CN104877666A - Luminescent material having aggregation-induced emission, method of making and application thereof - Google Patents
Luminescent material having aggregation-induced emission, method of making and application thereof Download PDFInfo
- Publication number
- CN104877666A CN104877666A CN201410803311.1A CN201410803311A CN104877666A CN 104877666 A CN104877666 A CN 104877666A CN 201410803311 A CN201410803311 A CN 201410803311A CN 104877666 A CN104877666 A CN 104877666A
- Authority
- CN
- China
- Prior art keywords
- group
- tpe
- bar
- aggregation
- luminescent material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 55
- 230000002776 aggregation Effects 0.000 title claims abstract description 35
- 238000004220 aggregation Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title 1
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 46
- 239000002904 solvent Substances 0.000 claims description 30
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 16
- 238000002360 preparation method Methods 0.000 claims description 16
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000047 product Substances 0.000 claims description 14
- 239000002244 precipitate Substances 0.000 claims description 13
- 125000003545 alkoxy group Chemical group 0.000 claims description 12
- JLZUZNKTTIRERF-UHFFFAOYSA-N tetraphenylethylene Chemical group C1=CC=CC=C1C(C=1C=CC=CC=1)=C(C=1C=CC=CC=1)C1=CC=CC=C1 JLZUZNKTTIRERF-UHFFFAOYSA-N 0.000 claims description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 11
- -1 barbituric acid compound Chemical class 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical group O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 5
- 125000000592 heterocycloalkyl group Chemical group 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 125000003282 alkyl amino group Chemical group 0.000 claims description 4
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- UPJWAKUNQVOESN-UHFFFAOYSA-N carbonisothiocyanatidic acid Chemical group OC(=O)N=C=S UPJWAKUNQVOESN-UHFFFAOYSA-N 0.000 claims description 4
- 125000004965 chloroalkyl group Chemical group 0.000 claims description 4
- 125000004185 ester group Chemical group 0.000 claims description 4
- 125000001072 heteroaryl group Chemical group 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 3
- 239000007805 chemical reaction reactant Substances 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims description 3
- 230000003834 intracellular effect Effects 0.000 claims description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 3
- 150000007656 barbituric acids Chemical class 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims 1
- 238000004020 luminiscence type Methods 0.000 abstract description 15
- 230000005693 optoelectronics Effects 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 2
- 230000002441 reversible effect Effects 0.000 abstract description 2
- 239000002520 smart material Substances 0.000 abstract 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 43
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 27
- 239000000243 solution Substances 0.000 description 21
- 229920000877 Melamine resin Polymers 0.000 description 20
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 20
- 238000005424 photoluminescence Methods 0.000 description 19
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000002077 nanosphere Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 230000005284 excitation Effects 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000003958 fumigation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 239000004005 microsphere Substances 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 125000005842 heteroatom Chemical group 0.000 description 4
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 4
- 239000002071 nanotube Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- 238000010189 synthetic method Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 239000002073 nanorod Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000000103 photoluminescence spectrum Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- QAKMXYFDVPDIPT-UHFFFAOYSA-N 1,1,2,3,4,5-hexakis-phenylsilole Chemical compound C1=CC=CC=C1C(C(=C([Si]1(C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=C1C1=CC=CC=C1 QAKMXYFDVPDIPT-UHFFFAOYSA-N 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- IGFKZONLWYOOPL-UHFFFAOYSA-N 2,5-dihexoxy-4-[2-[4-(1,2,2-triphenylethenyl)phenyl]ethynyl]benzaldehyde Chemical compound C(CCCCC)OC1=C(C=O)C=C(C(=C1)C#CC1=CC=C(C=C1)C(=C(C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=CC=C1)OCCCCCC IGFKZONLWYOOPL-UHFFFAOYSA-N 0.000 description 2
- NUUXDUCNYZQXNU-UHFFFAOYSA-N 4-(1,2,2-triphenylethenyl)benzaldehyde Chemical compound C1=CC(C=O)=CC=C1C(C=1C=CC=CC=1)=C(C=1C=CC=CC=1)C1=CC=CC=C1 NUUXDUCNYZQXNU-UHFFFAOYSA-N 0.000 description 2
- OWNOWBNRTVQRNH-UHFFFAOYSA-N 4-bromo-2,5-dihexoxybenzaldehyde Chemical compound CCCCCCOC1=CC(C=O)=C(OCCCCCC)C=C1Br OWNOWBNRTVQRNH-UHFFFAOYSA-N 0.000 description 2
- ZTZFGJSUCDDCRK-UHFFFAOYSA-N 4-bromo-2,5-dimethylbenzaldehyde Chemical compound CC1=CC(C=O)=C(C)C=C1Br ZTZFGJSUCDDCRK-UHFFFAOYSA-N 0.000 description 2
- GEVHYMHXSIAZHL-UHFFFAOYSA-N 5-[[4-(1,2,2-triphenylethenyl)phenyl]methylidene]-1,3-diazinane-2,4,6-trione Chemical compound C1(=CC=CC=C1)C(=C(C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=C(C=C2C(NC(NC2=O)=O)=O)C=C1 GEVHYMHXSIAZHL-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 0 CC=C(C(N(*)C(N1*)=*)=*)C1=* Chemical compound CC=C(C(N(*)C(N1*)=*)=*)C1=* 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012984 biological imaging Methods 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000799 fluorescence microscopy Methods 0.000 description 2
- 238000004896 high resolution mass spectrometry Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009878 intermolecular interaction Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- KTCXDIGJYUOQBJ-UHFFFAOYSA-N 1,1-dimethyl-2,3,4,5-tetraphenylsilole Chemical compound C[Si]1(C)C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 KTCXDIGJYUOQBJ-UHFFFAOYSA-N 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001553 co-assembly Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000004404 heteroalkyl group Chemical group 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000005581 pyrene group Chemical group 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005579 tetracene group Chemical group 0.000 description 1
Landscapes
- Plural Heterocyclic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明的发光材料具有聚集诱导/增强发光(AIE/AEE)特性,最大吸收波长红移至可见区域,进而该类发光材料在生物和光电领域方面具有潜在应用;具有极佳的光波导性质,光损耗低至0.100dB/μm,可用于制备光波导材料,也可以用于有机发光二极管器件;该类材料由于AIE特性,具有力致变色的特点,并且力致变色现象可逆,在智能材料方面具有潜在应用。
The luminescent material of the present invention has aggregation-induced/enhanced luminescence (AIE/AEE) characteristics, and the maximum absorption wavelength is red-shifted to the visible region, so that this type of luminescent material has potential applications in the fields of biology and optoelectronics; it has excellent optical waveguide properties, The optical loss is as low as 0.100dB/μm, which can be used to prepare optical waveguide materials and organic light-emitting diode devices; this type of material has the characteristics of mechanochromism due to the AIE characteristics, and the mechanochromism phenomenon is reversible. In terms of smart materials have potential applications.
Description
技术领域technical field
本发明涉及一系列有机发光材料,具体涉及具有聚集诱导发光或发光增强(AIE/AEE)特性的固态发光材料。The invention relates to a series of organic luminescent materials, in particular to a solid-state luminescent material with characteristics of aggregation-induced luminescence or luminescence enhancement (AIE/AEE).
背景技术Background technique
随着有机光电子学的发展,在固态或聚集状态使用的新型有机发光半导体功能材料,由于与传统无机半导体材料相比,具有高灵敏性、好的器件柔性、低成本、小装置尺寸、大面积制备以及便于集成等优势,而受到越来越多的关注(Chem.Phys.Lett.,1974,29,277,Chem.Rev.2007,107,1011)。除了有机光电子器件,有机发光材料在信息存储(J.Mater.Chem.C,2013,1,3376;Chem.Soc.Rev.,2013,42,857;Adv.Mater.,2013,25,378;Chem.Soc.Rev.,2013,42,8895.)和生物科学(Chem.Rev.,2013,113,192;Chem.Sci.,2012,3,984.)等方面也表现出广泛的应用。With the development of organic optoelectronics, new organic light-emitting semiconductor functional materials used in solid state or aggregated state, due to their high sensitivity, good device flexibility, low cost, small device size, and large area compared with traditional inorganic semiconductor materials Due to the advantages of preparation and easy integration, more and more attention has been paid (Chem. Phys. Lett., 1974, 29, 277, Chem. Rev. 2007, 107, 1011). In addition to organic optoelectronic devices, organic light-emitting materials are used in information storage (J.Mater.Chem.C,2013,1,3376; Chem.Soc.Rev.,2013,42,857; Adv.Mater.,2013,25,378; Chem.Soc. Rev., 2013, 42, 8895.) and biological sciences (Chem. Rev., 2013, 113, 192; Chem. Sci., 2012, 3, 984.) have also shown a wide range of applications.
然而,传统有机发光材料总是伴随有不可避免的现象:聚集引起淬灭(aggregation-caused quenching,ACQ),传统的荧光材料通常含有较大的π-电子共轭结构,该结构主要用于产生荧光。分子溶解状态下,荧光染料的溶液显示出强荧光,但在浓溶液状态、聚集态或固态时,分子间作用增强,发生能量转移,形成激基复合物或激基缔合物,这些都会消耗激发态能量,因此极大地降低荧光发光的可能性,这就是众所周知的ACQ现象。但在现代技术应用中,大多数情况下,荧光材料需要加工成聚集态,ACQ问题不可避免。目前已经发展了各种化学(Chem.Commun.,2008,1501;Chem.Commun.,2008,217.)、物理、以及工程方法和加工过程(Langmuir,2006,22,4799;Macromolecules 2003,36,5285)以减弱ACQ效应,然而这些尝试仅能获得较小的成功,主要困难在于在凝聚相中聚集体的形成是个内在过程,因此急需开发在聚集状态下保持强发光的材料和系统。However, traditional organic light-emitting materials are always accompanied by an inevitable phenomenon: aggregation-caused quenching (ACQ), and traditional fluorescent materials usually contain large π-electron conjugated structures, which are mainly used to generate fluorescence. In the state of molecular dissolution, the solution of the fluorescent dye shows strong fluorescence, but in the state of concentrated solution, aggregated state or solid state, the intermolecular interaction is enhanced, energy transfer occurs, and exciplexes or excimer associations are formed, which will consume Excited state energy, thus greatly reducing the probability of fluorescence emission, which is the well-known ACQ phenomenon. However, in modern technology applications, in most cases, fluorescent materials need to be processed into an aggregated state, and the ACQ problem is inevitable. Various chemical (Chem.Commun., 2008, 1501; Chem.Commun., 2008, 217.), physical, and engineering methods and processes have been developed (Langmuir, 2006, 22, 4799; Macromolecules 2003, 36, 5285) to weaken the ACQ effect. However, these attempts have only achieved minor success. The main difficulty is that the formation of aggregates in the condensed phase is an intrinsic process, so it is urgent to develop materials and systems that maintain strong luminescence in the aggregated state.
在2001年,本发明的研究人员合成了1,1-二甲基-2,3,4,5-四苯基噻咯(DMTPS)化合物,其聚集态在荧光发光方面起到有益而非破坏性作用(Chem.Commun.2001,1740.),研究人员还观察了一种新奇现象并冠称为“聚焦诱导发光”(aggregation-induced emission,AIE),溶液态下不发光的分子通过聚集体形成而被诱导发光:一系列螺旋状的非发光分子,如六苯基噻咯(HPS)和四苯乙烯(tetraphenylethene,TPE),通过形成聚集体而被诱导发出很强的荧光(J.Mater.Chem.2001,11,2974;Chem.Commun.2009,4332;Appl.Phys.Lett.2007,91,011111.),之后研究者们发现了很多种具有该特性的分子。另外,通过一系列实验设计和理论计算,研究者们证实了分子内运动受限(RIM)是导致AIE效应的主要原因(J.Phys.Chem.B2005,109,10061;J.Am.Chem.Soc.2005,127,6335.)。In 2001, the researchers of the present invention synthesized 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) compound, whose aggregated state plays a beneficial role in fluorescence emission rather than destruction Sexual effect (Chem.Commun.2001,1740.), researchers also observed a novel phenomenon and dubbed it "aggregation-induced emission" (aggregation-induced emission, AIE), in which molecules that do not emit light in the solution state pass through aggregates Formed and induced to emit light: a series of helical non-luminescent molecules, such as hexaphenylsilole (HPS) and tetraphenylethylene (tetraphenylethene, TPE), are induced to emit strong fluorescence by forming aggregates (J.Mater Chem.2001, 11, 2974; Chem.Commun.2009, 4332; Appl.Phys.Lett.2007, 91, 011111.), after which researchers found many molecules with this property. In addition, through a series of experimental designs and theoretical calculations, the researchers confirmed that restricted intramolecular motion (RIM) is the main cause of the AIE effect (J.Phys.Chem.B2005, 109, 10061; J.Am.Chem. Soc.2005, 127, 6335.).
目前为止,制备的大多数AIE发光体只能发射蓝光和绿光,与发蓝光材料相比,对黄光和红光的材料的开发和研究相对滞后,而在有机集成电路中,黄光和红光材料是必不可少的组件;同样对于生物成像方面的应用,更优选那些长波发射的的染色分子,这样不会受到生物组织的自发荧光的干扰,并且激发光源对组织的损伤也将降低(Chem.Mater.,2012,24,812)。对于黄光和绿光材料的制备,现有技术中的方法是延长分子的π共轭结构进而缩小能带间隙以利于电子跃迁,但这种方法不足之处在于合成过程繁复、合成工作量大、分子间相互作用增强从而易导致诱导发光淬灭、易受光氧化影响以及产物溶解度降低等问题。So far, most AIE emitters prepared can only emit blue light and green light. Compared with blue light-emitting materials, the development and research of yellow light and red light materials are relatively lagging behind. In organic integrated circuits, yellow light and red light are relatively lagging behind. Red light materials are an essential component; also for biological imaging applications, those dyed molecules that emit long wavelengths are more preferred, so that they will not be interfered by the autofluorescence of biological tissues, and the damage to the tissue by the excitation light source will also be reduced. (Chem. Mater., 2012, 24, 812). For the preparation of yellow and green light materials, the method in the prior art is to extend the π-conjugated structure of the molecule and then narrow the energy band gap to facilitate electronic transitions, but the disadvantage of this method is that the synthesis process is complicated and the synthesis workload is large. , Enhanced intermolecular interactions, which easily lead to quenching of induced luminescence, susceptibility to photooxidation, and reduced product solubility.
发明内容Contents of the invention
本发明的目的是提供一种具有聚集诱导发光特性的发光材料及其制备方法和应用,解决现有技术中的具有聚集诱导发光特性的发光材料应用受限的问题。The object of the present invention is to provide a luminescent material with aggregation-induced luminescent properties and its preparation method and application, so as to solve the problem of limited application of luminescent materials with aggregation-induced luminescent properties in the prior art.
本发明解决技术问题所采用的技术方案是:一种具有聚集诱导发光特性的发光材料,包含有选自以下任一结构式的基团:The technical solution adopted by the present invention to solve the technical problem is: a luminescent material with aggregation-induced luminescent properties, which contains a group selected from any of the following structural formulas:
其中,R1、R2和R3分别选自-H、线型或分支型的烷基、环烷基、杂环烷基、芳基、杂芳基、烷氧基、芳氧基、羧基、异硫氰酸酯基团、叠氮基、烷基叠氮基、烷氨基、氯代烷基、溴代烷基、碘代烷基、酯基,R1、R2和R3还可以分别选自以下结构式:Wherein, R 1 , R 2 and R 3 are respectively selected from -H, linear or branched alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, carboxy , isothiocyanate group, azido group, alkyl azido group, alkylamino group, chloroalkyl group, bromoalkyl group, iodoalkyl group, ester group, R 1 , R 2 and R 3 can also Respectively selected from the following structural formulas:
或其中Y为O、S或Se;R1和R2分别为-H、线型或分支型的烷基,R3和R4分别为线型或分支型的烷基或烷氧基; or Wherein Y is O, S or Se; R 1 and R 2 are -H, linear or branched alkyl respectively, R 3 and R 4 are linear or branched alkyl or alkoxy respectively;
在结构式I和II中,分别至少含有一个R1、R2或R3;Y为O、S或Se;R1和R2分别为线型或分支型的烷基;R3和R4分别为线型或分支型的烷基或烷氧基;In structural formulas I and II, at least one R 1 , R 2 or R 3 is contained respectively; Y is O, S or Se; R 1 and R 2 are linear or branched alkyl groups respectively; R 3 and R 4 are respectively is a linear or branched alkyl or alkoxy group;
在结构式I和II中的四苯乙烯单元至少包括一个,且通过C-C单键、C=C双键或C≡C三键连接。The tetraphenylethylene units in formulas I and II include at least one and are linked by a C-C single bond, a C=C double bond or a C≡C triple bond.
在本发明的具有聚集诱导发光特性的发光材料中,R1、R2和R3均为-H;Y为O。In the luminescent material with aggregation-induced luminescent properties of the present invention, R 1 , R 2 and R 3 are all -H; Y is O.
在本发明的具有聚集诱导发光特性的发光材料中,在结构式I中,R1和R2分别选自-H或烷基且R1和R2是相同的基团;在结构式II中,R1和R2均为-H,R3和R4分别选自烷基或烷氧基且R3和R4是相同的基团。In the luminescent material with aggregation-induced luminescent properties of the present invention, in structural formula I, R 1 and R 2 are respectively selected from -H or alkyl and R 1 and R 2 are the same group; in structural formula II, R 1 and R2 are both -H, R3 and R4 are respectively selected from alkyl or alkoxy and R3 and R4 are the same group.
在本发明的具有聚集诱导发光特性的发光材料中,在结构式I中,R1和R2均为-H或均为-CH3基团;在结构式II中,R3和R4均为-CH3或-OC6H13基团。In the luminescent material with aggregation-induced luminescent properties of the present invention, in structural formula I, R 1 and R 2 are both -H or both are -CH 3 groups; in structural formula II, R 3 and R 4 are both - CH3 or -OC6H13 group.
本发明还提供上述的具有聚集诱导发光特性的发光材料在制备光波导材料中的应用。The present invention also provides the application of the above-mentioned light-emitting material with aggregation-induced light-emitting characteristics in the preparation of optical waveguide materials.
本发明还提供上述的具有聚集诱导发光特性的发光材料在制备有机发光二极管装置中的应用。The present invention also provides the application of the above-mentioned light-emitting material with aggregation-induced light-emitting characteristics in the preparation of an organic light-emitting diode device.
本发明还提供上述的具有聚集诱导发光特性的发光材料在制备细胞内成像的荧光染色剂的应用。The present invention also provides the application of the above-mentioned luminescent material with aggregation-induced luminescent properties in the preparation of fluorescent dyes for intracellular imaging.
本发明还提供上述的具有聚集诱导发光特性的发光材料的制备方法,包括如下步骤:将作为反应起始物的四苯乙烯衍生物和巴比妥酸类化合物在有机醇溶剂中加热回流反应,形成沉淀物,对沉淀物进行过滤,过滤后的产物用有机溶剂洗涤,真空干燥得到发光材料;The present invention also provides a method for preparing the above-mentioned luminescent material with aggregation-induced luminescent properties, comprising the following steps: heating and refluxing the tetraphenylethylene derivatives and barbituric acid compounds as reaction initiators in an organic alcohol solvent, forming a precipitate, filtering the precipitate, washing the filtered product with an organic solvent, and drying in vacuum to obtain a luminescent material;
其中所述反应起始物中的四苯乙烯衍生物的结构式为:Wherein the structural formula of the tetraphenylethylene derivative in the reaction starter is:
或者 or
其中,R1、R2和R3分别选自-H、线型或分支型的烷基、环烷基、杂环烷基、芳基、杂芳基、烷氧基、芳氧基、羧基、异硫氰酸酯基团、叠氮基、烷基叠氮基、烷氨基、氯代烷基、溴代烷基、碘代烷基、酯基,R1、R2和R3还可以分别选自以下结构式:Wherein, R 1 , R 2 and R 3 are respectively selected from -H, linear or branched alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, alkoxy, aryloxy, carboxy , isothiocyanate group, azido group, alkyl azido group, alkylamino group, chloroalkyl group, bromoalkyl group, iodoalkyl group, ester group, R 1 , R 2 and R 3 can also Respectively selected from the following structural formulas:
或其中Y为O、S或Se;R1和R2分别为-H、线型或分支型的烷基,R3和R4分别为线型或分支型的烷基或烷氧基; or Wherein Y is O, S or Se; R 1 and R 2 are -H, linear or branched alkyl respectively, R 3 and R 4 are linear or branched alkyl or alkoxy respectively;
在反应起始物中的四苯乙烯衍生物的结构式中,分别至少含有一个R1、R2或R3;其中的四苯乙烯单元至少包括一个,且通过C-C单键、C=C双键或C≡C三键连接。In the structural formula of tetraphenylethylene derivatives in the reaction starting material, there are at least one R 1 , R 2 or R 3 respectively; the tetraphenylethylene unit includes at least one, and through CC single bond, C=C double bond Or a C≡C triple bond linkage.
在本发明的制备方法中,所述反应起始物中的巴比妥酸类化合物为巴比妥酸或N,N-二甲基巴比妥酸;所述有机醇溶剂为甲醇或乙醇;所述有机溶剂选自甲醇、乙醇、乙醚中的至少一种;所述沉淀物可以趁热过滤或冷却至室温进行过滤得到固体。In the preparation method of the present invention, the barbituric acid compound in the reaction starting material is barbituric acid or N,N-dimethylbarbituric acid; the organic alcohol solvent is methanol or ethanol; The organic solvent is selected from at least one of methanol, ethanol, and ether; the precipitate can be filtered while it is hot or cooled to room temperature to obtain a solid.
在本发明的制备方法中,还包括在加热回流反应的过程中加入浓硫酸作为催化剂的步骤;以及将过滤后的产物洗涤后使用乙醚和己烷对过滤的产物进行重结晶的步骤。In the preparation method of the present invention, it also includes the step of adding concentrated sulfuric acid as a catalyst during the heating and reflux reaction; and the step of recrystallizing the filtered product with diethyl ether and hexane after washing the filtered product.
需要说明的是,所述的烷基可以为直链型,也可以为支链型,在链中含有1-10个碳原子,优选含2-6个碳原子的烷基;所述环烷基指非芳烃的单环或多环,含有3-10个碳原子;所述杂烷基指烷基中的至少一个碳原子被杂原子所取代;杂环烷基指3-7个环的环烷基中至少一个环是杂原子,该杂原子选自O、N、S、Si和B;芳基优选含有6-18个碳原子,如苯基、萘基、蒽基、并四苯基团、嵌二萘基团;含有5-10个环的芳基中至少有一个环是杂原子,该杂原子选自O、N、S、Si和B。It should be noted that the alkyl group can be straight-chain or branched, with 1-10 carbon atoms in the chain, preferably 2-6 carbon atoms; the cycloalkane The group refers to a non-aromatic monocyclic or polycyclic ring containing 3-10 carbon atoms; the heteroalkyl group refers to at least one carbon atom in the alkyl group is replaced by a heteroatom; the heterocycloalkyl group refers to a group of 3-7 rings At least one ring in the cycloalkyl group is a heteroatom, which is selected from O, N, S, Si and B; the aryl group preferably contains 6-18 carbon atoms, such as phenyl, naphthyl, anthracenyl, tetracene Group, pyrene group; in the aryl group containing 5-10 rings, at least one ring is a heteroatom, and the heteroatom is selected from O, N, S, Si and B.
实施本发明的具有聚集诱导发光特性的发光材料及其应用,具有以下有益效果:本发明的发光材料具有聚集诱导/增强发光特性(aggregation-induced/enhanced emission,AIE/AEE),分散在水性介质中体现出AIE/AEE特性;其吸收红移至可见区域,,进而提高发光材料在生物和光电子学方面的应用可能性;在水含量大于90%的THF/H2O混合溶剂中能够形成纳米粒子,该纳米粒子可通过蛋白包覆后进入细胞;在研磨-熏蒸和研磨-加热过程中,由于分子形态在晶体和无定形之间的变化,导致发光颜色可逆转变;在不加入三聚氰胺和加入三聚氰胺条件下在不同溶剂中可以自组装形成纳米球、纳米棒和纳米管;具有极佳的光波导性质,光损耗系数低至0.137dB/μm,可用于制备光波导材料;鉴于该类材料的良好固态发光性质,也可以用于制备有机发光二极管装置。The implementation of the luminescent material with aggregation-induced luminescent properties and its application of the present invention has the following beneficial effects: the luminescent material of the present invention has aggregation-induced/enhanced luminescent properties (aggregation-induced/enhanced emission, AIE/AEE), and is dispersed in an aqueous medium It shows AIE/AEE characteristics; its absorption red shifts to the visible region, thereby improving the application possibility of luminescent materials in biology and optoelectronics ; it can form nano Particles, the nanoparticles can enter the cells after protein coating; in the process of grinding-fumigation and grinding-heating, due to the change of molecular shape between crystal and amorphous, the luminous color changes reversibly; without adding melamine and adding Under the condition of melamine, nanospheres, nanorods and nanotubes can be self-assembled in different solvents; it has excellent optical waveguide properties, and the optical loss coefficient is as low as 0.137dB/μm, which can be used to prepare optical waveguide materials; Good solid-state light-emitting properties can also be used to prepare organic light-emitting diode devices.
附图说明Description of drawings
图1为TPE-s-Bar、TPE-Bar、TPE-MPh-Bar和TPE-HPh-Bar的合成路线图;Figure 1 is a synthetic route diagram of TPE-s-Bar, TPE-Bar, TPE-MPh-Bar and TPE-HPh-Bar;
图2为TPE-s-Bar的ORTEP图;Figure 2 is the ORTEP diagram of TPE-s-Bar;
图3A为TPE-s-Bar在不同水含量(vol%)的THF/H2O溶剂中的光致发光(PL)光谱图,其中插图为TPE-s-Bar的I/I0与体系中水含量之间的相关曲线图,I0为TPE-s-Bar在纯THF中的最大PL强度,浓度为10μM,激发波长为420nm;Figure 3A is the photoluminescence (PL) spectrum of TPE-s-Bar in THF/H 2 O solvents with different water contents (vol%), and the inset is the I/I 0 of TPE-s-Bar in the system The correlation curve between water content, I 0 is the maximum PL intensity of TPE-s-Bar in pure THF, the concentration is 10μM, and the excitation wavelength is 420nm;
图3B为TPE-Bar在不同水含量(vol%)的THF/H2O溶剂中的光致发光(PL)光谱图,其中插图为TPE-Bar的I/I0与不同水含量之间的相关曲线图,I0=TPE-Bar在纯THF中的最大PL强度,浓度为10μM,激发波长为420nm;Figure 3B is the photoluminescence (PL) spectra of TPE-Bar in THF/H 2 O solvents with different water contents (vol%), where the inset is the I/I 0 of TPE-Bar and the difference between different water contents Correlation curve, I 0 = maximum PL intensity of TPE-Bar in pure THF, the concentration is 10μM, and the excitation wavelength is 420nm;
图3C为TPE-MPh-Bar在不同水含量(vol%)的THF/H2O溶剂中的光致发光(PL)光谱图,其中插图为TPE-MPh-Bar的I/I0与不同水含量之间的相关曲线图,I0=TPE-MPh-Bar在纯THF中的最大PL强度,浓度为10μM,激发波长为410nm;Figure 3C is the photoluminescence (PL) spectra of TPE-MPh-Bar in THF/H 2 O solvents with different water content (vol%), and the inset is the I/I 0 of TPE-MPh-Bar with different water The correlation curve between the contents, I 0 = the maximum PL intensity of TPE-MPh-Bar in pure THF, the concentration is 10μM, and the excitation wavelength is 410nm;
图4A为TPE-HPh-Bar在不同水含量(fw)的THF/H2O溶剂中的光致发光(PL)光谱图,其中浓度为10μM,激发波长为447nm;Figure 4A is the photoluminescence (PL) spectrum of TPE-HPh-Bar in THF/H 2 O solvents with different water contents (f w ), where the concentration is 10 μM and the excitation wavelength is 447 nm;
图4B为TPE-HPh-Bar的相对PL强度I/I0与THF/H2O组成的相关曲线图,I0为TPE-MPh-Bar在纯THF中的发光强度(emission intensity),插图为TPE-HPh-Bar在水含量分别为0vol%和95vol%的THF/H2O体系中形成的溶液在紫外光照射下得到的荧光照片;Figure 4B is the correlation curve of the relative PL intensity I/I 0 of TPE-HPh-Bar and THF/H 2 O composition, I 0 is the emission intensity (emission intensity) of TPE-MPh-Bar in pure THF, the illustration is Fluorescence photographs of solutions formed by TPE-HPh-Bar in THF/H 2 O systems with water contents of 0 vol% and 95 vol% respectively under ultraviolet light irradiation;
图5A为TPE-s-Bar晶体在研磨-溶剂熏蒸过程中发射光谱的变化图;Fig. 5A is the change figure of emission spectrum of TPE-s-Bar crystal in grinding-solvent fumigation process;
图5B为通过重复研磨-溶剂熏蒸循环使得TPE-s-Bar的固态发光重复转换图;Figure 5B is a repeated conversion diagram of the solid-state luminescence of TPE-s-Bar through repeated grinding-solvent fumigation cycles;
图6A为TPE-Bar在研磨-溶剂熏蒸过程中发射光谱的变化图;Fig. 6A is the change diagram of emission spectrum of TPE-Bar in grinding-solvent fumigation process;
图6B为通过重复研磨-溶剂熏蒸循环使得TPE-Bar的固态荧光的重复转换图;Figure 6B is a repeated conversion diagram of the solid-state fluorescence of TPE-Bar through repeated grinding-solvent fumigation cycles;
图7A为TPE-MPh-Bar在研磨-溶剂熏蒸过程中发射光谱的变化图;Fig. 7A is the change diagram of emission spectrum of TPE-MPh-Bar in grinding-solvent fumigation process;
图7B为通过重复研磨-溶剂熏蒸循环使得TPE-MPh-Bar的固态荧光的重复转换图;Figure 7B is a repeated conversion diagram of the solid-state fluorescence of TPE-MPh-Bar by repeated grinding-solvent fumigation cycles;
图8A为TPE-s-Bar在不同聚集状态时的升温速率以10℃min–1的XRD衍射图;Figure 8A is the XRD diffraction pattern of the heating rate of TPE-s-Bar in different aggregation states at 10°C min -1 ;
图8B为TPE-s-Bar在不同聚集状态时的升温速率以10℃min–1的DSC热分析图;Figure 8B is the DSC thermogram of the heating rate of TPE-s-Bar in different aggregation states at 10°C min -1 ;
图9A为TPE-Bar在不同聚集状态时的升温速率以10℃min–1的XRD衍射图;Figure 9A is the XRD diffraction pattern of the heating rate of TPE-Bar in different aggregation states at 10°C min -1 ;
图9B为TPE-Bar在不同聚集状态时的升温速率以10℃min–1的DSC热分析图;Figure 9B is the DSC thermogram of the heating rate of TPE-Bar in different aggregation states at 10°C min -1 ;
图10A为100μM的TPE-HPh-Bar溶液在乙腈中通过溶剂缓慢挥发后形成的微米球和纳米球的SEM成像图;Figure 10A is a SEM imaging image of microspheres and nanospheres formed after a 100 μM TPE-HPh-Bar solution is slowly volatilized in acetonitrile;
图10B为10μM浓度的TPE-HPh-Bar溶液在乙腈中通过溶剂缓慢挥发后形成的微米球和纳米球的SEM成像图;Figure 10B is a SEM image of microspheres and nanospheres formed after the TPE-HPh-Bar solution with a concentration of 10 μM is slowly volatilized in acetonitrile;
图10C为50μM浓度的TPE-HPh-Bar溶液在乙腈/乙醇(1:1v/v)中室温条件下通过溶剂缓慢挥发形成的纳米球的SEM成像图;Figure 10C is a SEM image of nanospheres formed by slow solvent volatilization of a TPE-HPh-Bar solution with a concentration of 50 μM in acetonitrile/ethanol (1:1 v/v) at room temperature;
图10D为50μM浓度的TPE-HPh-Bar溶液在乙腈/水(1:1v/v)中室温条件下通过溶剂缓慢挥发形成的纳米球的SEM成像图;Figure 10D is a SEM image of nanospheres formed by slow solvent volatilization of a TPE-HPh-Bar solution with a concentration of 50 μM in acetonitrile/water (1:1 v/v) at room temperature;
图11A为在加入10当量的三聚氰胺的条件下,100μM浓度的TPE-HPh-Bar溶液在DMSO/乙醇中(1:1v/v)中室温条件下通过溶剂缓慢蒸发形成的微米球和纳米球的SEM成像图,比例尺:5μm;Figure 11A shows the microspheres and nanospheres formed by the slow evaporation of solvent in 100 μM concentration of TPE-HPh-Bar solution in DMSO/ethanol (1:1v/v) at room temperature under the condition of adding 10 equivalents of melamine. SEM image, scale bar: 5 μm;
图11B为在加入有10当量的三聚氰胺的条件下,100μM浓度的TPE-HPh-Bar溶液在DMSO/乙醇中(1:1v/v)中室温条件下通过溶剂缓慢蒸发形成的微米球和纳米球的SEM成像图,比例尺:1μm;Figure 11B shows the microspheres and nanospheres formed by the slow evaporation of the solvent in DMSO/ethanol (1:1v/v) at room temperature with the addition of 10 equivalents of melamine in a TPE-HPh-Bar solution of 100 μM SEM image of SEM image, scale bar: 1 μm;
图11C为在加入有25当量的三聚氰胺的条件下,100μM浓度的TPE-HPh-Bar溶液在DMSO/乙醇中(1:1v/v)中室温条件下通过溶剂缓慢蒸发形成的微米球和纳米球的SEM成像图,比例尺:2μm;Figure 11C shows microspheres and nanospheres formed by slow evaporation of solvent in 100 μM TPE-HPh-Bar solution in DMSO/ethanol (1:1 v/v) at room temperature with the addition of 25 equivalents of melamine The SEM image, scale bar: 2 μm;
图11D为在加入有25当量的三聚氰胺的条件下,100μM浓度的TPE-HPh-Bar溶液在DMSO/乙醇中(1:1v/v)中室温条件下通过溶剂缓慢挥发形成的微米球和纳米球的SEM成像图,比例尺:1μm;Figure 11D shows microspheres and nanospheres formed by slow solvent volatilization of 100 μM TPE-HPh-Bar solution in DMSO/ethanol (1:1 v/v) at room temperature with the addition of 25 equivalents of melamine SEM image of SEM image, scale bar: 1 μm;
图12A为聚集UV激光(400nm)在七个不同位置激发得到的TPE-s-Bar微米棒的显微荧光成像照片;Figure 12A is a microscopic fluorescence imaging photo of TPE-s-Bar microrods excited by a concentrated UV laser (400nm) at seven different positions;
图12B为在12A中对TPE-s-Bar微米棒进行记录的右侧棒端标记有a-g的微米棒的PL光谱;Figure 12B is the PL spectrum of the microrod marked with a-g at the end of the TPE-s-Bar microrod recorded in 12A;
图12C为TPE-s-Bar峰强度与激发位置和发光端之间距离的相关曲线图;Figure 12C is a correlation graph of the TPE-s-Bar peak intensity and the distance between the excitation position and the light-emitting end;
图13A为聚集UV激光(400nm)在七个不同位置激发得到的TPE-HPh-Bar微米棒的显微荧光成像照片;Figure 13A is a microscopic fluorescence imaging photo of TPE-HPh-Bar microrods excited by a concentrated UV laser (400nm) at seven different positions;
图13B为在图13A中对TPE-HPh-Bar微米棒进行记录的右侧棒端标记有a-g的微米棒的PL光谱;Figure 13B is the PL spectrum of the microrod marked with a-g at the right end of the rod recorded on the TPE-HPh-Bar microrod in Figure 13A;
图13C为TPE-HPh-Bar峰强度与激发位置和发光端之间距离的相关曲线图;Figure 13C is a correlation graph of TPE-HPh-Bar peak intensity and the distance between the excitation position and the light-emitting end;
图14为被牛血清白蛋白包封的TPE-HPh-Bar纳米粒的SEM成像照片,比例尺:1μm。Figure 14 is a SEM image of TPE-HPh-Bar nanoparticles encapsulated by bovine serum albumin, scale bar: 1 μm.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具有聚集诱导发光特性的发光材料及其应用和制备方法作进一步说明:The luminescent material with aggregation-induced luminescent properties and its application and preparation method of the present invention will be further described in conjunction with the accompanying drawings and examples:
本发明新的具有聚集诱导发光特性的发光材料具体制备过程通过如下实施例进行说明。需要说明的是下面制备的发光材料仅为权利要求中保护的结构式I-II中每一结构式所表示的发光材料的一种或几种,但本发明所保护的发光材料并不限于此。The specific preparation process of the new luminescent material with aggregation-induced luminescent properties of the present invention is illustrated by the following examples. It should be noted that the luminescent materials prepared below are only one or more of the luminescent materials represented by each of the structural formulas I-II protected in the claims, but the luminescent materials protected in the present invention are not limited thereto.
其中实施例1-4合成过程参见图1所示的合成路线。Wherein the synthetic process of embodiment 1-4 refers to the synthetic route shown in Figure 1.
实施例1:合成TPE-BarEmbodiment 1: Synthesis of TPE-Bar
结构式:Structural formula:
中文化学名称:5-(4-(1,2,2-三苯基乙烯基)苯亚甲基)嘧啶-2,4,6(1H,3H,5H)-三酮Chinese chemical name: 5-(4-(1,2,2-triphenylethenyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
英文化学式:5-(4-(1,2,2-triphenylvinyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trioneEnglish chemical formula: 5-(4-(1,2,2-triphenylvinyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
合成方法:将4-(1,2,2-三苯基乙烯基)苯甲醛1(500mg,1.39mmol)和巴比妥酸3(186mg,1.46mmol)混合物在甲醇20mL和THF 5mL混合溶剂中回流24h,形成亮黄色沉淀物,反应混合物冷却至室温后将形成的亮黄色沉淀物过滤,过滤后的固体用乙醇和乙醚分别冲洗三次,真空干燥得到产物390mg,产率为61%。1H-NMR(400MHz,d6-DMSO):δ11.48(s,1H),11.33(s,1H),8.26(s,1H),8.11(d,J=8.8Hz,2H),7.32-7.23(m,9H),7.17(d,J=8.4Hz,2H),7.15-7.09(m,6H);13C-NMR(100MHz,d6-DMSO):163.44,161.67,153.99,150.11,147.83,142.77,142.70,142.56,142.23,139.77,133.49,130.68,130.62,130.57,130.40,128.01,127.98,127.81,127.00,126.80,118.32;HR-MS(MALDI-TOF):470.1635;元素分析理论值C31H22N2O3:C,79.13;H,4.71;N,5.95:测定值:C,79.11;H,4.732;N,5.88。Synthetic method: Mix 4-(1,2,2-triphenylvinyl)benzaldehyde 1 (500mg, 1.39mmol) and barbituric acid 3 (186mg, 1.46mmol) in a mixed solvent of methanol 20mL and THF 5mL After reflux for 24 hours, a bright yellow precipitate was formed. After the reaction mixture was cooled to room temperature, the formed bright yellow precipitate was filtered. The filtered solid was washed three times with ethanol and ether, respectively, and dried in vacuo to obtain 390 mg of the product with a yield of 61%. 1 H-NMR (400MHz,d 6 -DMSO): δ11.48(s,1H),11.33(s,1H),8.26(s,1H),8.11(d,J=8.8Hz,2H),7.32- 7.23 (m, 9H), 7.17 (d, J=8.4Hz, 2H), 7.15-7.09 (m, 6H); 13 C-NMR (100MHz, d 6 -DMSO): 163.44, 161.67, 153.99, 150.11, 147.83 , 142.77, 142.70, 142.56, 142.23, 139.77, 133.49, 130.68, 130.62, 130.57, 130.40, 128.01, 127.98, 127.81, 127.00, 126.80, 118.32 ; HR-MS (MALDI-TOF) elemental analysis value: 4 H 22 N 2 O 3 : C, 79.13; H, 4.71; N, 5.95: Found: C, 79.11; H, 4.732; N, 5.88.
实施例2:合成TPE-s-BarEmbodiment 2: Synthesis of TPE-s-Bar
结构式:Structural formula:
中文化学名称:1,3-二甲基-5-(4-(1,2,2-三苯基乙烯基)苯亚甲基)嘧啶-2,4,6(1H,3H,5H)-三酮Chinese chemical name: 1,3-dimethyl-5-(4-(1,2,2-triphenylethenyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)- Triketone
英文化学式:1,3-dimethyl-5-(4-(1,2,2-triphenylvinyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trioneEnglish chemical formula: 1,3-dimethyl-5-(4-(1,2,2-triphenylvinyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
合成方法:将4-(1,2,2-三苯基乙烯基)苯甲醛1(500mg,1.39mmol)和N,N-二甲基巴比妥酸2(227mg,1.46mmol)混合物中加入一滴浓硫酸作为催化剂,在乙醇(20mL)中回流24h,形成橙黄色沉淀物,反应混合物冷却至室温后将形成的橙黄色沉淀物过滤,过滤后的固体用乙醇和乙醚分别冲洗三次,真空干燥得到产物480mg,产率为70%。HR-MS(MALDI-TOF)C33H26N2O3理论值498.1943;测定值:498.1941;1H-NMR(400MHz,CDCl3):δ8.44(s,1H),7.96(d,2H),7.14-7.10(m,11H),7.06-7.01(m,6H),3.40(s,3H),3.36(s,3H);13C-NMR(100MHz,CDCl3):δ161.72,159.57,157.86,150.27,148.70,142.24,142.12,142.04,141.90,138.94,133.04,130.34,130.33,130.29,130.24,129.52,126.91,126.88,126.66,126.08,125.83,125.80,115.30,28.07,27.39。Synthetic method: Add 4-(1,2,2-triphenylvinyl)benzaldehyde 1 (500mg, 1.39mmol) and N,N-dimethylbarbituric acid 2 (227mg, 1.46mmol) to the mixture A drop of concentrated sulfuric acid was used as a catalyst, and refluxed in ethanol (20mL) for 24h to form an orange-yellow precipitate. After the reaction mixture was cooled to room temperature, the formed orange-yellow precipitate was filtered. The filtered solid was rinsed three times with ethanol and ether, and dried in vacuo. 480 mg of the product was obtained with a yield of 70%. HR-MS (MALDI-TOF) C 33 H 26 N 2 O 3 theoretical value 498.1943; measured value: 498.1941; 1 H-NMR (400MHz, CDCl 3 ): δ8.44(s, 1H), 7.96(d, 2H ),7.14-7.10(m,11H),7.06-7.01(m,6H),3.40(s,3H),3.36(s,3H); 13 C-NMR(100MHz,CDCl 3 ):δ161.72,159.57,157.86 ,150.27,148.70,142.24,142.12,142.04,141.90,138.94,133.04,130.34,130.33,130.29,130.24,129.52,126.91,126.88,126.66,126.08,125.83,125.80,115.30,28.07,27.39。
实施例3:合成TPE-HPh-BarEmbodiment 3: Synthesis of TPE-HPh-Bar
结构式:Structural formula:
步骤包括:(1)合成TPE-HPhThe steps include: (1) synthesizing TPE-HPh
中文化学名称:2,5-二己氧基-4-((4-(1,2,2-三苯基乙烯基)苯基)乙炔基)苯甲醛Chinese chemical name: 2,5-dihexyloxy-4-((4-(1,2,2-triphenylethenyl)phenyl)ethynyl)benzaldehyde
英文化学式:2,5-dihexyloxy-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzaldehydeEnglish chemical formula: 2,5-dihexyloxy-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzaldehyde
合成方法:在双颈圆底烧瓶中加入2-(4-乙炔基苯基)-1,1,2-三苯基乙烯基4(1g,2.81mmol)、4-溴代-2,5-二己氧基苯甲醛6(1.03g,2.68mmol)、双(三苯基膦)二氯化钯(II)(Pd(PPh3)2Cl2)(0.089g,0.126mmol)、碘化亚铜(0.024g,0.121mmol)和三苯基膦(0.066g,0.251mmol),对上述混合物进行抽真空同时用氮气换气三次进而完全去除氧气,在上述反应烧瓶中注入新蒸馏的四氢呋喃30mL和无水脱气的三乙胺10mL,在70℃条件下回流反应8h形成沉淀物,冷却至室温后将形成的沉淀物过滤出来,通过旋蒸除去溶剂,将去除溶剂后的残留物过二氧化硅层析柱,用n-己烷/二氯甲烷(4:1v/v)进行洗脱得橙黄色固体状产物1.3g,产率73.4%。MS:660.3(M+);1H NMR(400MHz,CDCl3)δ10.43(s,1H),7.30(d,2H),7.27(s,1H),7.15(s,1H),7.13-7.08(m,8H),7.06-6.81(m,9H),4.05-4.00(m,4H),1.84-1.79(m,4H),1.50-1.46(m,4H),1.37-1.31(m,8H),0.93-0.85(m,6H)。Synthetic method: Add 2-(4-ethynylphenyl)-1,1,2-triphenylethenyl 4 (1g, 2.81mmol), 4-bromo-2,5- Dihexyloxybenzaldehyde 6 (1.03g, 2.68mmol), bis(triphenylphosphine)palladium(II) chloride (Pd(PPh 3 ) 2 Cl 2 ) (0.089g, 0.126mmol), iodide Copper (0.024g, 0.121mmol) and triphenylphosphine (0.066g, 0.251mmol), the above-mentioned mixture was vacuumized and gas exchanged three times with nitrogen to completely remove oxygen, and 30mL of newly distilled THF and Anhydrous and degassed triethylamine 10mL, reflux reaction at 70°C for 8h to form a precipitate, after cooling to room temperature, filter out the formed precipitate, remove the solvent by rotary evaporation, and peroxide the residue after removing the solvent A silica column was eluted with n-hexane/dichloromethane (4:1 v/v) to obtain 1.3 g of an orange-yellow solid product with a yield of 73.4%. MS: 660.3 (M + ); 1 H NMR (400MHz, CDCl 3 ) δ10.43 (s, 1H), 7.30 (d, 2H), 7.27 (s, 1H), 7.15 (s, 1H), 7.13-7.08 (m,8H),7.06-6.81(m,9H),4.05-4.00(m,4H),1.84-1.79(m,4H),1.50-1.46(m,4H),1.37-1.31(m,8H) ,0.93-0.85(m,6H).
(2)合成TPE-HPh-Bar(2) Synthesis of TPE-HPh-Bar
中文化学名称:5-(2,5-二己氧基-4-((4-(1,2,2-三苯基乙烯基)苯基)乙炔基)苯亚甲基)嘧啶-2,4,6(1H,3H,5H)-三酮Chinese chemical name: 5-(2,5-Dihexyloxy-4-((4-(1,2,2-triphenylethenyl)phenyl)ethynyl)benzylidene)pyrimidine-2, 4,6(1H,3H,5H)-trione
英文化学式:5-(2,5-dihexyloxy-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trioneEnglish chemical formula: 5-(2,5-dihexyloxy-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
合成方法:在圆底烧瓶中加入TPE-HPh(500mg,0.758mmol)和巴比妥酸3(106mg,0.828mmol),然后加入甲醇40mL和THF 5mL,将上述混合物在氮气氛围中搅拌并加热回流24h,形成红色沉淀物,趁热过滤,得到的过滤产物用甲醇冲洗三次,然后将得到的红色固体溶于乙醚中,加入适量的己烷,然后重结晶得到晶状产物0.356g,产率61%。1H NMR(400MHz,CDCl3),δ9.06(s,1H),8.30(s,1H),8.18(s,1H),8.11(s,1H),7.29(d,2J=8.4Hz,2H),7.13-7.08(m,9H),7.05-7.01(m,8H),6.98(s,1H),4.06-4.02(m,4H),1.86-1.81(m,4H),1.58-1.43(m,4H),1.37-1.29(m,8H),0.92-0.84(m,6H);13CNMR(400MHz,CDCl3),δ(TMS,ppm):162.99,160.92,155.18,154.56,152.65,148.80,144.85,143.57,143.51,143.41,142.10,140.33,131.57,131.52,131.47,131.43,131.36,127.98,127.93,127.83,126.88,126.80,122.07,121.84,120.85,116.81,115.61,114.82,98.77,86.59,69.73,69.61,31.73,31.60,29.31,29.17,25.89,25.78,22.75,22.71,14.18,14.14;HRMS(MALDI-TOF)C51H50N2O5理论值770.3720;测定值770.3722.元素分析理论值C51H50N2O5:C,79.45;H,6.54;N,3.63;测定值:C,79.60;H,6.606;N,3.59。Synthetic method: add TPE-HPh (500mg, 0.758mmol) and barbituric acid 3 (106mg, 0.828mmol) into a round bottom flask, then add methanol 40mL and THF 5mL, stir the above mixture in a nitrogen atmosphere and heat to reflux 24h, a red precipitate was formed, filtered while it was hot, and the obtained filtered product was washed three times with methanol, then the obtained red solid was dissolved in ether, an appropriate amount of hexane was added, and then recrystallized to obtain crystalline product 0.356g, yield 61 %. 1 H NMR (400MHz, CDCl 3 ), δ9.06(s, 1H), 8.30(s, 1H), 8.18(s, 1H), 8.11(s, 1H), 7.29(d, 2 J=8.4Hz, 2H),7.13-7.08(m,9H),7.05-7.01(m,8H),6.98(s,1H),4.06-4.02(m,4H),1.86-1.81(m,4H),1.58-1.43( m,4H),1.37-1.29(m,8H),0.92-0.84(m,6H); 13 CNMR(400MHz,CDCl 3 ),δ(TMS,ppm):162.99,160.92,155.18,154.56,152.65,148.80 ,144.85,143.57,143.51,143.41,142.10,140.33,131.57,131.52,131.47,131.43,131.36,127.98,127.93,127.83,126.88,126.80,122.07,121.84,120.85,116.81,115.61,114.82,98.77,86.59,69.73 , 69.61, 31.73, 31.60, 29.31, 29.17, 25.89, 25.78, 22.75, 22.71, 14.18, 14.14; HRMS (MALDI-TOF) C 51 H 50 N 2 O 5 theoretical value 770.3720; measured value 770.3722. Elemental analysis theoretical value C 51 H 50 N 2 O 5 : C, 79.45; H, 6.54; N, 3.63; Found: C, 79.60; H, 6.606; N, 3.59.
实施例4:合成TPE-MPh-BarEmbodiment 4: Synthesis of TPE-MPh-Bar
结构式:Structural formula:
步骤包括:(1)合成TPE-MPhThe steps include: (1) synthesizing TPE-MPh
中文化学名称:2,5-二甲基-4-((4-(1,2,2-三苯基乙烯基)苯基)乙炔基)苯甲醛Chinese chemical name: 2,5-dimethyl-4-((4-(1,2,2-triphenylethenyl)phenyl)ethynyl)benzaldehyde
英文化学式:2,5-dimethyl-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzaldehydeEnglish chemical formula: 2,5-dimethyl-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzaldehyde
合成方法:与TPE-HPh的合成方法相似,不同之处在于使用4-溴代-2,5-二甲基苯甲醛5代替4-溴代-2,5-二己氧基苯甲醛6;反应时加入的物质为2-(4-乙炔基苯基)-1,1,2-三苯基乙烯基4(1g,2.81mmol)、4-溴代-2,5-二甲基苯甲醛5(0.57g,2.68mmol)、双(三苯基膦)二氯化钯(II)(0.089g,0.126mmol)、碘化亚铜(0.024g,0.121mmol)和三苯基膦(0.066g,0.251mmol),得产物0.73g,产率70%。MS:488.2;1H NMR(400MHz,CDCl3):10.22(s,1H),7.64(s,1H),7.34(s,1H),7.29(s,1H),7.27(s,1H),7.15-7.09(m,9H),7.08-7.01(m,8H),2.61(s,3H),2.50(s,3H)。Synthesis method: similar to the synthesis method of TPE-HPh, the difference is that 4-bromo-2,5-dimethylbenzaldehyde 5 is used instead of 4-bromo-2,5-dihexyloxybenzaldehyde 6; The substances added during the reaction were 2-(4-ethynylphenyl)-1,1,2-triphenylethenyl 4 (1g, 2.81mmol), 4-bromo-2,5-dimethylbenzaldehyde 5 (0.57g, 2.68mmol), bis(triphenylphosphine)palladium(II) dichloride (0.089g, 0.126mmol), cuprous iodide (0.024g, 0.121mmol) and triphenylphosphine (0.066g , 0.251mmol), to obtain the product 0.73g, yield 70%. MS: 488.2; 1 H NMR (400MHz, CDCl 3 ): 10.22(s,1H),7.64(s,1H),7.34(s,1H),7.29(s,1H),7.27(s,1H),7.15 -7.09(m,9H),7.08-7.01(m,8H),2.61(s,3H),2.50(s,3H).
(2)合成TPE-MPh-Bar(2) Synthesis of TPE-MPh-Bar
中文化学名称:5-(2,5-二甲基-4-((4-(1,2,2-三苯基乙烯基)苯基)乙炔基)苯亚甲基)嘧啶-2,4,6(1H,3H,5H)-三酮Chinese chemical name: 5-(2,5-dimethyl-4-((4-(1,2,2-triphenylethenyl)phenyl)ethynyl)benzylidene)pyrimidine-2,4 ,6(1H,3H,5H)-trione
英文化学式:5-(2,5-dimethyl-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trioneEnglish chemical formula: 5-(2,5-dimethyl-4-((4-(1,2,2-triphenylvinyl)phenyl)ethynyl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione
合成方法:与合成TPE-HPh-Bar的合成方法相似,不同之处在于使用TPE-MPh(370mg,0.758mmol)和巴比妥酸3(106mg,0.828mmol)得到产物0.30g,产率65%。HRMS(MALDI-TOF):理论值C41H30N2O3598.2256;测定值598.2261;1H NMR(400MHz,d6-DMSO)δ11.55(s,1H),11.32(s,1H),8.45(s,1H),7.62(s,1H),7.49(s,1H),7.44(d,2J=8.4Hz,2H),7.30-7.22(m,9H),7.13-7.08(m,9H),2.47(s,3H),2.35(s,3H);13C NMR(100MHz,d6-DMSO)δ162.90,161.06,152.63,150.28,143.95,142.93,142.91,142.73,141.47,139.84,135.67,135.24,133.64,132.38,131.12,130.90,130.80,130.72,130.69,130.62,128.01,127.96,127.85,126.86,126.78,123.93,120.80,120.27,94.73,88.50,19.77,18.94。Synthesis method: Similar to the synthesis method of TPE-HPh-Bar, the difference is that TPE-MPh (370mg, 0.758mmol) and barbituric acid 3 (106mg, 0.828mmol) were used to obtain 0.30g of the product, with a yield of 65% . HRMS (MALDI-TOF): theoretical value C 41 H 30 N 2 O 3 598.2256; measured value 598.2261; 1 H NMR (400MHz, d 6 -DMSO) δ 11.55 (s, 1H), 11.32 (s, 1H), 8.45(s,1H),7.62(s,1H),7.49(s,1H),7.44(d, 2 J=8.4Hz,2H),7.30-7.22(m,9H),7.13-7.08(m,9H ),2.47(s,3H),2.35(s,3H); 13 C NMR (100MHz,d 6 -DMSO)δ162.90,161.06,152.63,150.28,143.95,142.93,142.91,142.73,141.47,139.84,135.67,135.2 ,133.64,132.38,131.12,130.90,130.80,130.72,130.69,130.62,128.01,127.96,127.85,126.86,126.78,123.93,120.80,120.27,98.73,198.77,120.80,120.27,98.73,198.77,120.80,
实施例5:对实施例1-4制备的TPE-Bar、TPE-s-Bar、TPE-HPh-Bar和TPE-MPh-Bar进行包括自组装微纳材料、有机光波导、生物成像等应用方面的研究Example 5: The TPE-Bar, TPE-s-Bar, TPE-HPh-Bar and TPE-MPh-Bar prepared in Examples 1-4 include self-assembled micro-nano materials, organic optical waveguides, biological imaging and other applications Research
对图1中的关键性中间体和终产品进行纯化并通过NMR光谱和质谱进行表征进而确证其分子结构,该发光材料溶于普通有机溶剂,包括THF、二氯甲烷、氯仿和DMSO,不溶于水。The key intermediates and final products in Figure 1 were purified and characterized by NMR spectroscopy and mass spectrometry to confirm their molecular structures. The luminescent material is soluble in common organic solvents, including THF, dichloromethane, chloroform and DMSO, and insoluble in water.
TPE-s-Bar在乙醇和氯仿的混合溶剂中缓慢挥发溶剂得到TPE-s-Bar晶体,该晶体通过X-射线衍射法进行分析。TPE-s-Bar的结构图(ORTEP)参见图2,晶体的数据参见表1。TPE-s-Bar is slowly volatilized in a mixed solvent of ethanol and chloroform to obtain TPE-s-Bar crystals, which are analyzed by X-ray diffraction. The structural diagram (ORTEP) of TPE-s-Bar is shown in Figure 2, and the crystal data are shown in Table 1.
表2:TPE-s-Bar的晶体数据汇总Table 2: Summary of crystallographic data for TPE-s-Bar
如图3A、3B和3C所示,三种发光材料TPE-s-Bar、TPE-Bar和TPE-MPh-Bar在PL光谱中显示出明显的聚集诱导发光(AIE)性质。这些化合物都在550nm以上发光,为橙红色光,超过某一个水含量值后(对于TPE-s-Bar和TPE-Bar是80vol%,对于TPE-MPh-Bar是70%),随着THF/水的混合溶剂中水含量的继续增加,发光强度急剧上升。而对于TPE-HPh-Bar,由于己氧基取代的苯环具有较大电子供给能力,在AIE之前可以观察到明显的扭曲分子内电荷转移(TICT)过程。如图4A和4B所示,TPE-HPh-Bar在聚集状态的光致发光(PL emission)红移至约630nm,与位于约490nm发光的TPE-CHO相比,由于引入吸电子基团巴比妥酸,发光红移,该红光的制备不需要繁杂的合成工作量。根据积分球技术,TPE-Bar、TPE-s-Bar、TPE-MPh-Bar和TPE-HPh-Bar发光材料的固态量子产率分别为19.1%、20%、9%和37.4%。As shown in Figures 3A, 3B, and 3C, the three luminescent materials TPE-s-Bar, TPE-Bar, and TPE-MPh-Bar showed obvious aggregation-induced emission (AIE) properties in the PL spectra. These compounds all emit light above 550nm, which is orange-red light. After exceeding a certain water content value (80vol% for TPE-s-Bar and TPE-Bar, 70% for TPE-MPh-Bar), with THF/ As the water content in the mixed solvent of water continues to increase, the luminous intensity rises sharply. While for TPE-HPh-Bar, due to the large electron donating ability of the hexyloxy-substituted benzene ring, an obvious twisted intramolecular charge transfer (TICT) process can be observed before AIE. As shown in Figures 4A and 4B, the photoluminescence (PL emission) of TPE-HPh-Bar in the aggregated state is red-shifted to about 630nm, compared with TPE-CHO at about 490nm emitting light, due to the introduction of the electron-withdrawing group PL emission Tauric acid has a red-shifted luminescence, and the preparation of this red light does not require complicated synthetic workload. According to the integrating sphere technique, the solid-state quantum yields of TPE-Bar, TPE-s-Bar, TPE-MPh-Bar and TPE-HPh-Bar luminescent materials are 19.1%, 20%, 9% and 37.4%, respectively.
使用研钵缓慢研磨TPE-s-Bar和TPE-Bar后,形成较红色的粉末,如图5A和5B所示,TPE-s-Bar在567nm显示红色发光(PL),如图6A和6B所示,TPE-Bar在605nm显示红色发光(PL)。用丙酮蒸气熏蒸20min后,重新回到初始的黄色发光,黄色发光和红色发光之间很容易可逆性转换。除了熏蒸外,加热TPE-s-Bar的研磨粉末110℃以上和TPE-Bar研磨粉末140℃也会使红色粉末变为结晶状态而发黄色光,显示力致变色(mechanochromism)行为。相似地,TPE-MPh-Bar也显示力致变色(mechanochromism)性质,研磨后,如图7A和7B所示,发光最大的改变从575nm至600nm。After slowly grinding TPE-s-Bar and TPE-Bar using a mortar, a redder powder was formed, as shown in Figure 5A and 5B, and TPE-s-Bar showed red luminescence (PL) at 567 nm, as shown in Figure 6A and 6B TPE-Bar showed red luminescence (PL) at 605nm. After being fumigated with acetone vapor for 20 minutes, the initial yellow luminescence was returned, and the reversible conversion between yellow luminescence and red luminescence is easy. In addition to fumigation, heating the ground powder of TPE-s-Bar above 110°C and the ground powder of TPE-Bar at 140°C will also turn the red powder into a crystalline state and emit yellow light, showing mechanochromism behavior. Similarly, TPE-MPh-Bar also exhibited mechanochromism properties, after milling, the maximum change in luminescence was from 575 nm to 600 nm as shown in Figures 7A and 7B.
为了研究力致变色(mechanochromism)现象,通过粉末X-射线衍射(XRD)对不同聚集状态的激活发光化合物进行分析。如图8A和9A所示,原始样品的XRD衍射图显示出许多尖锐衍射峰,表明其为晶态结构性质,相反地,研磨样品仅显示一个大的漫射晕(diffuse halo)因此为无定形。当对红色粉末进行热处理或用丙酮蒸气进行熏蒸,尖锐的衍射峰会再次出现,这表明无定形粉末通过溶剂熏蒸或热处理而返回到其晶态状态。通过8B和9B的DSC数据可以看出,研磨后的样品的DSC谱图上出现了一个结晶峰,该结晶峰是在由无定型态向晶态转变的过程中形成的。上述实验结果表明发光的转变与从晶态变为无定形态的形貌学转变有关,反之亦然。In order to study the phenomenon of mechanochromism, the activated luminescent compounds in different aggregation states were analyzed by powder X-ray diffraction (XRD). As shown in Figures 8A and 9A, the XRD diffraction pattern of the pristine sample shows many sharp diffraction peaks, indicating its crystalline structural nature, in contrast, the milled sample only shows a large diffuse halo and is thus amorphous . When the red powder was heat-treated or fumigated with acetone vapor, the sharp diffraction peaks reappeared, indicating that the amorphous powder was returned to its crystalline state by solvent fumigation or heat treatment. From the DSC data of 8B and 9B, it can be seen that a crystalline peak appears on the DSC spectrum of the ground sample, which is formed during the transition from the amorphous state to the crystalline state. The above experimental results indicate that the transition of luminescence is related to the morphological transition from crystalline to amorphous and vice versa.
研究TPE-HPh-Bar的自组装。在硅基板上滴几滴TPE-HPh-Bar的乙腈溶液,自然挥发,形成TPE-HPh-Bar的纳米球。如图10A、10B、10C和10D所示,纳米球大小均一,并且尺寸与溶液浓度有关,溶液浓度越高,形成的纳米球尺寸越大。加入乙醇或水对自组装的形貌基本没有影响,但在相同实验条件下纳米球的尺寸将会变小。为了得到500nm均一的粒径,使用乙腈/乙醇(1:1v/v)混合溶剂,TPE-HPh-Bar浓度为50μM,是上述乙腈溶液中TPE-HPh-Bar浓度的5倍。对于TPE-HPh-Bar来说乙醇和水均是较差的溶解溶剂,加入这些溶剂到乙腈溶液中将加速分子的聚集,进而形成小粒径的纳米球。Investigating the self-assembly of TPE-HPh-Bar. Drop a few drops of acetonitrile solution of TPE-HPh-Bar on the silicon substrate and volatilize naturally to form TPE-HPh-Bar nanospheres. As shown in Figures 10A, 10B, 10C and 10D, the size of the nanospheres is uniform, and the size is related to the concentration of the solution. The higher the concentration of the solution, the larger the size of the formed nanospheres. The addition of ethanol or water has basically no effect on the self-assembled morphology, but the size of the nanospheres will become smaller under the same experimental conditions. In order to obtain a uniform particle size of 500 nm, acetonitrile/ethanol (1:1 v/v) mixed solvent was used, and the concentration of TPE-HPh-Bar was 50 μM, which was 5 times the concentration of TPE-HPh-Bar in the above acetonitrile solution. For TPE-HPh-Bar, ethanol and water are poor dissolving solvents. Adding these solvents to the acetonitrile solution will accelerate the aggregation of molecules, and then form nanospheres with small particle sizes.
考虑到巴比妥酸和三聚氰胺之间的氢键作用,研究了三聚氰胺的加入对TPE-HPh-Bar形成的纳米结构的影响,对加入三聚氰胺的TPE-HPh-Bar的自组装进行研究。由于乙腈对于三聚氰胺来说是不良溶剂,只有部分TPE-HPh-Bar分子与三聚氰胺分子相互作用,而三聚氰胺在DMSO溶剂中溶解性较好,因此使用DMSO溶剂进行形貌学研究。首先,制备TPE-HPh-Bar的DMSO溶液,加入适量的溶解于DMSO的三聚氰胺溶液,将混合后的溶液置于室温下一段时间,然后加入乙醇,加入乙醇后溶液滴在硅基板上,在敞开条件下挥发溶剂,由于TPE-HPh-Bar分子比三聚氰胺分子大得多,所以三聚氰胺用量相对较高,进而使TPE-HPh-Bar分子与三聚氰胺分子之间形成完全作用。如图11A和11B所示,在10当量的三聚氰胺的存在下,在DMSO/乙醇(1:1v/v)的混合溶剂中形成长度约30nm、直径约50nm的纳米管。大部分纳米管的管端部是开口状的,这可能与DMSO腐蚀效应有关,在巴比妥酸和三聚氰胺的复合物中很少会观察到这种的形态。如图11C和11D所示,增加三聚氰胺至25当量,纳米棒的厚度几乎没有变化,但管端部呈封闭状。当DMSO与乙醇的体积比例从1:1变为1:4,微米结构和纳米结构会变得更小且不规则。TPE-HPh-Bar分子在含有大量乙醇的混合溶剂中会发生聚集,因此会妨碍其与三聚氰胺分子之间的共同组装。另一方面,减少DMSO的含量会降低腐蚀效应,开口状的纳米管形成的可能性降低。Considering the hydrogen bonding between barbituric acid and melamine, the effect of the addition of melamine on the nanostructure formed by TPE-HPh-Bar was studied, and the self-assembly of TPE-HPh-Bar added with melamine was studied. Since acetonitrile is a poor solvent for melamine, only part of TPE-HPh-Bar molecules interact with melamine molecules, and melamine has better solubility in DMSO solvent, so DMSO solvent was used for morphology study. First, prepare the DMSO solution of TPE-HPh-Bar, add an appropriate amount of melamine solution dissolved in DMSO, put the mixed solution at room temperature for a period of time, then add ethanol, after adding ethanol, the solution is dropped on the silicon substrate, in the open Volatile solvent under the condition, because TPE-HPh-Bar molecules are much larger than melamine molecules, so the amount of melamine is relatively high, and then make the TPE-HPh-Bar molecules and melamine molecules form a complete interaction. As shown in FIGS. 11A and 11B , nanotubes with a length of about 30 nm and a diameter of about 50 nm were formed in a mixed solvent of DMSO/ethanol (1:1 v/v) in the presence of 10 equivalents of melamine. The tube ends of most nanotubes are open, which may be related to the corrosion effect of DMSO, which is rarely observed in the composite of barbituric acid and melamine. As shown in Figures 11C and 11D, increasing melamine to 25 equivalents, the thickness of the nanorods hardly changes, but the ends of the tubes are closed. When the volume ratio of DMSO to ethanol was changed from 1:1 to 1:4, the microstructures and nanostructures became smaller and irregular. TPE-HPh-Bar molecules aggregated in mixed solvents containing a large amount of ethanol, which hindered their co-assembly with melamine molecules. On the other hand, reducing the content of DMSO reduces the corrosion effect, and the possibility of opening-shaped nanotubes is reduced.
表面没有瑕疵的TPE-s-Bar和TPE-HPh-Bar微纳棒状结构显示出极好的光波导效应。为了进一步研究TPE-s-Bar和TPE-HPh-Bar微米棒的光波导行为,分别测试了TPE-s-Bar和TPE-HPh-Bar微米棒的与距离相关的光致发光(PL)性质。如图12A和13A所示,由800nm的激光器产生的波长400nm激发光对在玻璃片上微米棒的不同位置进行激发,并对微米棒端部的发光进行检测,当激发的位置逐渐移到相对端时,发光强度变弱,这说明TPE-s-Bar和TPE-HPh-Bar的微米棒在激发的位置吸收激发光,然后将吸收光传播至微米棒的端部。在端部耦合光的现象即为光波导行为的特性。TPE-s-Bar and TPE-HPh-Bar micro-nanorod structures with no defects on the surface show excellent optical waveguide effect. To further investigate the optical waveguide behavior of TPE-s-Bar and TPE-HPh-Bar microrods, the distance-dependent photoluminescence (PL) properties of TPE-s-Bar and TPE-HPh-Bar microrods were tested, respectively. As shown in Figures 12A and 13A, the excitation light with a wavelength of 400nm generated by an 800nm laser excites different positions of the microrods on the glass plate, and detects the luminescence at the end of the microrods, when the excited position gradually moves to the opposite end , the luminous intensity becomes weaker, which indicates that the microrods of TPE-s-Bar and TPE-HPh-Bar absorb the excitation light at the excited position, and then propagate the absorbed light to the ends of the microrods. The phenomenon of coupling light at the ends is a characteristic of the behavior of optical waveguides.
TPE-s-Bar和TPE-HPh-Bar的微米棒作为有机光学波导材料,如图12B、12C以及13B和13C所示,检测TPE-s-Bar和TPE-HPh-Bar微米棒的光损耗系数,记录微米棒固定端部发光强度(Iend)和激发位置的发光强度(Ibody)。光损耗系数(α)通过单指数拟合计算(Iend/Ibody=Aexp-αx,其中x表示激发位置与发光端之间的距离,A表示从激发点逃脱的光比值与沿光纤传播的光比值),据此测得的TPE-s-Bar的α值约为0.100dB/μm和TPE-HPh-Bar的α值约为0.130dB/μm,表明两种激活发光化合物具有极好的光波导效果。大的斯托克斯位移(Stokes shift)有助于TPE-s-Bar和TPE-HPh-Bar克服从激发点逃脱的光的再次吸收,这是在传播过程中光损耗的主要因素。The microrods of TPE-s-Bar and TPE-HPh-Bar are used as organic optical waveguide materials, as shown in Figure 12B, 12C and 13B and 13C, and the optical loss coefficients of TPE-s-Bar and TPE-HPh-Bar microrods are detected , record the luminous intensity at the fixed end of the microrod (I end ) and the luminous intensity at the excited position (I body ). The light loss coefficient (α) was calculated by single exponential fitting (I end /I body = Aexp -αx , where x represents the distance between the excitation position and the light-emitting end, A represents the ratio of the light escaping from the excitation point to the light propagating along the fiber light ratio), according to which the measured α value of TPE-s-Bar is about 0.100dB/μm and that of TPE-HPh-Bar is about 0.130dB/μm, indicating that the two activated luminescent compounds have excellent light waveguide effect. The large Stokes shift helps TPE-s-Bar and TPE-HPh-Bar to overcome the reabsorption of light escaping from the excitation point, which is the main factor of light loss during propagation.
同样TPE-Bar和TPE-MPh-Bar微米棒也有望用作光波导材料。Similarly TPE-Bar and TPE-MPh-Bar microrods are also expected to be used as optical waveguide materials.
在生物学应用中,TPE-HPh-Bar在交联剂戊二醛的协助下被牛血清白蛋白包覆,如图14所示,通过扫描式电子显微镜(SEM)检测并观察,显示修饰后的TPE-HPh-Bar能够形成均一的纳米粒,在水相中具有较好的分散效果,该纳米粒的粒径约250nm,易于被细胞内化。因此该系列的发光材料也有望应用于细胞内成像技术。In biological applications, TPE-HPh-Bar is coated with bovine serum albumin with the assistance of the cross-linking agent glutaraldehyde, as shown in Figure 14, detected and observed by scanning electron microscopy (SEM), showing that after modification The TPE-HPh-Bar can form uniform nanoparticles, which has a good dispersion effect in the aqueous phase. The particle size of the nanoparticles is about 250nm, which is easy to be internalized by cells. Therefore, this series of luminescent materials is also expected to be applied in intracellular imaging technology.
此外,考虑到该类材料良好的固态发光性质,可作为发光层,有望用于有机发光二极管装置。In addition, considering the good solid-state light-emitting properties of this type of material, it can be used as a light-emitting layer and is expected to be used in organic light-emitting diode devices.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进或变换都应属于本发明所附权利要求的保护范围之内。It should be understood that those skilled in the art may make improvements or changes based on the above description, and all such improvements or changes shall fall within the protection scope of the appended claims of the present invention.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361963942P | 2013-12-19 | 2013-12-19 | |
US61/963,942 | 2013-12-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104877666A true CN104877666A (en) | 2015-09-02 |
CN104877666B CN104877666B (en) | 2017-03-08 |
Family
ID=53945348
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410803297.5A Active CN104877665B (en) | 2013-12-19 | 2014-12-19 | Luminescent material having aggregation-induced emission, method of making and application thereof |
CN201410803311.1A Active CN104877666B (en) | 2013-12-19 | 2014-12-19 | Luminescent material with aggregation-induced luminescent properties, preparation method and application thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410803297.5A Active CN104877665B (en) | 2013-12-19 | 2014-12-19 | Luminescent material having aggregation-induced emission, method of making and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN104877665B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105319194A (en) * | 2015-11-30 | 2016-02-10 | 陕西师范大学 | A Method for Continuous Detection of I- and Hg2+ Using Aggregation-Induced Luminescent Fluorescent Sensing Molecules |
WO2017197739A1 (en) * | 2016-05-20 | 2017-11-23 | 深圳市华星光电技术有限公司 | Organic electroluminescent material and organic electroluminescent device |
CN107450125A (en) * | 2017-08-03 | 2017-12-08 | 河北科技大学 | A kind of preparation method and applications of low dimensional organic optical diode material |
CN107502344A (en) * | 2017-09-12 | 2017-12-22 | 中南大学 | Based on dione pyrrolo-pyrrole compound and the multi-functional organic fluorescence nano particle of tetraphenyl ethylene class compound and preparation and application |
CN108570040A (en) * | 2018-05-23 | 2018-09-25 | 齐鲁工业大学 | A kind of barbital acid compounds of four substituted thiophenes and preparation method thereof |
CN108586438A (en) * | 2018-05-23 | 2018-09-28 | 齐鲁工业大学 | A kind of barbituric acid derivatives and preparation method thereof of a substituted five-membered heterocycle |
CN109206374A (en) * | 2017-07-07 | 2019-01-15 | 香港科技大学 | Tetraphenyl ethylene isomer with aggregation-induced emission and supramolecular polymerization properties and preparation method and application thereof |
CN109438720A (en) * | 2018-10-26 | 2019-03-08 | 太原理工大学 | A kind of dissaving polymer and its preparation method and application |
CN109651587A (en) * | 2018-12-07 | 2019-04-19 | 南京工程学院 | It is a kind of to derive material resources mutagens color high molecular material and preparation method thereof containing phenolphthalein with fast self-recovery property |
CN109651188A (en) * | 2018-11-02 | 2019-04-19 | 山西师范大学 | A kind of schiff base of salicylaldehyde and its preparation method and application of tetraphenyl ethylene functionalization |
CN110818646A (en) * | 2019-11-18 | 2020-02-21 | 温州医科大学 | Aggregation-induced emission-based small-molecule fluorescent probe and preparation method and application thereof |
CN113105441A (en) * | 2021-04-15 | 2021-07-13 | 浙江义氪生物科技有限公司 | Compound with aggregation-induced emission property and application thereof in field of surgical navigation |
CN113321758A (en) * | 2021-03-08 | 2021-08-31 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Carboxyl-modified aggregation-induced emission polymer microsphere and preparation method and application thereof |
CN114935572A (en) * | 2022-07-25 | 2022-08-23 | 香港科技大学深圳研究院 | A visualization method for uric acid detection based on nanomaterials |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017080413A1 (en) * | 2015-11-10 | 2017-05-18 | The Hong Kong University Of Science And Technology | Aie bioprobes emitting red or yellow fluorescence |
WO2018068688A1 (en) * | 2016-10-13 | 2018-04-19 | The Hong Kong University Of Science And Technology | Polymer poly (triphenylacrylonitrite) and synthesis thereof |
CN108069908B (en) * | 2016-11-15 | 2021-07-27 | 香港科技大学 | Fluorescent probes and their applications |
CN106867507A (en) * | 2016-12-27 | 2017-06-20 | 广东阿格蕾雅光电材料有限公司 | A kind of green glow dyestuff with aggregation-induced emission property |
CN106905309B (en) * | 2017-03-27 | 2019-08-30 | 山东大学 | An ultra-selective and amphiphilic lipid droplet fluorescent probe and its application |
CN106946869B (en) * | 2017-03-27 | 2019-08-09 | 山东大学 | A fluorescent probe for specifically labeling lipid droplets in cells |
WO2018210334A1 (en) * | 2017-05-19 | 2018-11-22 | The Hong Kong University Of Science And Technology | Aiegens for cancer cells and gram-positive bacteria discrimination and killing |
CN107308113B (en) * | 2017-05-23 | 2020-06-02 | 北京师范大学 | Macrocyclic polyamines [12] based on tetraphenylethylenes]aneN3Cationic lipid, transgenic vector and preparation method thereof |
CN109280305B (en) * | 2017-07-21 | 2021-06-08 | 香港科技大学 | Preparation and application of humidity visualization materials with aggregation-induced luminescence properties |
CN110498809B (en) * | 2018-05-17 | 2022-04-05 | 香港科技大学深圳研究院 | Organoboron compounds based on acylhydrazone ligands and their preparation methods and applications |
CN109336872A (en) * | 2018-11-19 | 2019-02-15 | 天集化工助剂(沧州)有限公司 | One kind has the preparation of the gathering induced luminescence material of light stability |
US11739261B2 (en) * | 2019-01-15 | 2023-08-29 | The Hong Kong University Of Science And Technology | Fluorescent probes for acid detection |
CN110927137B (en) * | 2019-12-31 | 2021-04-27 | 吉林大学 | A single benzene ring skeleton-based fluorescent imaging probe for cellular lipid droplets and its application |
CN113930342B (en) * | 2020-07-13 | 2024-06-21 | 香港科技大学 | Cultivation system and method for promoting the growth of photosynthetic organisms |
CN115058126B (en) * | 2022-05-16 | 2023-10-03 | 闽都创新实验室 | Styrene hemicyanine fluorescent dye, preparation method thereof and application thereof in rare earth colorful long afterglow luminescent material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011106990A1 (en) * | 2010-03-01 | 2011-09-09 | The Hong Kong University Of Science And Technology | Light emitting tetraphenylene derivatives, its method for preparation and light emitting device using the same derivatives |
CN102706839B (en) * | 2011-01-31 | 2015-08-12 | 香港科技大学 | Water-soluble AIE luminescent agent and its use in detecting and delaying amyloid fibrillation of amyloid protein |
CN103196874A (en) * | 2012-01-09 | 2013-07-10 | 纳米及先进材料研发院有限公司 | Urinary protein detection device based on aggregation-induced luminescence (AIE) for monitoring human health |
-
2014
- 2014-12-19 CN CN201410803297.5A patent/CN104877665B/en active Active
- 2014-12-19 CN CN201410803311.1A patent/CN104877666B/en active Active
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105319194A (en) * | 2015-11-30 | 2016-02-10 | 陕西师范大学 | A Method for Continuous Detection of I- and Hg2+ Using Aggregation-Induced Luminescent Fluorescent Sensing Molecules |
CN105319194B (en) * | 2015-11-30 | 2018-01-12 | 陕西师范大学 | A kind of method that I and Hg2+ are continuously detected using aggregation-induced emission type fluorescence sense molecule |
WO2017197739A1 (en) * | 2016-05-20 | 2017-11-23 | 深圳市华星光电技术有限公司 | Organic electroluminescent material and organic electroluminescent device |
CN109206374B (en) * | 2017-07-07 | 2021-11-16 | 香港科技大学 | Tetraphenyl ethylene isomer with aggregation-induced emission and supramolecular polymerization properties and preparation method and application thereof |
CN109206374A (en) * | 2017-07-07 | 2019-01-15 | 香港科技大学 | Tetraphenyl ethylene isomer with aggregation-induced emission and supramolecular polymerization properties and preparation method and application thereof |
CN107450125A (en) * | 2017-08-03 | 2017-12-08 | 河北科技大学 | A kind of preparation method and applications of low dimensional organic optical diode material |
CN107450125B (en) * | 2017-08-03 | 2018-08-07 | 河北科技大学 | A kind of preparation method and applications of low dimensional organic optical diode material |
CN107502344A (en) * | 2017-09-12 | 2017-12-22 | 中南大学 | Based on dione pyrrolo-pyrrole compound and the multi-functional organic fluorescence nano particle of tetraphenyl ethylene class compound and preparation and application |
CN107502344B (en) * | 2017-09-12 | 2019-07-19 | 中南大学 | Multifunctional organic fluorescent nanoparticles based on diketopyrrolopyrrole compounds and tetraphenylene compounds and their preparation and application |
CN108570040A (en) * | 2018-05-23 | 2018-09-25 | 齐鲁工业大学 | A kind of barbital acid compounds of four substituted thiophenes and preparation method thereof |
CN108586438A (en) * | 2018-05-23 | 2018-09-28 | 齐鲁工业大学 | A kind of barbituric acid derivatives and preparation method thereof of a substituted five-membered heterocycle |
CN109438720A (en) * | 2018-10-26 | 2019-03-08 | 太原理工大学 | A kind of dissaving polymer and its preparation method and application |
CN109651188A (en) * | 2018-11-02 | 2019-04-19 | 山西师范大学 | A kind of schiff base of salicylaldehyde and its preparation method and application of tetraphenyl ethylene functionalization |
CN109651188B (en) * | 2018-11-02 | 2021-12-07 | 山西师范大学 | Tetraphenyl ethylene functionalized salicylaldehyde Schiff base and preparation method and application thereof |
CN109651587A (en) * | 2018-12-07 | 2019-04-19 | 南京工程学院 | It is a kind of to derive material resources mutagens color high molecular material and preparation method thereof containing phenolphthalein with fast self-recovery property |
CN109651587B (en) * | 2018-12-07 | 2021-04-20 | 南京工程学院 | Mechanochromic polymer material containing phenolphthalein derivative with rapid self-recovery properties and preparation method thereof |
CN110818646A (en) * | 2019-11-18 | 2020-02-21 | 温州医科大学 | Aggregation-induced emission-based small-molecule fluorescent probe and preparation method and application thereof |
CN113321758A (en) * | 2021-03-08 | 2021-08-31 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Carboxyl-modified aggregation-induced emission polymer microsphere and preparation method and application thereof |
CN113321758B (en) * | 2021-03-08 | 2022-11-11 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Carboxyl-modified aggregation-induced emission polymer microsphere and preparation method and application thereof |
CN113105441A (en) * | 2021-04-15 | 2021-07-13 | 浙江义氪生物科技有限公司 | Compound with aggregation-induced emission property and application thereof in field of surgical navigation |
CN114935572A (en) * | 2022-07-25 | 2022-08-23 | 香港科技大学深圳研究院 | A visualization method for uric acid detection based on nanomaterials |
Also Published As
Publication number | Publication date |
---|---|
CN104877665A (en) | 2015-09-02 |
CN104877666B (en) | 2017-03-08 |
CN104877665B (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104877666B (en) | Luminescent material with aggregation-induced luminescent properties, preparation method and application thereof | |
Wang et al. | Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene | |
Zhang et al. | Cyanostilben-based derivatives: mechanical stimuli-responsive luminophors with aggregation-induced emission enhancement | |
Singh et al. | Structural, Thermal, and Fluorescence Properties of Eu (DBM) 3Phen x Complex Doped in PMMA | |
US9929363B2 (en) | Composition and synthesis of aggregation-induced emission materials | |
Xiao et al. | Two novel aggregation-induced emission active coumarin-based Schiff bases and their applications in cell imaging | |
CN110337482B (en) | Triangular carbon quantum dots and their composition and use | |
Kumar et al. | Enhanced resonance energy transfer and white-light emission from organic fluorophores and lanthanides in dendron-based hybrid hydrogel | |
Dong et al. | Supramolecular interactions induced fluorescent organic nanowires with high quantum yield based on 9, 10-distyrylanthracene | |
CN111875602B (en) | A kind of cyano group-modified pyridoimidazole derivatives and preparation method and application thereof | |
Ding et al. | D–A–D type chromophores with aggregation-induced emission and two-photon absorption: synthesis, optical characteristics and cell imaging | |
Zhang et al. | Substituent effect on photophysical properties, crystal structures and mechanochromism of D-π-A phenothiazine derivatives | |
CN106674028A (en) | Benzylidene indandione compound and preparation thereof and application in specific imaging of lipid droplet | |
Tang et al. | Synthesis, crystal structures, two-photon absorption and biological imaging application of two novel bent-shaped pyrimidine derivatives | |
Jiang et al. | Tetraphenylethene end-capped [1, 2, 5] thiadiazolo [3, 4-c] pyridine with aggregation-induced emission and large two-photon absorption cross-sections | |
CN107573928A (en) | Solid-state up-conversion luminescent material based on triplet-triplet annihilation and preparation method thereof | |
Li et al. | One-dimensional luminescent composite nanofibers of Eu (TFI) 3TPPO/PVP prepared by electrospinning | |
JP5515069B2 (en) | Perylenetetracarboxylic acid bisimide derivative, n-type semiconductor, method for producing n-type semiconductor, and electronic device | |
Saeed et al. | Tunable fabrication of rice-like nanostructures aggregated into flowers of Alq3 with negligible photo-degradation for potential biomedical applications | |
Poojary et al. | Highly fluorescent materials derived from ortho-vanillin: structural, photophysical electrochemical and theoretical studies | |
CN110885340A (en) | A dual-nuclear dual-ligand rare earth composite fluorescent material containing europium and preparation method thereof | |
Chen et al. | Efficient orange and red thermally activated delayed fluorescence materials based on 1, 8-naphthalimide derivatives | |
CN105440277A (en) | Amphipathic AIE (aggregation-induced emission) molecule, synthetic method thereof, autofluorescence nano-micelle and application | |
Hirose et al. | Fluorescence behavior of 5, 10-disubstituted [5] helicene derivatives in solution and the effect of self-assembly on their radiative and non-radiative rate constants | |
Zhou et al. | AIEE compounds based on 9, 10-dithienylanthracene-substituted triphenylamine: design, synthesis, and applications in cell imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |