CN104888401B - 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法 - Google Patents

硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法 Download PDF

Info

Publication number
CN104888401B
CN104888401B CN201510258162.XA CN201510258162A CN104888401B CN 104888401 B CN104888401 B CN 104888401B CN 201510258162 A CN201510258162 A CN 201510258162A CN 104888401 B CN104888401 B CN 104888401B
Authority
CN
China
Prior art keywords
firebrake
chlorophenol
solution
dechlorination
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510258162.XA
Other languages
English (en)
Other versions
CN104888401A (zh
Inventor
范晓芸
刘静
王传义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinjiang Technical Institute of Physics and Chemistry of CAS
Original Assignee
Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinjiang Technical Institute of Physics and Chemistry of CAS filed Critical Xinjiang Technical Institute of Physics and Chemistry of CAS
Priority to CN201510258162.XA priority Critical patent/CN104888401B/zh
Publication of CN104888401A publication Critical patent/CN104888401A/zh
Application granted granted Critical
Publication of CN104888401B publication Critical patent/CN104888401B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

本发明涉及一种硼酸锌碱金属化合物在光催化下针对氯酚类污染物脱氯的方法,该方法以氯酚为污染物,在硼酸锌碱金属化合物位硼酸锌钾,硼酸锌钠,硼酸锌钾钠的存在下,在汞灯(主发射波254 nm)照射下对其进行脱氯,在15 min内,脱氯的效率可达97% 以上,通过紫外可见光谱仪、高效液相色谱仪及离子色谱仪分析,发现该类氯酚最终降解为苯酚,对苯醌及含氯的溶液。本发明所述方法操作工艺简单,成本低,能高效、快速的用于氯代芳烃中的脱氯,对环境保护方面具有良好的前景。

Description

硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法
技术领域
本发明涉及硼酸锌碱金属系列化合物(硼酸锌钾,硼酸锌钠,硼酸锌钾钠)在光催化下对氯酚类污染物脱氯的方法。
背景技术
氯酚类物质是芳香族化合物中用途最广的一类化合物。其大量使用使得大量氯酚类物质进入环境,给自然环境造成了严重的危害。目前在废弃物,污泥,沉积物,土壤,地下水和雨水中均已检测到氯酚的存在。近年来,科学研究还发现,很多氯酚类化合物具有酷似天然激素的功能,对生物体具有致癌,致畸,致突变的的特性。欧盟,美国和中国等世界上许多国家都将其列为优先污染物。由于氯酚本身的芳环结构和氯代原子的存在而具有很强的毒性以及抗生物降解能力,同时氯原子的存在会抑制苯环裂解酶的活性从而增加了其抗生物能力。因此,如何减轻环境中氯酚类污染物的影响日益受到重视。
目前,处理氯酚类污染物的主要方法有物理法(如空气吹脱、吸附、膜分离)、化学法(如湿式氧化法、超临界氧化法、UV/H2O2法、TiO2膜光催化、高压脉冲放电、低温等离子体、高频超声法)以及生物法(如好氧生物处理和厌氧生物处理)。由于氯酚结构稳定,采用这些传统的物理、化学或生物法进行处理,都难以达到满意的降解效果。光催化氧化技术降解氯酚类污染物已成为当前环境污染控制研究领域中最为活跃的研究热点之一。
关于硼酸锌钾(K3ZnB5O10),硼酸锌钠(K2NaZnB5O10),硼酸锌钾钠(Na3ZnB5O10)的使用已有报道,主要是用于制备非线性光学器件,包括制作倍频发生器、上或下频率转换器和光参量振荡器。尚未涉及到在光催化下对氯酚类污染物脱氯方面的应用。
发明内容
本发明的目的在于,提供一种硼酸锌碱金属化合物光催化下对氯酚类污染物脱氯的方法,该方法以氯代苯酚为污染物,在硼酸锌碱金属化合物为硼酸锌钾、硼酸锌钠或硼酸锌钾钠的存在下,在汞灯照射下对氯酚类污染物进行降解,在15min内,脱氯的效率可达97%以上,通过紫外可见光谱仪,高效液相色谱仪及离子色谱分析,该氯酚类污染物最终降解为苯酚,对苯醌及含氯的溶液。本发明操作工艺简单,成本低,能高效、快速的用于氯代芳烃中的脱氯,对环境保护方面具有良好的前景。
本发明所述的一种硼酸锌碱金属化合物在光催化对氯酚类污染物脱氯的方法,其特征在于,按下列步骤进行:
a、将氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,在溶液中加水稀释至浓度为10-100mg/L,然后置于超声波中处理使其成为均一稳定的溶液;
b、在避光条件下,将10-100mg的硼酸锌碱金属化合物为硼酸锌钾、硼酸锌钠或硼酸锌钾钠加入步骤a得到的溶液中,搅拌10-30min,移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,每隔2min取样4mL;
d、将取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解产物。
步骤a中的氯酚为2-氯酚,4-氯酚,2,4-二氯酚或2,4,6-三氯酚。
步骤c中,汞灯主发射波长为254nm,光能量密度为245mw/cm2,取样间隔时间2min。
本发明中氯酚采用市售原料。
本发明所述的一种硼酸锌碱金属化合物在光催化下针对氯酚类污染物脱氯的方法,该方法将一定浓度的代表性氯酚污染物在汞灯照射下,随着时间的变化,使氯酚类污染物脱氯形成苯酚,对苯醌及Cl-
附图说明
图1为本发明硼酸锌碱金属化合物粉末衍射XRD图谱,其中(a)为硼酸锌钾,(b)为硼酸锌钾钠,(c)为硼酸锌钠;
图2为本发明在汞灯照射下的降解效率图,其中催化剂用量为20mg,4-氯酚浓度20mg/L,-■-为硼酸锌钾降解曲线,-★-为硼酸锌钠降解曲线,-○-为硼酸锌钾钠降解曲线。
具体实施方式
以下结合附图和实施例对本发明进行详细说明:
实施例1:
a、将2-氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,取0.1mL配制的溶液,置于容积为250mL的烧杯中,加水稀释至浓度为10mg/L,然后置于超声波中处理使其为均一稳定的溶液;
b、在避光条件下,分别将10mg的硼酸锌钾,硼酸锌钠,硼酸锌钾钠加入到3份步骤a得到的溶液中,搅拌10min,每份移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,汞灯主发射波长为254nm,光能量密度为245mw/cm2,每隔2min取样4mL;
d、将所有取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解中间产物,8min后分别测试硼酸锌钾中2-氯酚脱氯效率为99.5%,硼酸锌钠中2-氯酚脱氯效率为98.6%,硼酸锌钾钠中2-氯酚脱氯效率98.7%,最终产物为苯酚及Cl-
实施例2:
a、将4-氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,取0.2mL配制的溶液,置于容积为250mL的烧杯中,加水稀释至浓度为20mg/L,然后置于超声波中处理使其为均一稳定的溶液;
b、在避光条件下,分别将20mg的硼酸锌钾,硼酸锌钠,硼酸锌钾钠加入到3份步骤a得到的溶液中,搅拌15min,每份移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,汞灯主发射波长为254nm,能量密度为245mw/cm2,每隔2min取样4mL;
d、将所有取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解中间产物,6min后分别测试硼酸锌钾中4-氯酚脱氯效率为99.9%,硼酸锌钠中4-氯酚脱氯效率为99.5%,硼酸锌钾钠中4-氯酚脱氯效率为99.8%,最终产物为苯酚及Cl-
实施例3:
a、将2,4-二氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,取0.5mL配制的溶液,置于容积为250mL的烧杯中,加水稀释至浓度为50mg/L,然后置于超声波中处理使其为均一稳定的溶液;
b、在避光条件下,分别将50mg的硼酸锌钾,硼酸锌钠,硼酸锌钾钠加入到3份步骤a得到的溶液中,搅拌20min,每份移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,汞灯主发射波长为254nm,光能量密度为245mw/cm2,间隔2min取样4mL;
d、将所有取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解中间产物,10min后分别测试硼酸锌钾中2,4-二氯酚脱氯效率为99.9%,硼酸锌钠中2,4-二氯酚脱氯效率为99.5%,硼酸锌钾钠中2,4-二氯酚脱氯效率为99.7%,最终产物为苯酚,对苯醌及Cl-
实施例4:
a、将2,4,6-三氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,取0.8mL配制的溶液,置于容积为250mL的烧杯中,加水稀释至80mg/L,然后置于超声波中处理使其为均一稳定的溶液;
b、在避光条件下,分别将80mg的硼酸锌钾,硼酸锌钠,硼酸锌钾钠加入到3份步骤a得到的溶液中,搅拌25min,每份移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,汞灯主发射波长为254nm,光能量密度为245mw/cm2,每隔2min取样4mL;
d、将所有取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解中间产物,14min后分别测试硼酸锌钾中2,4,6-三氯酚脱氯效率为98.3%,硼酸锌钠中2,4,6-三氯酚脱氯效率为97.8%,硼酸锌钾钠中2,4,6-三氯酚脱氯效率为98.1%,最终产物为苯酚,对苯醌及Cl-
实施例5:
a、将2,4,6-三氯酚溶解在甲醇中,配制成浓度为10g/L的溶液,取1mL配制的溶液,置于容积为250mL的烧杯中,加水稀释至100mg/L,然后置于超声波中处理使其为均一稳定的溶液;
b、在避光条件下,分别将100mg的硼酸锌钾,硼酸锌钠,硼酸锌钾钠加入到3份步骤a得到的溶液中,搅拌30min,每份移取4mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12cm,汞灯主发射波长为254nm,光能量密度为245mw/cm2,每隔2min取样4mL;
d、将所有取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解中间产物,12min后分别测试硼酸锌钾中2,4,6-三氯酚脱氯效率为99.5%,硼酸锌钠中2,4,6-三氯酚脱氯效率为98.7%,硼酸锌钾钠中2,4,6-三氯酚脱氯效率为99.2%,最终产物为苯酚,对苯醌及Cl-

Claims (3)

1.一种硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法,其特征在于,按下列步骤进行:
a、将氯酚溶解在甲醇中,配制成浓度为10 g/L的溶液,在溶液中加水稀释至浓度为10-100 mg/L,然后置于超声波中处理使其成为均一稳定的溶液;
b、在避光条件下,将10-100 mg的硼酸锌碱金属化合物为硼酸锌钾、硼酸锌钠或硼酸锌钾钠加入步骤a得到的溶液中,搅拌10-30 min,移取4 mL置于离心管内,避光保存;
c、将步骤b中的剩余溶液体系在发光的汞灯下照射,温度保持室温25℃,剩余溶液体系距汞灯出口12 cm,每隔2 min取样4 mL;
d、将取出的样品离心后,取上清液测试紫外可见吸收光谱、高效液相色谱及离子色谱,分析污染物的降解效率及降解产物。
2.根据权利要求1所述的方法,其特征在于步骤a中的氯酚为2-氯酚,4-氯酚,2,4-二氯酚或2,4,6-三氯酚。
3.根据权利要求1所述的方法,其特征在于步骤c中汞灯主发射波长为254 nm,光能量密度为245 mw/cm2,取样间隔时间2 min。
CN201510258162.XA 2015-05-20 2015-05-20 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法 Expired - Fee Related CN104888401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510258162.XA CN104888401B (zh) 2015-05-20 2015-05-20 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510258162.XA CN104888401B (zh) 2015-05-20 2015-05-20 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法

Publications (2)

Publication Number Publication Date
CN104888401A CN104888401A (zh) 2015-09-09
CN104888401B true CN104888401B (zh) 2017-08-11

Family

ID=54021622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510258162.XA Expired - Fee Related CN104888401B (zh) 2015-05-20 2015-05-20 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法

Country Status (1)

Country Link
CN (1) CN104888401B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180525B (zh) * 2019-05-10 2021-12-21 重庆第二师范学院 一种Zn4B6O13的固相制备方法及在抗生素降解中的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130031A (en) * 1990-11-01 1992-07-14 Sri International Method of treating aqueous liquids using light energy, ultrasonic energy, and a photocatalyst
CN101417167A (zh) * 2008-09-20 2009-04-29 大连理工大学 一种利用Fe0/TiO2光催化降解水中氯代酚的方法
CN102191547A (zh) * 2010-03-02 2011-09-21 中国科学院福建物质结构研究所 一种非线性光学晶体水合十三硼酸锌钾及其制备和用途
CN102120665B (zh) * 2011-01-18 2012-08-29 北京师范大学 一种光催化净化水中五氯酚的方法
CN103301887A (zh) * 2013-05-16 2013-09-18 陈和平 一种处理水中含氯有机物的催化剂及其制备方法
CN103239827B (zh) * 2013-05-24 2015-03-18 中国科学院新疆理化技术研究所 溴硼酸钾在光催化下对氯酚类污染物脱氯的方法

Also Published As

Publication number Publication date
CN104888401A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
Xin et al. Degradation of triclosan in aqueous solution by dielectric barrier discharge plasma combined with activated carbon fibers
Yu et al. Enhanced photochemical vapor generation for the determination of bismuth by inductively coupled plasma mass spectrometry
Fahmy et al. Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma
Méndez-Díaz et al. Sunlight-driven photochemical halogenation of dissolved organic matter in seawater: a natural abiotic source of organobromine and organoiodine
Mabato et al. Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate
Sturgeon Detection of bromine by ICP-oa-ToF-MS following photochemical vapor generation
Seddigi Removal of Alizarin Yellow dye from water using zinc doped WO 3 catalyst
Eslami et al. Photocatalytic degradation of methyl tert‐butyl ether (MTBE) in contaminated water by ZnO nanoparticles
Song et al. TiO 2-assisted photodegradation of direct blue 78 in aqueous solution in sunlight
Bendig et al. UV-induced formation of bromophenols from polybrominated diphenyl ethers
Ba-Abbad et al. Photocatalytic degradation of chlorophenols under direct solar radiation in the presence of ZnO catalyst
Melchert et al. A greener and highly sensitive flow-based procedure for carbaryl determination exploiting long pathlength spectrophotometry and photochemical waste degradation
Tang et al. Photocatalytic degradation of imidacloprid in aqueous suspension of TiO 2 supported on H-ZSM-5
Medana et al. Multiple unknown degradants generated from the insect repellent DEET by photoinduced processes on TiO2
Nogueira et al. Photocatalytic degradation of phenol and trichloroethylene: on-line and real-time monitoring via membrane introduction mass spectrometry
Gao et al. Study on the mechanism of degradation of tetracycline hydrochloride by microwave-activated sodium persulfate
Kroflic et al. Guaiacol nitration in a simulated atmospheric aerosol with an emphasis on atmospheric nitrophenol formation mechanisms
CN104888401B (zh) 硼酸锌碱金属化合物在光催化下对氯酚类污染物脱氯的方法
He et al. Synergistic effect of TiO 2-CuWO 4 on the photocatalytic degradation of atrazine
Zhang et al. Mechanisms of simultaneous hydrogen production and estrogenic activity removal from secondary effluent though solar photocatalysis
Rivas et al. Photocatalytic elimination of aqueous 2-methyl-4-chlorophenoxyacetic acid in the presence of commercial and nitrogen-doped TiO 2
Chang et al. Photodegradation of alachlor using BiVO 4 photocatalyst under visible light irradiation
Zhao et al. Hydrothermal syntheses of silver phosphate nanostructures and their photocatalytic performance for organic pollutant degradation
CN103239827B (zh) 溴硼酸钾在光催化下对氯酚类污染物脱氯的方法
Malato et al. Removal and degradation of pharmaceutically active compounds (PhACs) in wastewaters by solar advanced oxidation processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170811

Termination date: 20190520

CF01 Termination of patent right due to non-payment of annual fee