CN104882176A - Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering - Google Patents

Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering Download PDF

Info

Publication number
CN104882176A
CN104882176A CN201510166032.3A CN201510166032A CN104882176A CN 104882176 A CN104882176 A CN 104882176A CN 201510166032 A CN201510166032 A CN 201510166032A CN 104882176 A CN104882176 A CN 104882176A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
msup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510166032.3A
Other languages
Chinese (zh)
Inventor
彭星杰
李庆
龚禾林
陈长
赵文博
刘启伟
李向阳
于颖锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN201510166032.3A priority Critical patent/CN104882176A/en
Publication of CN104882176A publication Critical patent/CN104882176A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Abstract

The invention discloses a delay eliminating method for a signal of a self-powered rhodium detector based on Luenberger-form H-infinity filtering. The delay eliminating method sequentially comprises the following steps of 1, establishing a nuclear reaction model of rhodium and thermal neutrons; 2, establishing a discrete state equation corresponding to the nuclear reaction model through direct transform; 3, determining the instant response share of the current of the self-powered rhodium detector; and 4, carrying out delay elimination on a current signal of the self-powered rhodium detector by using a Luenberger-form H-infinity filter. When the delay eliminating method is applied, a current signal of a self-powered rhodium neutron detector can be subjected to delay elimination, and noise can also be effectively inhibited, so that the self-powered rhodium neutron detector can also be normally used under the instantaneous condition of a reactor; in addition, due to the adoption of the Luenberger-form H-infinity filter, the statistical property of an external disturbance input signal is not needed to be known in advance during delay elimination.

Description

Signal delay elimination method of rhodium self-powered detector based on Luenberger form H-infinity filtering
Technical Field
The invention relates to a processing technology of in-core rhodium self-powered neutron detector signals used by a nuclear reactor power distribution online monitoring system, in particular to a rhodium self-powered detector signal delay elimination method based on Luenberger form H ∞ filtering.
Background
The rhodium self-powered neutron detector used as an in-reactor detector of an advanced reactor core measuring system has the advantages that the sensitive material rhodium of the rhodium self-powered neutron detector reacts with the secondary nuclide generated by neutron reaction to generate current, and the current is in direct proportion to the flux of the position in a steady state, so that the neutron flux of the position can be inferred by measuring the rhodium self-powered neutron detector. Because the main component of the detector current is generated by the beta decay of the secondary nuclide, under the transient condition of the reactor (the condition of neutron flux level change), the detector current cannot reflect the change of the flux level in real time, but has certain delay, and the delay time parameter is consistent with the beta decay of the secondary nuclide. Therefore, in order to ensure the accuracy of neutron flux measurement, the advanced core measurement system using the rhodium self-powered neutron detector as a neutron measurement device needs to perform delayed elimination processing on the current signal of the rhodium self-powered neutron detector.
Because the actual measurement process is always accompanied by noise (process noise and measurement noise), the noise of the current signal of the detector can be amplified to 20 times at most by using a direct mathematical inversion method for delay elimination, so that the measurement precision is influenced. Therefore, in the delay eliminating process, amplification of noise needs to be effectively suppressed.
The elimination of the signal delay applied to the rhodium self-powered detector at present is mainly realized based on a Kalman filter, and the application of the method has to assume that an external disturbance input signal of a system is a white noise signal with known statistical characteristics, and the method is difficult to apply when the input signal is an uncertain signal with limited energy, and the statistical characteristics of the uncertain signal are difficult to obtain.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides a signal delay elimination method of a rhodium self-powered neutron detector based on Luenberger form H-infinity filtering, which can delay and eliminate the current signal of the rhodium self-powered neutron detector and effectively inhibit noise when being applied, so that the rhodium self-powered neutron detector can be normally used under the transient working condition of a reactor.
The invention mainly solves the problems by the following technical scheme: a signal delay elimination method for a rhodium self-powered detector based on Luenberger form H-infinity filtering is characterized by comprising the following steps of:
step 1, establishing a nuclear reaction model of rhodium and thermal neutrons:
under the transient working condition of the reactor, the change of the flux causes the change of the current of the rhodium self-powered neutron detector to be not synchronous, and the latter has a certain lag compared with the former, and the specific formula for describing the reaction is as follows:
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
I(t)=cn(t)+λ1m1(t) (3)
wherein m is1(t)、m2(t) each represents104Rh and104mrh direct induced charge, n (t) represents detector current at detector equilibrium corresponding to thermal neutron flux at detector, λ1、λ2Respectively represent104Rh and104mdecay constant of Rh, c represents the transient response fraction of the detector current, a1、a2Respectively represent104Rh and104mrh-induced current contribution, i (t) represents rhodium-self-powered current; the purpose of the step is to derive a continuous time variable mathematical model corresponding to a physical process of generating signals by the rhodium self-powered detector based on a first principle, and a nuclear reaction model is the basis of applying a filter to delay elimination;
step 2, establishing a discrete state equation corresponding to the nuclear reaction model by adopting direct transformation:
due to the fact thatThe current signals of the detector are obtained through discrete sampling, and the continuous state equation established in the step 1 needs to be converted into a discrete state equation; let Ja(t)=λ1m1(t) substituting the equation (1), the equation (2) and the equation (3), directly discretizing the continuous-time ordinary differential equation, and adding a noise term to obtain the following discrete state equation:
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <msub> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mi>W</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
I(k)=[1 0 c]·X(k)+[1]·V(k) (5)
n(k)=[0 0 1]·X(k) (6)
wherein, X ( k ) = J a ( k ) m 2 ( k ) n ( k ) , w (k) is a process noise term, V (k) is a measurement noise term,
initial value is
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 3, determining the transient response share of the current of the rhodium self-powered detector:
the transient response fraction c of the rhodium self-powered detector can be roughly estimated by theory, but the mismatching between the theoretical estimation value and the actual value can cause the reduction of the filtering effect, an experiment can be designed to more accurately determine the transient response fraction c, a power step is formed by increasing/decreasing the reactor power in the reactor starting physical experiment stage, and the corresponding measured values of the off-stack detector signal and the rhodium self-powered detector signal are recorded. The out-of-pile detector can respond to the change of the neutron flux instantaneously, and the corresponding measured value can be considered as the real neutron flux. N different instantaneous response share predicted values are given by adjusting the theoretical values of the instantaneous response shares, then the measured values of the out-of-stack detector signals are substituted into a discrete state equation, N groups of signal theoretical values of the rhodium self-powered detector can be obtained, the theoretical values are compared with the measured values of the rhodium self-powered detector signals, and the instantaneous response share predicted value corresponding to a certain group of theoretical values with the best conformity degree is taken as the instantaneous response share adopted by subsequent delay elimination;
and 4, utilizing an H-infinity filter in a Luenberger form to delay and eliminate the current signal of the self-powered rhodium detector:
for a discrete control process system, the system can be described by an equation of state:
x(k+1)=Ax(k)+Bw(k)
y(k)=Cx(k)+Dw(k) (8)
z(k)=Lx(k)
wherein, x (k) is the n-dimensional state vector of the k-th sampling point, w (k) includes the system process noise and the system observation white noise, y (k) is the measured value of the k-th sampling point, z (k) is the 1-dimensional vector to be solved, and L is the L x n-dimensional matrix;
for the discrete system (8), a full-order linear Luenberger filter which is asymptotically stable is designed as follows
x ^ k + 1 = A x ^ k + K ( y k - C x ^ k ) z ^ k = L x ^ k - - - ( 9 )
Equation (9) is an H ∞ filter, for a given γ, if and only if the following matrix inequality has a solution:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>C</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>L</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>&gamma;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <msup> <mi>B</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>YA</mi> <mo>-</mo> <mi>WC</mi> </mtd> <mtd> <mi>YB</mi> <mo>-</mo> <mi>WD</mi> </mtd> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Y ═ YT∈Rn×n,W∈Rn×r,J=JT∈Rm×mThe gain K ═ Y of the H ∞ filter-1W;
For a rhodium self-powered detector, the corresponding matrix in equation (8) can be known from its discrete state equation as:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
B = 0 0 0 0 1 0
C=[1 0 c]
D=[0 1]
L=[0 0 1]
by solving the linear matrix inequality (10), an H ∞ filter matrix K can be obtained, so that the detector current value at any time after the elimination delay can be obtained by the following steps:
from initial current measurementsCan obtain the product <math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> The initial 0 time delay is eliminated to obtain a current value of z ^ ( 0 ) = C f x ^ ( 0 ) ;
For any time k +1(k 0, 1.),and the current value after the delay elimination at the time k +1 is
When the invention is applied, the principle of an H infinity filter in a Luenberger form is utilized, the amplification of noise can be effectively inhibited in the delay elimination process, the better the noise inhibition effect is, the delay effect can gradually become worse, therefore, when the invention is applied, parameters are required to be properly adjusted to enable the delay elimination effect and the noise inhibition to reach the optimal balance.
When neutron flux density with a large dynamic range needs to be detected, a current signal with a large dynamic range needs to be detected correspondingly, and the problem is concentrated on an analog-to-digital converter. In order to adapt to the quantification of the current with a large dynamic range, the analog-to-digital converter of the rhodium self-powered detector samples a stepping resistor, and when the current signal changes in a large range, the analog-to-digital converter performs resistor stepping conversion. Since the gears are not perfectly matched, switching between gears can cause an abrupt change in the output signal that approximates a step.
In the case of gear shifting, the method further comprises the following steps of processing the original signal according to a signal processing method: in a gear shifting area, supposing that neutron flux is kept unchanged, then reversely deducing a current signal generated by neutron flux density, and subtracting actual output current of a detector to obtain a gear shifting abrupt change component; and (3) subtracting the gear shifting sudden change component from the output current of the detector outside the gear shifting region to obtain a current signal generated by neutron flux density, and then carrying out delay elimination processing on the current signal.
After entering the delay elimination module, the abrupt change component caused by the gear shifting is amplified seriously, so that the step abrupt change in the time domain is amplified seriously, and the quality of the final signal delay elimination is influenced (the abrupt change part of the signal is distorted seriously). During the shift period, the change in signal is mainly contributed by the shift jump, and the change in current signal due to the neutron flux density change is relatively negligible.
In order to deal with the problem of sudden signal change caused by gear shifting, further, in the case of gear shifting, the step 4 performs delay elimination in the following manner:
in the shift region (k)1≤k≤k2) Assuming that the neutron flux density is constant, there are:
n(k+1)=n(k) (11)
<math> <mrow> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <msub> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the current signal of the rhodium self-powered detector can be reversely deduced as follows:
I(k+1)=Ja(k+1)+cn(k+1) (14)
-delay cancellation by the steps of claim 1, taking the back-pushed current (14) as the actual output current of the detector;
in the shift range time boundary k2The current offset caused by gear shifting can be controlled fromThe formula is estimated:
D = I ( k 2 ) - y ^ ( k 2 ) - - - ( 15 )
whereinIs represented at k2The actual output current of the detector at the moment; outside the gear shifting area, the actual output current of the detector needs to be offset and compensated to offset the influence caused by gear shifting, the actual output current of the detector is added with the current offset caused by gear shifting represented by the formula (15) to obtain a current signal generated by neutron flux density, and then the current signal is delayed and eliminated.
In conclusion, the invention has the following beneficial effects:
the method has the advantages that the whole process is simple, the realization is convenient, the current signal of the rhodium self-powered neutron detector can be delayed and eliminated, the noise can be effectively inhibited, and the rhodium self-powered neutron detector can be normally used under the transient working condition of a reactor; the invention is realized based on the H-infinity filter in the Luenberger form, and can be normally applied when the input signal is an uncertain signal with limited energy; when the method is applied, the design of the filter is converted into the calculation of a corresponding linear matrix inequality, the calculation is convenient, and the solution can be conveniently carried out by using the LMI Toolbox of Matlab;
the invention solves the problem of delayed elimination of in-core rhodium self-powered neutron detector signals used by an advanced reactor core measuring system (a nuclear reactor power distribution online monitoring system). The method has the advantages that the signal of the rhodium self-powered neutron detector is subjected to delay elimination, smoothing and noise reduction by using an H-infinity filter, and the optimal balance of the signal delay elimination effect and the noise suppression effect can be well achieved by properly selecting the parameters of the H-infinity filter in the Luenberger form;
3, carrying out delayed elimination processing on a current signal of the rhodium self-powered neutron detector, wherein the response time is the time required for the signal to recover to 90% of the steady-state current in 2-10 seconds when the step flux changes;
4, in the process of delaying and eliminating the current signal of the rhodium self-powered neutron detector, noise reduction processing is carried out on the measured current signal, and the noise amplification factor, namely the ratio of the relative error of the current after the delaying and eliminating processing to the noise is suppressed to be 1-8 times;
the invention can effectively process the influence of the step caused by hardware shifting on the delay elimination effect.
Drawings
FIG. 1 is a diagram of a rhodium-based self-powered neutron detector of the present invention
FIG. 2 is a process flow diagram of one embodiment of the present invention;
FIG. 3 is a diagram of rhodium reaction with a thermoneutron core.
Reference numbers and corresponding part names in the drawings:
1-emitting electrode, 2-insulating layer, 3-collecting electrode, 4-conducting wire, 5-protective shell, 6-insulating cable, 7-current wire, 8-background wire, 9-sealing tube and 10-current output end.
Detailed Description
The present invention will be described in further detail with reference to examples and drawings, but the present invention is not limited to these examples.
Example (b):
fig. 1 shows a diagram of a rhodium self-powered neutron detector, wherein names of parts with respective serial numbers correspond to: 1-an emitting electrode, 2-an insulating layer, 3-a collector, 4-a conducting wire, 5-a protective shell, 6-an insulating cable, 7-a current wire, 8-a background wire, 9-a sealing tube and 10-a current output end, wherein the rhodium self-powered neutron detector has the characteristic parameters as follows: lambda [ alpha ]1=ln2/42.3s-1=0.016386s-12=ln2/4.34/60s-1=0.00266186s-1,c=0.06,a1=0.879,a20.061; FIG. 3 is a schematic diagram of the reaction process of rhodium with neutron nuclei, and the measurement is performed by using the device of FIG. 1 in the reaction process of FIG. 3. As shown in fig. 2, the method for delay cancellation of the signal of the rhodium self-powered detector based on the Luenberger form H ∞ filtering comprises the following steps carried out in sequence: step 1, establishing a nuclear reaction model of rhodium and thermal neutrons; step 2, establishing a discrete state equation corresponding to the nuclear reaction model by adopting direct transformation; step 3, determining the transient response share of the current of the rhodium self-powered detector; and 4, utilizing an H-infinity filter in a Luenberger form to delay and eliminate the current signal of the self-powered rhodium detector.
The specific implementation steps for establishing the rhodium and thermal neutron nuclear reaction model in the embodiment are as follows: as shown in fig. 2, in the transient operating condition of the reactor, the change of flux causes the change of rhodium self-powered neutron detector current to be not synchronous, and the latter has a certain lag compared with the former, and the specific formula describing the reaction is as follows:
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
I(t)=cn(t)+λ1m1(t) (3)
wherein m is1(t)、m2(t) each represents104Rh and104mrh direct induced charge, n (t) represents detector current at detector equilibrium corresponding to thermal neutron flux at detector, λ1、λ2Respectively represent104Rh and104mdecay constant of Rh, c represents the transient response fraction of the detector current, a1、a2Respectively represent104Rh and104mrh-induced current contribution, i (t) represents rhodium-self-powered current;
the specific implementation steps of establishing the discrete state equation corresponding to the nuclear reaction model by adopting direct transformation in the embodiment are as follows:
let Ja(t)=λ1m1(t) substituting the equation (1), the equation (2) and the equation (3), directly discretizing the continuous-time ordinary differential equation, and adding a noise term to obtain the following discrete state equation:
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <msub> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mi>W</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
I(k)=[1 0 c]·X(k)+[1]·V(k) (5)
n(k)=[0 0 1]·X(k) (6)
wherein, X ( k ) = J a ( k ) m 2 ( k ) n ( k ) , w (k) is a process noise term, V (k) is a measurement noise term,
initial value is
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
The specific implementation steps for determining the transient response fraction of the rhodium self-powered detector current in the embodiment are as follows:
in the reactor starting physical experiment stage, a power step is formed by increasing/decreasing the reactor power, and corresponding measured values of the out-of-reactor detector signal and the rhodium self-powered detector signal are recorded. The out-of-pile detector can respond to the change of the neutron flux instantaneously, and the corresponding measured value can be considered as the real neutron flux. N different predicted values of the transient response share are given by adjusting the theoretical value of the transient response share, then the measured values of the out-of-stack detector signals are substituted into a discrete state equation, N groups of theoretical values of the rhodium self-powered detector signals can be obtained, the theoretical values are compared with the measured values of the rhodium self-powered detector signals, and the predicted value of the transient response share corresponding to a certain group of theoretical values with the best conformity degree is taken as the transient response share adopted by subsequent delay elimination.
The specific implementation steps of utilizing the H-infinity filter to delay and eliminate the current signal of the rhodium self-powered detector in the embodiment are as follows:
for a discrete control process system, the system can be described by an equation of state:
x(k+1)=Ax(k)+Bw(k)
y(k)=Cx(k)+Dw(k) (8)
z(k)=Lx(k)
wherein, x (k) is the n-dimensional state vector of the k-th sampling point, w (k) includes the system process noise and the system observation white noise, y (k) is the measured value of the k-th sampling point, z (k) is the 1-dimensional vector to be solved, and L is the L x n-dimensional matrix;
for the discrete system (8), a full-order linear Luenberger filter which is asymptotically stable is designed as follows
x ^ k + 1 = A x ^ k + K ( y k - C x ^ k ) z ^ k = L x ^ k - - - ( 9 )
Equation (9) is an H ∞ filter, for a given γ, if and only if the following matrix inequality has a solution:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>C</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>L</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>&gamma;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <msup> <mi>B</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>YA</mi> <mo>-</mo> <mi>WC</mi> </mtd> <mtd> <mi>YB</mi> <mo>-</mo> <mi>WD</mi> </mtd> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Y ═ YT∈Rn×n,W∈Rn×r,J=JT∈Rm×mThe gain K ═ Y of the H ∞ filter-1W;
For a rhodium self-powered detector, the corresponding matrix in equation (8) can be known from its discrete state equation as:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
B = 0 0 0 0 1 0
C=[1 0 c]
D=[0 1]
L=[0 0 1]
by solving the linear matrix inequality (10), an H ∞ filter matrix K can be obtained, so that the detector current value at any time after the elimination delay can be obtained by the following steps:
from initial current measurementsCan obtain the product <math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> The initial 0 time delay is eliminated to obtain a current value of z ^ ( 0 ) = C f x ^ ( 0 ) ;
For any time k +1(k 0, 1.),and the current value after the delay elimination at the time k +1 is
Example 2:
this embodiment is further defined on the basis of embodiment 1 as follows: in the case of a gear shift, the step 4 performs the delay elimination in the following manner:
in the shift region (k)1≤k≤k2) Assuming that the neutron flux density is constant, there are:
n(k+1)=n(k) (11)
<math> <mrow> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mn>1</mn> <mo>-</mo> <mi>e</mi> </mrow> <mrow> <msub> <mrow> <mo>-</mo> <mi>&lambda;</mi> </mrow> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
the current signal of the rhodium self-powered detector can be reversely deduced as follows:
I(k+1)=Ja(k+1)+cn(k+1) (14)
-delay cancellation by the steps of claim 1, taking the back-pushed current (14) as the actual output current of the detector;
in the shift range time boundary k2The shift induced current offset may be estimated by:
D = I ( k 2 ) - y ^ ( k 2 ) - - - ( 15 )
whereinIs represented at k2The actual output current of the detector at the moment;
outside the gear shifting area, the actual output current of the detector needs to be offset and compensated to offset the influence caused by gear shifting, the actual output current of the detector is added with the current offset caused by gear shifting represented by the formula (15) to obtain a current signal generated by neutron flux density, and then the current signal is delayed and eliminated.
The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention in any way, and all simple modifications and equivalent variations of the above embodiment according to the present invention are within the scope of the present invention.

Claims (3)

1. A signal delay elimination method of a rhodium self-powered detector based on Luenberger form H-infinity filtering is characterized by comprising the following steps: the method comprises the following steps:
step 1, establishing a nuclear reaction model of rhodium and thermal neutrons:
under the transient working condition of the reactor, the change of the flux causes the change of the current of the rhodium self-powered neutron detector to be not synchronous, and the latter has a certain lag compared with the former, and the specific formula for describing the reaction is as follows:
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfrac> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>m</mi> </mrow> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>n</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
I(t)=cn(t)+λ1m1(t) (3)
wherein m is1(t)、m2(t) each represents104Rh and104mrh direct induced charge, n (t) represents detector current at detector equilibrium corresponding to thermal neutron flux at detector, λ1、λ2Respectively represent104Rh and104mdecay constant of Rh, c represents the transient response fraction of the detector current, a1、a2Respectively represent104Rh and104mrh-induced current contribution, i (t) represents rhodium-self-powered current;
step 2, obtaining a discrete state equation corresponding to the nuclear reaction model by adopting direct transformation:
let Ja(t)=λ1m1(t) substituting the equation (1), the equation (2) and the equation (3), directly discretizing the continuous-time ordinary differential equation, and adding a noise term to obtain the following discrete state equation:
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>X</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mi>W</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
I(k)=[1 0 c]·X(k)+[1]·V(k) (5)
n(k)=[0 0 1]·X(k) (6)
wherein, X ( k ) = J a ( k ) m 2 ( k ) n ( k ) , w (k) is a process noise term, V (k) is a measurement noise term,
initial value is
<math> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step 3, determining the transient response share of the current of the rhodium self-powered detector:
in a reactor starting physical experiment stage, a power step is formed by increasing/decreasing the reactor power, and corresponding measured values of out-of-reactor detector signals and rhodium self-powered detector signals are recorded; the out-of-pile detector can instantaneously respond to the change of the neutron flux, and the corresponding measured value can be considered as the real neutron flux; n different instantaneous response share predicted values are given by adjusting the theoretical values of the instantaneous response shares, then the measured values of the out-of-stack detector signals are substituted into a discrete state equation, N groups of signal theoretical values of the rhodium self-powered detector can be obtained, the theoretical values are compared with the measured values of the rhodium self-powered detector signals, and the instantaneous response share predicted value corresponding to a certain group of theoretical values with the best conformity degree is taken as the instantaneous response share adopted by subsequent delay elimination;
and 4, utilizing an H-infinity filter in a Luenberger form to delay and eliminate the current signal of the self-powered rhodium detector:
for a discrete control process system, the system can be described by an equation of state:
x(k+1)=Ax(k)+Bw(k)
y(k)=Cx(k)+Dw(k) (8)
z(k)=Lx(k)
wherein, x (k) is the n-dimensional state vector of the k-th sampling point, w (k) includes the system process noise and the system observation white noise, y (k) is the measured value of the k-th sampling point, z (k) is the 1-dimensional vector to be solved, and L is the L x n-dimensional matrix;
for the discrete system (8), a full-order linear Luenberger filter which is asymptotically stable is designed as follows
x ^ k + 1 = A x ^ k + K ( y k - C x ^ k ) z ^ k = L x ^ k - - - ( 9 )
Equation (9) is an H ∞ filter, for a given γ, if and only if the following matrix inequality has a solution:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>A</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>C</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <msup> <mi>L</mi> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>&gamma;</mi> <mn>2</mn> </msup> <mi>I</mi> </mtd> <mtd> <msup> <mi>B</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>D</mi> <mi>T</mi> </msup> <msup> <mi>W</mi> <mi>T</mi> </msup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>YA</mi> <mo>-</mo> <mi>WC</mi> </mtd> <mtd> <mi>YB</mi> <mo>-</mo> <mi>WD</mi> </mtd> <mtd> <mi>Y</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein Y ═ YT∈Rn×n,W∈Rn×r,J=JT∈Rm×mThe gain K ═ Y of the H ∞ filter-1W;
For a rhodium self-powered detector, the corresponding matrix in equation (8) can be known from its discrete state equation as:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> </mtd> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo></mo> </mrow> </math>
B = 0 0 0 0 1 0
C=[1 0 c]
D=[0 1]
L=[0 0 1]
by solving the linear matrix inequality (10), an H ∞ filter matrix K can be obtained, so that the detector current value at any time after the elimination delay can be obtained by the following steps:
from initial current measurementsCan obtain the product <math> <mrow> <mover> <mi>x</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> The initial 0 time delay is eliminated to obtain a current value of z ^ ( 0 ) = C f x ^ ( 0 ) ;
For any time k +1(k 0, 1.),and the current value after the delay elimination at the time k +1 is
2. The method for delay cancellation of a signal of a rhodium self-powered detector based on H ∞ filtering of the Luenberger form as claimed in claim 1, further comprising processing the original signal in case of a shift as follows: in a gear shifting area, supposing that neutron flux is kept unchanged, then reversely deducing a current signal generated by neutron flux density, and subtracting actual output current of a detector to obtain a gear shifting abrupt change component; and (3) subtracting the gear shifting sudden change component from the output current of the detector outside the gear shifting region to obtain a current signal generated by neutron flux density, and then carrying out delay elimination processing on the current signal.
3. The method for eliminating signal delay of rhodium self-powered detector based on H ∞ filtering of Luenberger form as claimed in claim 1, wherein the design structure of the shift region is as follows:
in the shift region (k)1≤k≤k2) Assuming that the neutron flux density is constant, there are:
n(k+1)=n(k) (11)
<math> <mrow> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>J</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <msub> <mi>m</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> </mfrac> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <mi>Ts</mi> </mrow> </msup> <mo>)</mo> </mrow> <mi>n</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
the current signal of the rhodium self-powered detector can be reversely deduced as follows:
I(k+1)=Ja(k+1)+cn(k+1) (14)
-delay cancellation by the steps of claim 1, taking the back-pushed current (14) as the actual output current of the detector;
in the shift range time boundary k2The shift induced current offset may be estimated by:
D = I ( k 2 ) - y ^ ( k 2 ) - - - ( 15 )
whereinIs represented at k2The actual output current of the detector at the moment; outside the gear shifting area, the actual output current of the detector needs to be offset and compensated to offset the influence caused by gear shifting, the actual output current of the detector is added with the current offset caused by gear shifting represented by the formula (15) to obtain a current signal generated by neutron flux density, and then the current signal is delayed and eliminated.
CN201510166032.3A 2015-04-09 2015-04-09 Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering Pending CN104882176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510166032.3A CN104882176A (en) 2015-04-09 2015-04-09 Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510166032.3A CN104882176A (en) 2015-04-09 2015-04-09 Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering

Publications (1)

Publication Number Publication Date
CN104882176A true CN104882176A (en) 2015-09-02

Family

ID=53949641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510166032.3A Pending CN104882176A (en) 2015-04-09 2015-04-09 Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering

Country Status (1)

Country Link
CN (1) CN104882176A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130140000A (en) * 2010-10-14 2013-12-23 아레바 엔피 인크. Self-calibrating, highly accurate, long-lived, dual rhodium vanadium emitter nuclear in-core detector
CN103871526A (en) * 2012-12-14 2014-06-18 中国核动力研究设计院 Detection apparatus for neutron flux and temperature of reactor core
CN103871525A (en) * 2012-12-13 2014-06-18 中国核动力研究设计院 Rhodium self-powered detector signal delay elimination method based on Kalman filtering
CN103871524A (en) * 2012-12-13 2014-06-18 中国核动力研究设计院 Signal delay eliminating method based on Kalman filtering for rhodium self-powered detector
CN103943158A (en) * 2013-12-31 2014-07-23 西安交通大学 Method for eliminating delayed effect of self-power neutron detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130140000A (en) * 2010-10-14 2013-12-23 아레바 엔피 인크. Self-calibrating, highly accurate, long-lived, dual rhodium vanadium emitter nuclear in-core detector
CN103871525A (en) * 2012-12-13 2014-06-18 中国核动力研究设计院 Rhodium self-powered detector signal delay elimination method based on Kalman filtering
CN103871524A (en) * 2012-12-13 2014-06-18 中国核动力研究设计院 Signal delay eliminating method based on Kalman filtering for rhodium self-powered detector
CN103871526A (en) * 2012-12-14 2014-06-18 中国核动力研究设计院 Detection apparatus for neutron flux and temperature of reactor core
CN103943158A (en) * 2013-12-31 2014-07-23 西安交通大学 Method for eliminating delayed effect of self-power neutron detector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINGJIE PENG ET AL.: "Dynamic compensation of Vanadium self powered neutron detectors based on Luenberger form filter", 《PROGRESS IN NUCLEAR ENERGY》 *

Similar Documents

Publication Publication Date Title
CN103871525B (en) Rhodium self-powered detector signal delay removing method based on Kalman filtering
CN103871524B (en) Rhodium self-powered detector signal delay removing method based on Kalman filtering
CN109521275B (en) Synchronous phasor determination method, system, device and readable storage medium
CN104854461A (en) Interference compensating single point detecting current sensor for a multiplex busbar
CN104900280A (en) Signal delay elimination method for silver self-powered detector based on H infinity filtering
CN105373698B (en) A method of eliminating the delay of self-power neutron detector signal
CN104882182B (en) Rhodium self-powered detector signal delay removing method based on IIR filtering
US9287013B2 (en) Moderator temperature coefficient measurement apparatus
CN104900279A (en) Delay elimination method of rhodium detector signal based on Luenberger form H2/H infinity hybrid filtering
CN104882176A (en) Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering
CN104778980A (en) Method for eliminating signal delay of silver-self-powered detector on basis of H2 filtering with form of Luenberger
CN104882170A (en) Delay eliminating method for signal of self-powered silver detector based on H2/H-infinity hybrid filtering
CN104882181A (en) Delay eliminating method for signal of self-powered vanadium detector based on H-infinity filtering
CN104778981A (en) Luenberger form H2/H&lt;infinity&gt; mixed filtration-based signal delay elimination method for rhodium detector
CN104778982A (en) Luenberger type H2 filtering based rhodium self-powered detector signal delay elimination method
CN104882171A (en) Rhodium self-powered detector signal delay elimination method based on H2 filtering in Luenberger mode
CN104882175A (en) Delay eliminating method for signal of self-powered rhodium detector based on Luenberger-form H-infinity filtering
CN104882177A (en) Delay eliminating method for signal of silver detector based on Luenberger-form H2/H-infinity hybrid filtering
CN104882173A (en) Delay eliminating method for signal of self-powered silver detector based on Luenberger-form H-infinity filtering
CN104882172A (en) Delay eliminating method for signal of self-powered rhodium detector based on H-infinity filtering
CN104778984A (en) H2 filtration-based signal delay elimination method for rhodium self-powered detector
CN104882174A (en) Silver self-powered detector signal delaying eliminating method based on H2 filtering
CN104778985A (en) H&lt;infinity&gt; filtration-based signal delay elimination method for rhodium self-powered detector
CN104882178A (en) Vanadium self-powered detector signal delay elimination method based on H2 filtering
CN104795117A (en) H2 filter based method for performing delay elimination on signals of rhodium self-powered detector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150902