitive, real-time, non-radioactive, and good repeatability, and multiple photophysical parameters (such as emission wavelength, excitation wavelength, fluorescence intensity, and fluorescence lifetime) can be used for detection. Fluorescent probes are the core technology for bioluminescence imaging. Traditional fluorescent probes are mainly based on organic fluorescent dyes, but due to the disadvantages of organic fluorescent dyes such as poor light resistance, poor water solubility, poor biocompatibility, and aggregation-induced fluorescence quenching, it is difficult to apply in practice. With the increasing application of bioluminescent imaging, it is urgent to develop new fluorescent probes to overcome the shortcomings of traditional probes. Therefore, fluorescent nanoparticle probes have been proposed as an effective means to solve this problem.
目前荧光纳米粒子探针主要包括:量子点(quantum dot,QD),上转换稀土纳米粒子(Upconversion Rare Earth Nanoparticles,UCRE-NPs)和高分子荧光纳米微球。无机量子点由于荧光效率高被人们广泛用于生物标记等领域,但是研究发现当无机量子点用于生物成像进入生物体内时,表面易被体内的氧化剂氧化成重金属离子,因此生物毒性大不宜于生物成像。高分子荧光纳米微球开始是以聚苯乙烯、聚丙烯酰胺类、聚甲基丙烯酸酯类为微粒主体,表面键合或吸附荧光物质的荧光纳米微球。因为单个纳米粒子可以键合多个荧光分子,所以荧光强度有所增强。与小分子的有机染料相比,高分子荧光纳米微球通常在水相中分散性良好、荧光发射强度较强、发光效率较高的同时,光漂白的现象发生几率很低;并且在多种生物环境之下粒子稳定性和生物相容性都很高。所以很多高分子荧光纳米微粒无需经过繁琐的改性及改良就可以直接用于生物成像荧光探针、荧光生物传感器等生物应用领域。但目前用于高分子荧光纳米微球的大部分荧光分子具有聚集诱导淬灭性质。在制备高效率高分子荧光纳米微球时荧光染料加入量少时荧光信号不能显著地提高,但加入量大时由于聚集诱导淬灭效应荧光信号也会衰减或没有荧光发射,使其应用受到限制。At present, fluorescent nanoparticle probes mainly include: quantum dots (quantum dot, QD), upconversion rare earth nanoparticles (Upconversion Rare Earth Nanoparticles, UCRE-NPs) and polymer fluorescent nanospheres. Inorganic quantum dots are widely used in biomarkers and other fields due to their high fluorescence efficiency. However, studies have found that when inorganic quantum dots are used for bioimaging and enter the body, the surface is easily oxidized into heavy metal ions by oxidants in the body, so the biological toxicity is not suitable for biological imaging. Polymer fluorescent nano-microspheres start with polystyrene, polyacrylamides, and polymethacrylates as the particle body, and fluorescent nano-microspheres that are bonded or adsorbed on the surface of fluorescent substances. Because a single nanoparticle can bind multiple fluorescent molecules, the fluorescence intensity is enhanced. Compared with small molecule organic dyes, polymer fluorescent nanospheres usually have good dispersion in the aqueous phase, strong fluorescence emission intensity, and high luminous efficiency, while the probability of photobleaching is very low; and in a variety of The particle stability and biocompatibility under the biological environment are very high. Therefore, many polymer fluorescent nanoparticles can be directly used in biological applications such as bioimaging fluorescent probes and fluorescent biosensors without tedious modification and improvement. However, most of the fluorescent molecules currently used in polymer fluorescent nanospheres have aggregation-induced quenching properties. When preparing high-efficiency polymer fluorescent nanospheres, the fluorescence signal cannot be significantly improved when the amount of fluorescent dye added is small, but when the amount is large, the fluorescence signal will also attenuate or have no fluorescence emission due to the aggregation-induced quenching effect, which limits its application. .
近年来,具有聚集诱导发光(AIE)的荧光分子受到人们的关注。它与传统的荧光分子不同,AIE分子在聚集态或不良溶剂中荧光会显著增强,当处于自由状态时由于分子内转动加剧消耗吸收的能量使荧光衰减。但AIE分子多为有机染料小分子,生物相容性差,在血液中循环时间短不能有效的进入细胞因此不能用于生物成像。因此设计一个有效载体能实现荧光分子的AIE效应并且生物相容性好,生物毒性低,尺寸合适,细胞穿透性好以及体内环境对其荧光没有淬灭作用,在生物成像领域是至关重要的。In recent years, fluorescent molecules with aggregation-induced emission (AIE) have attracted people's attention. It is different from traditional fluorescent molecules. The fluorescence of AIE molecules will be significantly enhanced in the aggregated state or in poor solvents. When in a free state, the absorbed energy will be consumed due to the intensification of intramolecular rotation and the fluorescence will decay. However, AIE molecules are mostly small molecules of organic dyes, which have poor biocompatibility, short circulation time in the blood and cannot effectively enter cells, so they cannot be used for bioimaging. Therefore, designing an effective carrier that can realize the AIE effect of fluorescent molecules and has good biocompatibility, low biotoxicity, appropriate size, good cell penetration and no quenching effect of the in vivo environment is very important in the field of biological imaging. of.
发明内容Contents of the invention
本发明的目的是提供一种可用于细胞成像和生物检测的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球。The purpose of the present invention is to provide a kind of fluorescent nano-microspheres with aggregation-induced fluorescence enhancement properties, which are positively charged on the surface and can be used for cell imaging and biological detection.
本发明首先合成出一种表面带正电荷的纳米微球乳液,将带有负电荷的具有AIE效应的荧光分子通过静电作用力修饰到纳米微球表面。荧光分子由于受到库仑力的作用分子内转动受到限制,吸收的能量基本通过荧光辐射释放出来,因此荧光分子修饰到纳米微球上其荧光强度增强百倍,表现出优异的AIE性质。我们所制得的荧光纳米微球荧光性质稳定,生物相容性好,毒性低,表面带正电荷易于进入细胞内部,进行细胞荧光成像和生物检测。因此,我们制得的表面带正电荷的荧光纳米微球在细胞成像等生物领域具有广阔的应用前景。The invention firstly synthesizes a positively charged nano-microsphere emulsion on the surface, and modifies the negatively-charged fluorescent molecules with AIE effect on the surface of the nano-microspheres through electrostatic force. The intramolecular rotation of fluorescent molecules is limited by the Coulomb force, and the absorbed energy is basically released through fluorescent radiation. Therefore, the fluorescence intensity of fluorescent molecules modified on nanospheres is enhanced by a hundred times, showing excellent AIE properties. The fluorescent nanospheres we prepared have stable fluorescent properties, good biocompatibility, low toxicity, positive charges on the surface and easy entry into cells for cell fluorescence imaging and biological detection. Therefore, the positively charged fluorescent nanospheres we prepared have broad application prospects in biological fields such as cell imaging.
本发明所述的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球,其由如下步骤制备得到:The fluorescent nanospheres with aggregation-induced fluorescence enhancement properties with positive charges on the surface of the present invention are prepared by the following steps:
(1)量取5~10mL聚合单体1分散于150~200mL的去离子水中,再加入0.04g~0.5g的聚合单体2;室温、氮气保护下,机械搅拌(300~600rpm),除去反应体系中的氧气;升温至70~90℃后加入10mL含0.3~0.5mmol引发剂的水溶液于反应体系中,氮气保护、搅拌下聚合反应5~20小时,得到表面带正电荷的纳米微球溶液;高速离心(15000~20000rpm)洗涤除去未反应的单体、低聚物、引发剂等杂质,纳米微球重新超声分散于100mL去离子水中;(1) Take 5-10mL of polymerized monomer 1 and disperse it in 150-200mL of deionized water, then add 0.04g-0.5g of polymerized monomer 2; at room temperature, under the protection of nitrogen, mechanically stir (300-600rpm), remove Oxygen in the reaction system; after heating up to 70-90°C, add 10 mL of an aqueous solution containing 0.3-0.5 mmol of initiator to the reaction system, and polymerize under nitrogen protection and stirring for 5-20 hours to obtain positively charged nanospheres on the surface solution; high-speed centrifugation (15000-20000rpm) washing to remove unreacted monomers, oligomers, initiators and other impurities, nano-microspheres re-dispersed ultrasonically in 100mL deionized water;
(2)量取10~20mL步骤(1)所得到的纳米微球溶液,加入10~20mL去离子水,然后再加入3~5mL、80~150μg/mL的AIE型荧光分子,在50~80℃、氮气保护条件下,磁力搅拌反应4~10h;高速离心(15000~20000rpm)除去未复合的AIE型荧光分子,获得AIE分子复合的表面带正电荷的荧光纳米微球;将得到的荧光纳米微球分散于去离子水中,从而得到本发明所述的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球。(2) Measure 10-20 mL of the nanosphere solution obtained in step (1), add 10-20 mL of deionized water, and then add 3-5 mL of AIE-type fluorescent molecules at 80-150 μg/mL. Under the condition of ℃ and nitrogen protection, magnetically stir the reaction for 4-10 hours; high-speed centrifugation (15000-20000rpm) removes uncomplexed AIE fluorescent molecules, and obtains positively charged fluorescent nanospheres on the surface of AIE molecules; the obtained fluorescent nanoparticles The microspheres are dispersed in deionized water, so as to obtain the fluorescent nanometer microspheres with positively charged surface and aggregation-induced fluorescence enhancement property of the present invention.
上述方法中,聚合单体1是苯乙烯(St)、氟代苯乙烯(F-St)、甲基丙烯酸甲酯(MMA)、甲基丙烯酸乙酯、丙烯酸乙酯、氯乙烯、丙烯酸叔丁酯、二乙烯基苯或α-甲基苯乙烯或甲基丙烯酸缩水甘油酯(GMA);In the above method, polymerizable monomer 1 is styrene (St), fluorostyrene (F-St), methyl methacrylate (MMA), ethyl methacrylate, ethyl acrylate, vinyl chloride, tert-butyl acrylate esters, divinylbenzene or alpha-methylstyrene or glycidyl methacrylate (GMA);
上述方法中,聚合单体2是N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC),2-(二异丙基氨基)甲基丙烯酸乙酯(DPA)或2-氨乙基甲基丙烯酸酯盐酸盐(AMA);In the above method, polymerizable monomer 2 is N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC), 2-(diisopropylamino)ethyl methacrylate (DPA) or 2-amino Ethyl methacrylate hydrochloride (AMA);
上述方法中,引发剂是偶氮二异丁脒盐酸盐(V50),偶氮二异丁咪唑啉盐酸盐(AIBI),偶氮异丁氰基甲酰胺(V30);In the above method, the initiator is azobisisobutylamidine hydrochloride (V 50 ), azobisisobutylimidazoline hydrochloride (AIBI), azoisobutylcyanoformamide (V 30 );
上述方法中,AIE型的荧光分子是9,10-二(苯乙烯基)蒽磺酸盐(DSA)、1,2-二[4-(3-磺酸丙氧基)苯基]-1,2-二苯基乙烯二钠盐(BSTPE)或1,1,2,2-四[4-(3-磺酸丙氧基)苯基]乙烯四钠盐(TSTPE)。In the above method, the fluorescent molecules of AIE type are 9,10-bis(styryl)anthracene sulfonate (DSA), 1,2-bis[4-(3-sulfonic acid propoxy)phenyl]-1 , 2-Diphenylethylene disodium salt (BSTPE) or 1,1,2,2-tetrakis[4-(3-sulfonic acid propoxy)phenyl]ethylene tetrasodium salt (TSTPE).
本发明具有如下优点:The present invention has the following advantages:
1、该荧光纳米微球的粒径在纳米级别且尺寸可控(50~140nm);1. The particle size of the fluorescent nanospheres is at the nanometer level and the size is controllable (50-140nm);
2、该荧光纳米微球生物相容性好,在磷酸缓冲溶液和生物大分子溶液中能稳定存在3个月以上(图5);2. The fluorescent nanospheres have good biocompatibility and can exist stably in phosphate buffer solution and biomacromolecule solution for more than 3 months (Figure 5);
3、该荧光分子在pH=3~7范围内荧光基本稳定,在pH=7~10范围内荧光呈线性降低,但降低程度对荧光成像没有影响;3. The fluorescence of the fluorescent molecule is basically stable in the range of pH=3-7, and the fluorescence decreases linearly in the range of pH=7-10, but the degree of reduction has no effect on fluorescence imaging;
4、该荧光纳米微球表面带正电荷,易于进入细胞,进行细胞荧光成像和生物检测。4. The surface of the fluorescent nanometer microsphere is positively charged, so it is easy to enter cells for cell fluorescence imaging and biological detection.
5、该荧光纳米微球在生物大分子如BSA存在时荧光信号增强,生物大分子可以起到放大荧光信号的作用。并且BSA浓度和荧光强度呈线性变化,因此此材料可用于检测BSA浓度(图7)。5. The fluorescence signal of the fluorescent nanospheres is enhanced in the presence of biomacromolecules such as BSA, and the biomacromolecules can amplify the fluorescence signal. And the concentration of BSA and the fluorescence intensity change linearly, so this material can be used to detect the concentration of BSA (Figure 7).
6、该荧光纳米微球的细胞毒性低(图8),利于其进行生物应用。6. The cytotoxicity of the fluorescent nano-microsphere is low ( FIG. 8 ), which is favorable for its biological application.
附图说明Description of drawings
图1:为实施例1制备的纳米微球扫描电子显微镜照片(SEM);Fig. 1: the scanning electron micrograph (SEM) of nano microsphere prepared for embodiment 1;
图2:为实施例1制备的纳米微球和荧光纳米微球动态光散射粒径图;Fig. 2: the dynamic light scattering particle diameter diagram of the nano-microspheres and fluorescent nano-microspheres prepared in Example 1;
图3:为实施例1制备的纳米微球和荧光纳米微球动态光散射Zeta图;Fig. 3: the dynamic light scattering Zeta figure of nano microsphere and fluorescent nano microsphere prepared for embodiment 1;
图4:为实施例1制备的荧光纳米微球和荧光分子水溶液荧光谱图(荧光分子浓度相同,λex=420nm);Fig. 4: Fluorescence spectrogram (the concentration of fluorescent molecules is the same, λex=420nm) of fluorescent nanospheres and fluorescent molecule aqueous solution prepared for embodiment 1;
图5:为实施例1制备的荧光纳米微球水溶液、荧光纳米微球胎牛血清(FBS)磷酸缓冲溶液(pH=7.4)、3个月后的荧光纳米微球胎牛血清(FBS)磷酸缓冲溶液(pH=7.4)的动态光散射粒径图;Fig. 5: Fluorescent nanosphere aqueous solution, fluorescent nanosphere fetal bovine serum (FBS) phosphate buffer solution (pH=7.4), fluorescent nanosphere fetal bovine serum (FBS) phosphate after 3 months prepared for embodiment 1 Dynamic light scattering particle size diagram of buffer solution (pH=7.4);
图6:(1)为实施例1制备的荧光纳米微球在不同pH磷酸缓冲溶液下,荧光纳米微球的荧光谱图;(2)为实施例1制备的荧光纳米微球荧光强度与pH关系图;Figure 6: (1) is the fluorescence spectrum of the fluorescent nanospheres prepared in Example 1 under different pH phosphate buffer solutions; (2) is the fluorescence intensity and pH of the fluorescent nanospheres prepared in Example 1 relation chart;
图7:(1)为实施例1制备的纳米微球在不同BSA浓度下荧光谱图;(2)为BSA浓度与荧光强度曲线图;Figure 7: (1) is the fluorescence spectrum of the nano-microspheres prepared in Example 1 at different BSA concentrations; (2) is the BSA concentration and fluorescence intensity curve;
图8:(1)为实施例1荧光纳米微球对人胃粘膜上皮细胞(GES-1)的细胞毒性测试图;(2)为实施例1荧光纳米微球对人胃癌细胞(SGC-7901)的细胞毒性测试图;Figure 8: (1) is the cytotoxicity test graph of embodiment 1 fluorescent nano-microspheres to human gastric mucosal epithelial cells (GES-1); (2) is the cytotoxicity test diagram of embodiment 1 fluorescent nano-microspheres to human gastric cancer cells (SGC-7901 ) cytotoxicity test chart;
图9:(a)为实施例1制备的纳米微球在正常细胞人胃粘膜上皮细胞(GES-1)荧光共聚焦明场照片;(b)为实施例1制备的纳米微球在正常细胞人胃粘膜上皮细胞(GES-1)荧光共聚焦明场和暗场叠加照片;(c)为实施例1制备的纳米微球在正常细胞人胃粘膜上皮细胞(GES-1)荧光共聚焦暗场照片;(d)为实施例1制备的纳米微球在正常细胞人胃癌细胞(SGC-7901)荧光共聚焦明场照片;(e)为实施例1制备的纳米微球在人胃癌细胞(SGC-7901)荧光共聚焦明场和暗场叠加照片;(f)为实施例1制备的纳米微球在人胃癌细胞(SGC-7901)荧光共聚焦暗场照片;Figure 9: (a) Fluorescence confocal bright field photos of the nanospheres prepared in Example 1 in normal cells human gastric mucosal epithelial cells (GES-1); (b) the nanospheres prepared in Example 1 in normal cells Superimposed photos of fluorescent confocal bright field and dark field of human gastric mucosal epithelial cells (GES-1); Field photo; (d) fluorescence confocal bright field photo of the nano-microspheres prepared in Example 1 in normal cell human gastric cancer cells (SGC-7901); (e) the nano-microspheres prepared in Example 1 in human gastric cancer cells (SGC-7901) SGC-7901) fluorescent confocal bright-field and dark-field superimposed photos; (f) fluorescence confocal dark-field photos of the nanospheres prepared in Example 1 in human gastric cancer cells (SGC-7901);
图10:为实施例2制备的纳米微球扫描电子显微镜照片(SEM);Fig. 10: scanning electron micrograph (SEM) for the nano-microsphere prepared in embodiment 2;
图11:为实施例3制备的纳米微球扫描电子显微镜照片(SEM);Fig. 11: scanning electron micrograph (SEM) of the nano microsphere prepared for embodiment 3;
图12:为实施例4制备的纳米微球扫描电子显微镜照片(SEM)。FIG. 12 : Scanning electron micrograph (SEM) of the nanospheres prepared in Example 4.
具体实施方式Detailed ways
实施例1:Example 1:
(1)取5mL苯乙烯(分析纯,经减压蒸馏除阻聚剂)和0.06g N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)加入到含有185mL去离子水的500mL的三颈瓶中,室温、氮气保护下机械搅拌(400rpm)30分钟,除去反应体系中的氧气,然后升温到70℃,加入10mL、含有0.37mmol偶氮二异丁脒盐酸盐(V50)引发剂的水溶液引发聚合,聚合在氮气保护、400rpm的搅拌速度下进行10h。聚合得到的纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除掉未反应的单体、低聚物、引发剂等,重新分散到100mL去离子水中,便制得质量浓度为2.92%表面带正电荷的纳米微球溶液。(1) Take 5mL styrene (analytically pure, the polymerization inhibitor is removed by distillation under reduced pressure) and 0.06g N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) and add it to a tank containing 185mL deionized water In a 500mL three-necked flask, stir mechanically (400rpm) at room temperature and under nitrogen protection for 30 minutes to remove oxygen in the reaction system, then heat up to 70°C, add 10mL containing 0.37mmol azobisisobutylamidine hydrochloride (V 50 ) The aqueous solution of the initiator initiates the polymerization, and the polymerization is carried out for 10 h under nitrogen protection and a stirring speed of 400 rpm. The nano-microspheres obtained by polymerization were centrifuged 3 times at a speed of 18500rpm, washed 3 times with deionized water to remove unreacted monomers, oligomers, initiators, etc., and redispersed into 100mL deionized water to obtain The mass concentration is 2.92% of the positively charged nanometer microsphere solution on the surface.
(2)取10mL纳米微球溶液加入10mL去离子水再加入3mL、100μg/mLDSA于三颈瓶中,放入搅拌子,在磁搅拌下加热到50℃反应4h,反应完成后荧光纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除去未复合的荧光分子,并重新分散到23mL去离子水中,得到质量浓度为1.27%的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球溶液。(2) Take 10mL of nanosphere solution, add 10mL of deionized water, add 3mL, 100μg/mLDSA into a three-neck flask, put it into a stirrer, and heat it to 50°C under magnetic stirring for 4 hours. After the reaction is completed, fluorescent nanospheres Centrifuge 3 times at 18500rpm, wash 3 times with deionized water to remove uncomplexed fluorescent molecules, and redisperse them in 23mL deionized water to obtain a positively charged surface with aggregation-induced fluorescence enhancement with a mass concentration of 1.27%. properties of fluorescent nanosphere solutions.
从纳米微球扫描电子显微镜照片(SEM)(图1)可以看出纳米微球尺寸为100nm,尺寸均一,单分散性好。通过动态光散射(DLS)测得纳米微球在水溶液中的尺寸为120.7nm,单分散指数PDI=0.002(图2),由于存在水合粒径,所以测得的尺寸要比SEM的数值大。通过动态光散射(DLS)测得纳米微球表面呈正电性(42.4mv)(图3)。带负电荷的AIE型荧光分子DSA通过库仑力的作用复合到荧光纳米微球表面,得到的荧光纳米微球的水合粒径为131.7nm(图2),并且具有很好的单分散性,单分散指数PDI=0.013,表面电荷也降低到40.6mv(图3)。虽然荧光分子DSA本身具有良好的生物相容性,并且克服了传统的聚集荧光诱导淬灭现象,但是由于具有水溶性,吸收的大部分能量都通过分子内转动释放,荧光效率很低,因此不适用于生物成像。荧光分子DSA复合到我们合成的纳米微球上后,由于分子内转动受到限制,大部分吸收的能量通过辐射的方式释放出,从荧光谱图上可以看出荧光效率得到的显著地增强(图4)。我们所合成的荧光纳米微球具有很好的生物相容性和生物稳定性。我们配制了含有500μg/mL荧光纳米微球的10%胎牛血清(FBS)磷酸缓冲溶液(pH=7.4),低温存放3个月后,通过动态光散射测得尺寸没有发生明显变化(图5)。并且我们测试了荧光纳米微球在不同生物环境下的荧光稳定性,当荧光纳米微球在不同的pH磷酸缓冲溶液中时,荧光强度并没有明显的变化(图6)。当在生物大分子BSA溶液中时,由于这些生物大分子带负电,吸附到荧光纳米微球的表面进一步束缚DSA分子内转动,因此使其荧光增强并且呈线性变化(图7),因此细胞内的一些生物分子会放大我们合成的荧光纳米微球的荧光信号。我们进行了荧光纳米微球的细胞毒性测试,可以看出在纳米微球浓度100mg/L培养72h细胞的存活率仍达到85%以上,细胞毒性低,可以用于生物成像(图8)。我们对其进行了细胞成像实验,通过共聚焦细胞成像看到我们合成的荧光纳米微球可以很好地进入正常细胞和癌细胞的细胞质,对细胞进行很好的成像(图9)。From the scanning electron micrograph (SEM) of the nano-microsphere (Fig. 1), it can be seen that the size of the nano-microsphere is 100 nm, the size is uniform, and the monodispersity is good. The size of the nanospheres in the aqueous solution measured by dynamic light scattering (DLS) is 120.7nm, and the monodispersity index PDI=0.002 (Figure 2). Due to the existence of the hydrated particle size, the measured size is larger than the value of the SEM. The surface of the nanospheres was positively charged (42.4mv) as measured by dynamic light scattering (DLS) (Figure 3). The negatively charged AIE-type fluorescent molecule DSA is compounded to the surface of fluorescent nanospheres through the action of Coulomb force, and the hydrated particle size of the obtained fluorescent nanospheres is 131.7nm (Fig. The dispersion index PDI=0.013, the surface charge also decreased to 40.6mv (Figure 3). Although the fluorescent molecule DSA itself has good biocompatibility and overcomes the traditional aggregation fluorescence-induced quenching phenomenon, due to its water solubility, most of the absorbed energy is released through intramolecular rotation, and the fluorescence efficiency is very low, so it cannot Suitable for biological imaging. After the fluorescent molecule DSA is compounded on our synthesized nano-microspheres, due to the restriction of intramolecular rotation, most of the absorbed energy is released through radiation. It can be seen from the fluorescence spectrum that the fluorescence efficiency is significantly enhanced (Fig. 4). The fluorescent nanospheres we synthesized have good biocompatibility and biostability. We prepared 10% fetal bovine serum (FBS) phosphate buffer solution (pH=7.4) containing 500 μg/mL fluorescent nanospheres. After 3 months of storage at low temperature, there was no significant change in size as measured by dynamic light scattering (Fig. 5 ). And we tested the fluorescence stability of the fluorescent nanospheres in different biological environments. When the fluorescent nanospheres were in different pH phosphate buffer solutions, the fluorescence intensity did not change significantly ( FIG. 6 ). When in the biomacromolecule BSA solution, since these biomacromolecules are negatively charged, the adsorption to the surface of fluorescent nanospheres further binds the rotation of DSA molecules, so that the fluorescence is enhanced and changes linearly (Fig. 7), so the intracellular Some of the biomolecules can amplify the fluorescent signal of our synthesized fluorescent nanospheres. We conducted a cytotoxicity test of fluorescent nanospheres, and it can be seen that the survival rate of cells cultured at a concentration of 100 mg/L for 72 hours still reached more than 85%, and the cytotoxicity was low, which can be used for biological imaging (Figure 8). We conducted cell imaging experiments on it, and through confocal cell imaging, we saw that the fluorescent nanospheres we synthesized can well enter the cytoplasm of normal cells and cancer cells, and image the cells well (Figure 9).
实施例2:Example 2:
(1)取5mL苯乙烯(分析纯,经减压蒸馏除阻聚剂)和0.5g N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)加入到含有185mL去离子水的500mL的三颈瓶中,室温、氮气保护下机械搅拌(400rpm)30分钟,除去反应体系中的氧气,然后升温到70℃,加入10mL、含有0.37mmol偶氮二异丁脒盐酸盐(V50)引发剂的水溶液引发聚合,聚合在氮气保护、400rpm的搅拌速度下进行10h。聚合得到的纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除掉未反应的、低聚物、引发剂等,重新分散到100mL去离子水中,便制得质量浓度为2.92%表面带正电荷的纳米微球溶液。(1) Take 5mL styrene (analytically pure, the polymerization inhibitor is removed by distillation under reduced pressure) and 0.5g N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) and add it to a tank containing 185mL deionized water In a 500mL three-necked flask, stir mechanically (400rpm) at room temperature and under nitrogen protection for 30 minutes to remove oxygen in the reaction system, then heat up to 70°C, add 10mL containing 0.37mmol azobisisobutylamidine hydrochloride (V 50 ) The aqueous solution of the initiator initiates the polymerization, and the polymerization is carried out for 10 h under nitrogen protection and a stirring speed of 400 rpm. The polymerized nanospheres were centrifuged 3 times at a speed of 18500rpm, washed 3 times with deionized water to remove unreacted, oligomers, initiators, etc., and redispersed into 100mL deionized water to obtain the mass concentration It is a 2.92% solution of nano-microspheres with positive charges on the surface.
(2)取10mL纳米微球溶液加入10mL去离子水再加入3mL、100μg/mLDSA于三颈瓶中,放入搅拌子,在磁搅拌下加热到50℃反应4h,反应完成后荧光纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除去未复合的荧光分子,并重新分散到23mL去离子水中,得到质量浓度为1.27%的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球溶液。(2) Take 10mL of nanosphere solution, add 10mL of deionized water, add 3mL, 100μg/mLDSA into a three-neck flask, put it into a stirrer, and heat it to 50°C under magnetic stirring for 4 hours. After the reaction is completed, fluorescent nanospheres Centrifuge 3 times at 18500rpm, wash 3 times with deionized water to remove uncomplexed fluorescent molecules, and redisperse them in 23mL deionized water to obtain a positively charged surface with aggregation-induced fluorescence enhancement with a mass concentration of 1.27%. properties of fluorescent nanosphere solutions.
我们发现,其性质和实施例1中制备的样品性质相似,但是尺寸变小,约为50nm(见图10)。这是因为聚合单体N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)是两亲性单体,充当表面活性剂的作用。当它的量增加时,相当于表面活性剂的量增加,所以纳米微球的尺寸会变小。We found that its properties were similar to those of the sample prepared in Example 1, but the size became smaller, about 50 nm (see Figure 10). This is because the polymerized monomer N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) is an amphiphilic monomer that acts as a surfactant. When its amount increases, it is equivalent to an increase in the amount of surfactant, so the size of the nano-microspheres will become smaller.
实施例3:Example 3:
(1)取5mL苯乙烯(分析纯,经减压蒸馏除阻聚剂)和0.05g N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)加入到含有185mL去离子水的500mL的三颈瓶中,室温、氮气保护下机械搅拌(400rpm)30分钟,除去反应体系中的氧气,然后升温到70℃,加入10mL、含有0.37mmol偶氮二异丁脒盐酸盐(V50)引发剂的水溶液引发聚合,聚合在氮气保护、400rpm的搅拌速度下进行10h。聚合得到的纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除掉未反应的、低聚物、引发剂等,重新分散到100mL去离子水中,便制得质量浓度为2.92%表面带正电荷的纳米微球溶液。(1) Take 5mL styrene (analytically pure, the polymerization inhibitor is removed by distillation under reduced pressure) and 0.05g N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) and add it to a tank containing 185mL deionized water In a 500mL three-necked flask, stir mechanically (400rpm) at room temperature and under nitrogen protection for 30 minutes to remove oxygen in the reaction system, then heat up to 70°C, add 10mL containing 0.37mmol azobisisobutylamidine hydrochloride (V 50 ) The aqueous solution of the initiator initiates the polymerization, and the polymerization is carried out for 10 h under nitrogen protection and a stirring speed of 400 rpm. The polymerized nanospheres were centrifuged 3 times at a speed of 18500rpm, washed 3 times with deionized water to remove unreacted, oligomers, initiators, etc., and redispersed into 100mL deionized water to obtain the mass concentration It is a 2.92% solution of nano-microspheres with positive charges on the surface.
(2)取10mL纳米微球溶液加入10mL去离子水再加入3mL、100μg/mLDSA于三颈瓶中,放入搅拌子,在磁搅拌下加热到50℃反应4h,反应完成后荧光纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除去未复合的荧光分子,并重新分散到23mL去离子水中,得到质量浓度为1.27%的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球溶液。(2) Take 10mL of nanosphere solution, add 10mL of deionized water, add 3mL, 100μg/mLDSA into a three-neck flask, put it into a stirrer, and heat it to 50°C under magnetic stirring for 4 hours. After the reaction is completed, fluorescent nanospheres Centrifuge 3 times at 18500rpm, wash 3 times with deionized water to remove uncomplexed fluorescent molecules, and redisperse them in 23mL deionized water to obtain a positively charged surface with aggregation-induced fluorescence enhancement with a mass concentration of 1.27%. properties of fluorescent nanosphere solutions.
我们发现,其性质和实施例1中制备的样品性质相似,但是尺寸变大,约为110nm(见图11)。这是因为聚合单体N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)是两亲性单体,充当表面活性剂的作用。当它的量减少时,相当于表面活性剂的量减少,所以纳米微球的尺寸会变大。We found that its properties were similar to those of the sample prepared in Example 1, but the size became larger, about 110 nm (see FIG. 11 ). This is because the polymerized monomer N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) is an amphiphilic monomer that acts as a surfactant. When its amount decreases, it is equivalent to a decrease in the amount of surfactant, so the size of the nano-microspheres will become larger.
实施例4:Example 4:
(1)取5mL苯乙烯(分析纯,经减压蒸馏除阻聚剂)和0.04g N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)加入到含有185mL去离子水的500mL的三颈瓶中,室温、氮气保护下机械搅拌(400rpm)30分钟,除去反应体系中的氧气,然后升温到70℃,加入10mL、含有0.37mmol偶氮二异丁脒盐酸盐(V50)引发剂的水溶液引发聚合,聚合在氮气保护、400rpm的搅拌速度下进行10h。聚合得到的纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除掉未反应的、低聚物、引发剂等,重新分散到100mL去离子水中,便制得质量浓度为2.92%表面带正电荷的纳米微球溶液。(1) Take 5mL styrene (analytically pure, the polymerization inhibitor is removed by distillation under reduced pressure) and 0.04g N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) and add it to a tank containing 185mL deionized water In a 500mL three-necked flask, stir mechanically (400rpm) at room temperature and under nitrogen protection for 30 minutes to remove oxygen in the reaction system, then heat up to 70°C, add 10mL containing 0.37mmol azobisisobutylamidine hydrochloride (V 50 ) The aqueous solution of the initiator initiates the polymerization, and the polymerization is carried out for 10 h under nitrogen protection and a stirring speed of 400 rpm. The polymerized nanospheres were centrifuged 3 times at a speed of 18500rpm, washed 3 times with deionized water to remove unreacted, oligomers, initiators, etc., and redispersed into 100mL deionized water to obtain the mass concentration It is a 2.92% solution of nano-microspheres with positive charges on the surface.
(2)取10mL纳米微球溶液加入10mL去离子水再加入3mL、100μg/mLDSA于三颈瓶中,放入搅拌子,在磁搅拌下加热到50℃反应4h,反应完成后荧光纳米微球在18500rpm的转速下离心3次,并用去离子水洗涤3次,除去未复合的荧光分子,并重新分散到23mL去离子水中,得到质量浓度为1.27%的表面带正电荷的具有聚集诱导荧光增强性质的荧光纳米微球溶液。(2) Take 10mL of nanosphere solution, add 10mL of deionized water, add 3mL, 100μg/mLDSA into a three-neck flask, put it into a stirrer, and heat it to 50°C under magnetic stirring for 4 hours. After the reaction is completed, fluorescent nanospheres Centrifuge 3 times at 18500rpm, wash 3 times with deionized water to remove uncomplexed fluorescent molecules, and redisperse them in 23mL deionized water to obtain a positively charged surface with aggregation-induced fluorescence enhancement with a mass concentration of 1.27%. properties of fluorescent nanosphere solutions.
我们发现,其性质和实施例1中制备的样品性质相似,但是尺寸变大,约为140nm(见图12)。这是因为聚合单体N,N,N-三甲基乙烯基苯甲氯化铵(VBTAC)是两亲性单体,充当表面活性剂的作用。当它的量减少时,相当于表面活性剂的量减少,所以纳米微球的尺寸会变大。We found that its properties were similar to those of the sample prepared in Example 1, but the size became larger, about 140 nm (see Figure 12). This is because the polymerized monomer N,N,N-trimethylvinylbenzyl ammonium chloride (VBTAC) is an amphiphilic monomer that acts as a surfactant. When its amount decreases, it is equivalent to a decrease in the amount of surfactant, so the size of the nano-microspheres will become larger.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510226607.6A CN104892815B (en) | 2015-05-06 | 2015-05-06 | Surface positively charged fluorescent nanometer microsphere and its biologic applications with aggregation inducing Fluorescence Increasing property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510226607.6A CN104892815B (en) | 2015-05-06 | 2015-05-06 | Surface positively charged fluorescent nanometer microsphere and its biologic applications with aggregation inducing Fluorescence Increasing property |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104892815A true CN104892815A (en) | 2015-09-09 |
CN104892815B CN104892815B (en) | 2018-04-13 |
Family
ID=54025818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510226607.6A Active CN104892815B (en) | 2015-05-06 | 2015-05-06 | Surface positively charged fluorescent nanometer microsphere and its biologic applications with aggregation inducing Fluorescence Increasing property |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104892815B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106084110A (en) * | 2016-06-13 | 2016-11-09 | 吉林大学 | There is fluorescent nanometer microsphere and the application thereof of pH response and aggregation inducing Fluorescence Increasing character |
CN107290534A (en) * | 2017-07-12 | 2017-10-24 | 华讯方舟科技有限公司 | A kind of blood cell capture chip and method |
WO2018056454A1 (en) * | 2016-09-26 | 2018-03-29 | 国立大学法人埼玉大学 | Fine fluorescent particle containing aie-active compound |
CN108587609A (en) * | 2018-06-28 | 2018-09-28 | 上海交通大学 | A kind of nanoparticle and preparation method and application based on gathering induced luminescence material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101768437A (en) * | 2010-01-19 | 2010-07-07 | 无锡中德伯尔生物技术有限公司 | SiO2 nano-particle taking positive electrical polyelectrolyte as template and doped with negative electricity dye and preparation method thereof |
CN102115570A (en) * | 2010-12-10 | 2011-07-06 | 吉林大学 | Method for preparing nano fluorescence thermometer |
CN103805162A (en) * | 2013-12-23 | 2014-05-21 | 吉林大学 | Functionalized organic-inorganic hybridization fluorescent dye modified microsphere and preparation method thereof |
-
2015
- 2015-05-06 CN CN201510226607.6A patent/CN104892815B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101768437A (en) * | 2010-01-19 | 2010-07-07 | 无锡中德伯尔生物技术有限公司 | SiO2 nano-particle taking positive electrical polyelectrolyte as template and doped with negative electricity dye and preparation method thereof |
CN102115570A (en) * | 2010-12-10 | 2011-07-06 | 吉林大学 | Method for preparing nano fluorescence thermometer |
CN103805162A (en) * | 2013-12-23 | 2014-05-21 | 吉林大学 | Functionalized organic-inorganic hybridization fluorescent dye modified microsphere and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
余迎春: "温敏性荧光聚合物材料的制备与表征", 《吉林大学硕士学位论文》 * |
王子龙: "聚集诱导发光分子的合成及其在荧光纳米粒子生物成像中的应用", 《吉林大学硕士学位论文》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106084110A (en) * | 2016-06-13 | 2016-11-09 | 吉林大学 | There is fluorescent nanometer microsphere and the application thereof of pH response and aggregation inducing Fluorescence Increasing character |
CN106084110B (en) * | 2016-06-13 | 2018-08-10 | 吉林大学 | Fluorescent nanometer microsphere with pH responses and aggregation inducing Fluorescence Increasing property and its application |
WO2018056454A1 (en) * | 2016-09-26 | 2018-03-29 | 国立大学法人埼玉大学 | Fine fluorescent particle containing aie-active compound |
JPWO2018056454A1 (en) * | 2016-09-26 | 2019-07-04 | 国立大学法人埼玉大学 | Fluorescent microparticles containing AIE active compounds |
US11396567B2 (en) | 2016-09-26 | 2022-07-26 | National University Corporation Saitama University | Fine fluorescent particle containing AIE-active compound |
CN107290534A (en) * | 2017-07-12 | 2017-10-24 | 华讯方舟科技有限公司 | A kind of blood cell capture chip and method |
CN108587609A (en) * | 2018-06-28 | 2018-09-28 | 上海交通大学 | A kind of nanoparticle and preparation method and application based on gathering induced luminescence material |
Also Published As
Publication number | Publication date |
---|---|
CN104892815B (en) | 2018-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reisch et al. | Tailoring fluorescence brightness and switching of nanoparticles through dye organization in the polymer matrix | |
CN104017129B (en) | The fluorescent functional polymer nano-microspheres of a kind of temperature and pH double-response, preparation method and application | |
CN102115570B (en) | Method for preparing nano fluorescence thermometer | |
CN104892815B (en) | Surface positively charged fluorescent nanometer microsphere and its biologic applications with aggregation inducing Fluorescence Increasing property | |
CN104140489B (en) | A kind of amphiphilic photoswitchable fluorescent polymer nanoparticle and preparation method thereof | |
Deng et al. | Preparation, characterization, and application of multistimuli‐responsive microspheres with fluorescence‐labeled magnetic cores and thermoresponsive shells | |
Sheng et al. | In-situ encapsulation of quantum dots into polymer microspheres | |
Li et al. | Polyhedral oligomeric silsesquioxanes‐containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (herceptin) functionalization for HER2‐positive cancer cell detection | |
CN110892040A (en) | Dye-loaded fluorescent polymer nanoparticles as nanoantennas | |
Bhuckory et al. | Core or shell? Er3+ FRET donors in upconversion nanoparticles | |
CN104004125B (en) | A kind of two fluorescent functional polymer nano-microspheres of pH response and the application in tumor tissues detects thereof | |
CN104448108B (en) | Amphiphilic multicolor optical switch fluorescent polymer nanoparticles and preparation method thereof | |
CN104628923A (en) | Method for preparing aggregation-induced emission type polymer fluorescent nanoparticle through mini-emulsion polymerization initiated by oil-soluble initiator | |
Liu et al. | Development of polymeric nanoprobes with improved lifetime dynamic range and stability for intracellular oxygen sensing | |
Murray et al. | Fluorescently labelled nanomaterials in nanosafety research: Practical advice to avoid artefacts and trace unbound dye | |
CN104628924A (en) | Method for preparing aggregation-induced emission type polymer fluorescent nanoparticle through mini-emulsion polymerization initiated by water-soluble initiator | |
JP2022502534A (en) | Luminous particles | |
CN104629232B (en) | Adjustable flexible photonic nano chain of photon band gap and its preparation method and application | |
CN107417849A (en) | A kind of near infrared light switch fluorescent polymer nano-particle prepares and its application | |
Xia et al. | Metal-enhanced fluorescence using aggregated silver nanoparticles | |
Singh et al. | Stimuli-responsive photoluminescence soft hybrid microgel particles: synthesis and characterizations | |
Masoomi et al. | Ultrabright dye-loaded spherical polyelectrolyte brushes and their fundamental structure-fluorescence tuning principles | |
CN106084110B (en) | Fluorescent nanometer microsphere with pH responses and aggregation inducing Fluorescence Increasing property and its application | |
CN105802605A (en) | Preparation method of fluorogold nanocomposite used for cell imaging | |
Lee et al. | Photoluminescent polymer nanoparticles for label-free cellular imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |