CN1048713C - 提高乙烯回收率的轻烃分离方法 - Google Patents

提高乙烯回收率的轻烃分离方法 Download PDF

Info

Publication number
CN1048713C
CN1048713C CN96120253A CN96120253A CN1048713C CN 1048713 C CN1048713 C CN 1048713C CN 96120253 A CN96120253 A CN 96120253A CN 96120253 A CN96120253 A CN 96120253A CN 1048713 C CN1048713 C CN 1048713C
Authority
CN
China
Prior art keywords
tower
flow process
methane
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN96120253A
Other languages
English (en)
Other versions
CN1157280A (zh
Inventor
倪进方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN96120253A priority Critical patent/CN1048713C/zh
Publication of CN1157280A publication Critical patent/CN1157280A/zh
Application granted granted Critical
Publication of CN1048713C publication Critical patent/CN1048713C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明是一种高乙烯回收率,节能和低脱甲烷塔负荷的轻烃分离方法。轻烃经过压缩、冷却和闪蒸后得到的气体和液体分别进入高压脱乙烷塔,进行碳二馏份的非清晰切割,高压脱乙烷塔塔底产物进入低压脱乙烷塔进行碳二和碳三馏份的分离,高压脱乙烷塔塔顶产物经过逐级冷却和闪蒸得到二股以上的液体作为脱甲烷塔的进料。气液分离罐出口的气体经冷却进入甲烷吸收塔,用液相甲烷作为吸收剂,将气体中99.5%的乙烯吸收下来,而甲烷吸收塔底部出口液体返回脱甲烷塔作为进料,脱甲烷塔釜液去乙炔加氢反应器或乙烯精馏塔。

Description

提高乙烯回收率的轻烃分离方法
本发明属于化学工程领域,尤其涉及乙烯装置以及其他轻烃加工装置的回收乙烯方法的改进。
众所周知轻烃是指脱除了碳五或碳四以上重组分的烃类裂解产物,也可以指其他来源的其组成主要包括氢、甲烷、乙烯、乙烷、丙烯、丙烷等碳五以下烃的混合物。轻烃需进一步加工,分离成乙烯、丙烯等产品。轻烃进行分离一般采用精馏和闪蒸。衡量分离方法优劣的指标是能耗、投资和产品回收率,尤其是主产品乙烯的回收率,这三个指标往往是相互矛盾的:如要求产品回收率高则常常需要较高的能耗和/或投资。一个优秀的分离方法在于能同时兼顾三个方面的要求,从而使生产成本最低。
轻烃分离过程大致可分为脱甲烷系统、脱碳二系统和脱碳三系统三大部分,乙烯的损失主要发生在脱甲烷系统和脱碳二系统,而发生在脱甲烷系统的乙烯损失通常占乙烯总损失的60%以上,分离过程中能耗最大的两个塔是乙烯精馏塔和脱甲烷塔,因此要充分重视脱甲烷系统的设计。目前有多种分离流程,其中大量采用的一种脱甲烷系统流程(以下称流程一)参见图一。该流程是轻烃经过压缩机C101,冷却器E101,干燥器V101和冷却器E102后进入闪蒸罐F101,闪蒸罐出口的液体进入脱甲烷塔D101,出口的气体再经过几级冷却和闪蒸,闪蒸罐F102、F103和F104的出口液体仍然进入脱甲烷塔,F104出口的气体是甲烷、氢和受相平衡约束的乙烯,该气体继续通过换热器E109,冷却至-165℃左右进入最后一级闪蒸罐F105,出口气体主要是氢,出口液体主要是甲烷。E109所需的冷量由氢和减压后的甲烷提供。出E109的低压甲烷和氢进入前几级换热器E107~E103或E102,继续作为冷源提供冷量。为了达到F104的出口温度,一般在-127℃--130℃之间,除了由脱甲烷塔塔顶的气相产品甲烷经减压后也作为冷源外,尚需以液相状态抽出部分甲烷产品作为补充冷源,由抽出液相甲烷的数量来控制F104的温度。脱甲烷塔的分离要求是塔底产物脱除甲烷、塔顶产物脱除乙烯至规定指标,控制的方法同常规精馏塔。脱甲烷塔底部产物为碳二及以上馏分,送至脱乙烷塔D104。D104的塔顶产物碳二馏分经过乙炔加氢反应器R101除去乙炔后进入乙烯精馏塔,从该塔的上部得到主产品乙烯,塔底产物为乙烷。脱乙烷塔底部产物为碳三或更重馏分,进入脱碳三系统。
由以上叙述可知,脱甲烷系统的乙烯损失发生在三处,即A、F104的气相出料B、脱甲烷塔D101的气相出料C、脱甲烷塔D101的液相出料
A点的损失在一定进料组成下取决于F104的温度,温度越低则乙烯损失越少,但脱甲烷塔的冷凝器负荷越大,而且此点的温度还受到相平衡和传热温差要求的限制,温度一般不低于-130℃。
B、C两点的乙烯损失取决于脱甲烷塔的回流比和液相甲烷的抽出量,要降低这两点的乙烯损失必须以增加能耗为代价,这点是不言而喻的。
发明专利90101957.7叙述了一种从含甲烷、乙烷和乙烯等气体混台物中回收乙烯的工艺。该工艺采用一系列传热和传质同时进行的设备和两个以上的脱甲烷塔,该法有很高的乙烯回收率,但能耗和设备投资不一定低。
发明专利ZL92100471.0即双塔前脱乙烷流程的能耗较低,但乙烯回收率低于发明专利90101957.7,
本发明的目的是提高乙烯回收率、降低脱甲烷塔的负荷以及降低能耗。
本发明是一种节能、乙烯回收率高和脱甲烷塔负荷小的轻烃分离方法,流程是进料经过压缩、冷却和脱除水份后,进一步冷却和闪蒸,得到气体和液体分别进入高压脱乙烷塔,进行碳二馏份的非清晰切割,高压脱乙烷塔底部产物去低压脱乙烷塔进行碳二和碳三馏份的分离。高压脱乙烷塔塔顶产物经过逐级冷却和闪蒸得到一股以上的液体作为脱甲烷塔的进料。气体进一步冷却后进入一吸收塔,用液相甲烷去吸收进口气体中的乙烯,吸收塔出口液体返回脱甲烷塔作为上部进料,脱甲烷塔釜液不含碳三馏份,去乙炔加氢反应器或乙烯精馏塔。低压脱乙烷塔的顶部出料在脱除乙炔后去乙烯精馏塔,作为该塔的第二股进料,釜液去脱碳三系统。流程的特征是在脱甲烷塔的上游有以甲烷为吸收剂的吸收塔或者是在脱甲烷塔的上游有塔顶出料只含部分碳二馏份的高压脱乙烷塔和以甲烷为吸收剂的吸收塔。甲烷吸收剂的温度在-120℃~-145℃范围,较适宜的温度是-130℃~-140℃。
当脱甲烷塔在高压下操作时,本发明的工艺流程见图二。轻烃经过压缩机C101、干燥器进料冷却器E101、干燥器V101和干燥器后冷却器冷却至2℃~-25℃,进气液分离器分离成气相和液相。气液分离器可以是一级,如图所示的F101,也可以在冷却过程中进行几级分离,得到一股以上的液相。液相至高压脱乙烷塔D102,气相进一步冷却至-30℃~-37℃后进入D102,在D102进行碳二馏分的非清晰切割。塔顶产物是进料中的全部甲烷、氢和30%~70%的碳二馏分,塔底产物是其余的碳二馏分及更重组分。D102塔顶产物经过D101中沸器E112和换热器E103~E106冷却和部分冷凝,在F102和F103闪蒸得到两股液体进入脱甲烷塔作为进料。F103出口的气体经E107冷却至-105℃~-121℃之间进入吸收塔D103,用来自脱甲烷塔,冷却至温度为-130℃~-140℃之间的液相甲烷作为吸收剂,也可用其他来源的液相甲烷作为吸收剂把F103出口气体中的乙烯吸收下来。吸收率由进入吸收塔的气液相温度和液相数量决定,可达到99.5%左右,从D103底部出口的吸收剂作为脱甲烷塔的第一股进料进入脱甲烷塔的上部,脱甲烷塔(D101)塔底釜液不含碳三馏份,进入乙炔加氢反应器(R101B)和乙烯精馏塔D105而得到乙烯和乙烷。当脱甲烷塔在低压,例如在0.5~1.5MPA范围内操作时,本发明的工艺流程和图二所示基本相同,差别主要在于热集成的方式不同。由于在高压脱乙烷塔脱除了部分碳二馏分和全部碳三以上的重组分,使脱甲烷塔提馏段的负荷下降,所需的上升蒸汽量减少。利用这一条件,可以优化脱甲烷塔进料的热状态(q值),即降低进料的液化率,采用把脱甲烷塔的液相进料经减压闪蒸后去冷却脱甲烷塔进料的方法,使原来在脱甲烷塔再沸器回收的等级较低的冷量提高至等级较高的冷量,从而降低了能耗,图六表示了这样一种热集成方式。当脱甲烷塔的压力为0.6MPA时,这种换热措施是把-62℃左右等级的冷量提高至最高等级的乙烯冷量,例如-101℃等级的冷量和-135℃的冷量;当脱甲烷塔的压力为1.5MPA时,是把-33℃左右等级的冷量提高至最高等级的乙烯冷量和-117℃左右的冷量。图六的流程是将本发明应用于脱甲烷塔的操作压力为0.6MPA时的情况。高压脱乙烷塔D102的塔顶产物经过脱甲烷塔D101的再沸器E111、冷却器E116。脱甲烷塔的中间再沸器E112和冷却器E117后进入气液分离器F102,F102出口液体经减压闪蒸后降低了温度,和F102出口的部分气体在E121中进行换热后进入脱甲烷塔。更好的选择是将F102出口的液体一分为二,部分液体直接进入脱甲烷塔,部分液体与F102出口的部分气体进行换热后再进入脱甲烷塔。未经换热的F102出口气体去E105换热后再与经过E121换热的气体混合,在E106中进一步冷却进入F103进行气液分离。F103出口的液体在减压后与部分F103出口气体在E122中进行换热后去脱甲烷塔。
本发明根据A点控制乙烯损失和降低D101精馏段负荷的要求,决定D103进口气体的温度。如需进一步降低D103进口气体的温度,可将D103出口液体经换热后再去脱甲烷塔作为进料。脱甲烷塔在低压下操作时塔顶温度低于-101℃,因而不能直接用乙烯冷媒去冷却塔顶气体,需要将塔顶气体压缩和/或与低温冷介质换热,使塔顶气体冷却产生冷凝液。冷凝液一部分作为回流;一部分去甲烷吸收塔D103。D103出口液体返回D101作为第一股进料。脱甲烷塔的釜液经乙炔加氢反应器脱除乙炔后去乙烯精馏塔。
当进料已经加压至3MPa左右并已脱除乙炔时,例如进料来自乙烯装置的前脱丙烷塔的塔顶时,则进料不必经过压缩(C101)和脱水(V101),直接去E101冷却后进入高压脱乙烷塔,且脱甲烷塔的釜液不经过乙炔加氢反应器直接去乙烯精馏塔。
本发明所达到的效果:
一、提高了乙烯回收率
1.极大地降低了A点的乙烯损失
由于吸收塔D103有多个平衡分离罐和吸收剂,在D103出口气体温度较流程一或其他相似流程的F104出口温度高的情况下,本发明的乙烯损失较一个平衡分离级的F104出口A点的乙烯损失降低70%以上。
2.消除了其他流程中C点的乙烯损失
流程一或其他相似流程自脱甲烷塔抽出的液相甲烷作为冷剂使用,汽化后排出系统,其中所含乙烯全部损失。本发明抽出的液体甲烷作为吸收剂使用,经吸收塔后返回脱甲烷塔,因此,不论抽出多少液相甲烷和其乙烯浓度,其中所含的乙烯并不损失。
因此本发明脱甲烷系统的乙烯损失可降低四分之三左右。
二、降低了脱甲烷塔的负荷
由于甲烷吸收塔D103的出口温度较流程一的F104高,在进料组成和压力都相同的条件下出口气体中的甲烷量较流程一高,因此减少了进入脱甲烷塔的甲烷量,减少的比例和吸收塔的工艺参数有关,其中最重要的参数是D103的进口气体温度,进料甲烷量降低的比例可达30~50%。当甲烷吸收塔不和前文所述的高压脱乙烷塔相结合时,如下文实施例所述的流程器三和流程四,减少进脱甲烷塔的甲烷量并不能降低脱甲烷塔的负荷至有意义的程度,即脱甲烷塔的气液相流量和冷凝器、再沸器的负荷不能较大幅度降低(见下文表四所列数据),这是因为进塔的碳三馏份和/或部分碳二馏份未被切除,釜液脱除轻组分所需塔釜上升蒸汽量的要求和流程1基本相同,因此塔顶冷凝器的负荷取决于全塔的热量平衡,即使塔顶甲烷出料量减少,仍然不能降低冷凝器的热负荷。
本发明的脱甲烷塔的进料只有甲烷和部分碳二馏份,此时提馏段脱除釜液中轻组分甲烷所需的上升蒸汽量较流程一下降,对于高压脱甲烷塔,下降了40%左右;而对于低压脱甲烷塔,则下降了60%左右,此时,无论是高压脱甲烷或低压脱甲烷,全塔热平衡已不是冷凝器负荷的控制因素,塔顶甲烷出料量减少,精馏段所需的回流量就减少,即精馏段的气液相负荷和冷凝器负荷也减少,因此本发明的脱甲烷塔的全塔负荷下降。
三、降低了能量消耗
如前文所述,流程一及其相似流程要降低乙烯损失必须增加能量消耗,但是本发明在提高乙烯收率的同时非但不增加能耗,反而降低了能耗,原因是:
1.本发明降低乙烯损失的措施是采用吸收塔D103,用甲烷去吸收出口气体中的乙烯,抽出脱甲烷塔塔顶的液相甲烷作为吸收剂并不增加脱甲烷塔冷凝器的负荷,理由有两点:第一,抽出的液相甲烷返回脱甲烷塔作为第一股进料,其作用相当于回流,吸收剂量增加则所需的回流量减少。第二是D103进口气体温度较流程一及其相似流程的F104进口气体温度高,E107的热负荷降低,因而减少或取消了E107对液相甲烷的需求量。综合这两点理由,使脱甲烷塔冷凝器的负荷并不比流程一及其相似流程增加。
2.由于前文二、降低了脱甲烷塔的负荷这一节所述的理由,本发明的脱甲烷塔的冷凝器负荷低于其他流程。
3.本发明的乙烯精馏塔有两股组成不相同的进料,较单股进料的乙烯精馏塔节能。碳二馏分中乙烯的浓度愈低,节能的效果愈显著,乙烯精馏塔的冷凝器负荷从单股进料改为双股进料后可降低4~10%。若扩建时再增加板数,双股进料的优越性更为显著。
因此在其他部份流程能耗相同的情况下本发明的能耗低于其他流程。
附图及其说明
图一是轻烃分离流程一草图
图二是本发明应用于高压脱甲烷系统的工艺流程(流程二)草图
图三是轻烃分离流程三草图
图四是轻烃分离流程四草图
图五是轻烃分离流程五草图
图六是本发明应用于低压脱甲烷系统的工艺流程(流程六)草图设备名称说明C101        进料压缩机      C102        甲烷压缩机D101        脱甲烷塔        D102        高压脱乙烷塔D103        甲烷吸收塔      D104        低压脱乙烷塔D105        乙烯塔          E101        干燥器进料冷却器E102        干燥器后冷却器  E103~E107  脱甲烷塔进料冷却器E109        甲烷氢冷却器    E110        脱甲烷塔冷凝器E111        脱甲烷塔再沸器  E112        脱甲烷塔中沸器E115        D102回流冷却器  E116~E117  乙烯冷媒冷却器E120        甲烷冷却器      E121~E122  换热器F102~F105  气液分离器      P101        脱甲烷塔回流泵P102        D102回流升压塔  R101        乙炔加氢反应器V101        干燥器          (R101A~R101B)
物料代号说明C3          碳三以上馏分    E4          乙烯E6          乙烷            F           进料H2         氢气            LP          低压甲烷MP          中压甲烷
实施例
某45万吨/年乙烯装置,拟扩建至60万吨/年,现以相同的设计基准,用流程模拟件严格计算几种不同的流程方案,比较这些方案的能量消耗、乙烯损失和几个主要精馏塔的负荷。脱甲烷塔的操作压力为3.1MPA,脱甲烷塔中沸器和乙烯塔中沸器的负荷是根据热集成的需要决定的。
几种不同的流程方案是:
1.方案一:前文图一所表示的流程一
2.方案二:前文图二所表示的流程二,即本发明
3.方案三:前脱乙烷和前加氢流程,见图三
流程三和流程二的差别主要在于流程三的D102塔顶产物包含了全部碳二馏份,而流程二仅包含了50%左右的碳二馏份,由此引起的差异是:
流程三的D102塔顶温度高于流程二,在适当提高塔顶产物丙烯含量的前提下可以用等级较低的丙烯冷媒提供的冷量,因此省去了流程二的D102所需的乙烯冷量,用D104塔顶的冷凝液经过最高等级的丙烯冷媒冷却后送至D102,即D104的冷凝器同时提供D102和D104的回流。
D102的塔顶产物基本上脱除了碳三馏分,因此在其进入脱甲烷进料冷却系统冷却时,碳二馏分的冷凝全部需要由乙烯冷媒提供冷量,由于流程三进入脱甲烷系统的碳二馏分量较流程二几乎增加一倍,故所需的乙烯冷量也近似增加一倍。因此,即使D102本身不需要乙烯提供的冷量,乙烯冷冻机的功率仍大于流程二。
脱甲烷塔的负荷流程二小于流程三。
流程二的乙烯塔有两股组成不同的进料,而流程三只有一股进料,因此前者的乙烯塔负荷低于后者。
此外,流程二和流程三的乙炔加氢反应器所在位置和脱甲烷塔中沸器的热集成方式也不同。
4.方案四:见图四所表示的流程四
流程四是将流程一作局部修改,采用流程二中的甲烷吸收塔D103,即将E107的出口气体送至D103,用来自D301回流罐的液相甲烷吸收其中的乙烯,其余和流程一相同。
5.方案五:见图五所表示的流程五
该流程即为ZL92100471.0所述的双塔前脱乙烷流程、与流程一的差别仅在于增加了高压前脱乙烷塔D102,
上述五种方案的计算结果见表一至表四。
由表一至表四所列数据可以得出下列结论:
1.流程二和流程三都为双塔前脱乙烷流程,但两者相比较,流程二的三机功率低3643kw,丙烯压缩机的冷凝器负荷,即冷却水的消耗减少了19.4·106kj/h。
2.流程四与流程一相比较,乙烯损失降低了1064T/Y,反映了甲烷吸收塔在流程四中提高乙烯回收率的作用。
3.流程五与流程一相比较,三机功率降低了1611kw,反映了塔顶出料只含部分碳二馏分的高压前脱乙烷在流程五中的节能作用。
4.流程二与流程一相比较,不仅三机功率降低了2000kw,大于流程五与流程一的差值,乙烯损失降低了1106T/Y,大于流程四与流程一的差值,而且脱甲烷塔的气相负荷下降了35~40%,液相负荷下降了33~55%。这一优点对新建装置而言是降低了深冷脱甲烷系统的投资,而对乙烯装置的扩建而言,不仅是降低了投资,还具有减少已有设备的改造工作量,缩短停工周期等显著优点。
5.由表一的D104釜液数据可知,流程三的丙烯回收率最低,和其它流程相比,丙烯产量减少了约2000T/Y,这是因为D102的塔顶温度较高所致。
当脱甲烷塔的操作压力在0.6~1.5MPa时,各流程之间的乙烯回收率和能耗的差值略有变化,但不改变相对大小,不改变流程二是其中同时具备乙烯回收率高,能耗低,深冷系统投资省三种优点的流程的结论。
      表一物料组成Kmol/h
进料                               D104釜液
流程一 流程二 流程三 流程四 流程五
H2    1225.29
CO    16.24
CH4    1982.43
C2H2    34.04
C2H4    2713.31
C2H6    723.40    0.22     0.22     0.55    0.22    0.22
C3H4    34.02    34.02     34.02     34.00    34.05    34.02
C3H6    850.82    846.24     846.27     840.24    846.24    846.27
C3H8    25.20    25.18     25.19     25.10    25.18    25.19
C4H6    76.86    76.86     76.86     76.86    76.86    76.86
C4H8    94.86    94.86     94.86     94.86    94.86    94.86
C4H10    2.48    2.48     2.48     2.48    2.48    2.48
C5H12    13.38    13.38     13.38     13.38    13.38    13.38
C6H6    8.22    8.22     8.22     8.22    8.22    8.22
合计    7800.56    1101.44     1101.50     1095.69    1101.44    1101.50
                 表二乙烯损失Kmol/h
   流程一    流程二    流程三    流程四    流程五
A点    3.5551    0.5893    0.2924    0.4371    3.2230
B点    1.3517    0.6966    1.2992    1.1766    1.0689
C点    1.4470       0      0      0    2.4369
总损失    6.3538    1.2857    1.5916    1.6137    6.7288
总损失差值
Kmolh    基准    -5.0681    -4.7622    -4.740    0.375
T/Y    基准    -1137    -1069    -1064     84
             表三能耗比较
  流程一   流程二   流程三   流程四   流程五
乙烯压缩机KW/h   3923   3959   5278   3910   4076
丙烯压缩机KW/h   24325   22485   24751   24330   22416
低压甲烷压缩机KW/h   746   550   508   499   891
三机总功率KW/h   28994   26994   30757   28739   27383
三机总功率差值KW/h   基准   -2000   1543   -255   -1611
丙烯冷凝器负荷106KJ/h   231.26   214.62   234.01   231.57   214.52
   负荷差值106KJ/h   基准   -16.64   2.75   -0.31   -16.74
           表四精馏塔负荷比较
    流程一     流程二     流程三     流程四     流程五
脱甲烷塔D101
塔顶气相V2 Kmol/h     3119     2055     3020     3042     2619
塔顶液相L2 Kmol/h     1467     1010     1557     1713     1021
塔底气相Vn-1 Kmol/h     2896     1730     3509     2856     1730
塔底液相Ln-1 Kmol/h     7394     3223     6995     7357     3221
冷凝器负荷Qd106KJ/h     8.152     6.218     7.939     8.613     7.084
低压脱乙烷塔D104
塔顶气相V2 Kmol/h     6195     4133     3474     6196     4133
塔顶液相L2 Kmol/h     2379     2166     1941     2739     2167
塔底气相Vn-1 Kmol/h     3276     2398     2772     3272     2398
塔底液相Ln-1 Kmol/h     4302     3448     3804     4297     3448
冷凝器负荷Qd106KJ/h     20.290     14.893     29.832     20.294     14.893
乙烯塔D105
塔顶气相V2 Kmol/h     12817     11979     12344     12822     11957
塔顶液相L2 Kmol/h     13054     12196     12544     13058     12176
塔底气相Vn-1 Kmolh     5551     5684     5505     5554     5672
塔底液相Ln-1 Kmol/h     6316     6449     6270     6318     6437
冷凝器负荷Qd106KJ/h     119.31     111.35     116.33     119.35     111.17

Claims (3)

1、一种轻烃分离方法,工艺流程是轻烃经过压缩、冷却后进入气液分离罐(F101、F102、F103)进行气液分离,液体产物进入脱甲烷塔(D101)作为进料;气液分离罐(F103)顶部出口的气体经过进一步冷却后进入甲烷吸收塔(D103),用液相甲烷作为吸收剂,把气液分离罐(F103)出口气体中的乙烯吸收下来,甲烷吸收塔(D103)底部出口液体返回脱甲烷塔(D101)作为上部进料,脱甲烷塔(D101)塔底釜液去乙炔加氢反应器(R101)和/或乙烯精馏塔(D105)而得到乙烯和乙烷,流程的特征是:在脱甲烷塔的上游有以温度为-120℃~-145℃的甲烷为吸收剂的吸收塔。
2、根据权利要求1所述的轻烃分离方法,工艺流程是轻烃经过压缩、冷却后进入气液分离罐(F101)进行气液分离,气液分离罐(F101)出口物料在进入脱甲烷塔(D101)之前,先进入高压脱乙烷塔(D102)进行碳二馏份的非清晰分割,高压脱乙烷塔(D102)底部产物去低压脱乙烷塔(D104),进行碳二和碳三馏份的分离,高压脱乙烷塔(D102)顶部产物经过逐级冷却和闪蒸,得到的液体进入脱甲烷塔(D101)作为进料,其特征在于在脱甲烷塔的上游有塔顶出料只含部分碳二馏份的高压脱乙烷塔。
3、根据权利要求1所述的轻烃分离方法,其特征在于甲烷吸收剂较好的温度范围为-130℃~-140℃。
CN96120253A 1996-10-29 1996-10-29 提高乙烯回收率的轻烃分离方法 Expired - Lifetime CN1048713C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96120253A CN1048713C (zh) 1996-10-29 1996-10-29 提高乙烯回收率的轻烃分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96120253A CN1048713C (zh) 1996-10-29 1996-10-29 提高乙烯回收率的轻烃分离方法

Publications (2)

Publication Number Publication Date
CN1157280A CN1157280A (zh) 1997-08-20
CN1048713C true CN1048713C (zh) 2000-01-26

Family

ID=5126222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96120253A Expired - Lifetime CN1048713C (zh) 1996-10-29 1996-10-29 提高乙烯回收率的轻烃分离方法

Country Status (1)

Country Link
CN (1) CN1048713C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306973B (zh) * 2007-05-16 2011-09-21 中国石油化工股份有限公司 乙醇脱水制乙烯工艺中回收乙烯的方法
CN103127802A (zh) * 2011-11-28 2013-06-05 中国石油天然气股份有限公司 一种尾气中乙烯的深冷回收系统及回收方法
CN101967077B (zh) * 2009-07-27 2013-10-16 中国石油天然气股份有限公司 乙烯装置前脱乙烷分离工艺方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101353286B (zh) * 2007-07-25 2011-12-07 惠生工程(中国)有限公司 一种含轻质气体的非深冷低碳烃分离方法
NZ581491A (en) 2007-07-27 2011-03-31 China Mto Ltd A separating method of cracked methanol gas to prepare polymer grade low carbon olefin
CN102267850B (zh) * 2010-06-02 2014-03-26 中国石油化工集团公司 一种低碳烯烃气体的分离方法
CN102372559B (zh) * 2010-08-23 2014-03-26 中国石油化工股份有限公司 乙烯分离方法
CN102115355B (zh) * 2010-12-27 2013-07-31 东华工程科技股份有限公司 一种低碳烯烃的分离方法
CN102675019B (zh) * 2011-03-07 2014-07-16 中国石油化工股份有限公司 甲醇转化制取低碳烯烃气体的分离工艺
CN102675025B (zh) * 2011-03-07 2014-06-18 中国石油化工股份有限公司 甲醇转化制取低碳烯烃气体的分离方法
CN102675024B (zh) * 2011-03-07 2014-06-18 中国石油化工股份有限公司 一种甲醇转化制取低碳烯烃气体的分离工艺
CN102500119B (zh) * 2011-09-22 2013-09-11 天津大学 乙烯分离的内部能量集成无压缩回流装置及流程
CN110734355B (zh) * 2018-07-18 2022-11-15 中国石化工程建设有限公司 一种节能稳定型的乙烯加氢分离工艺及装置
CN111895723B (zh) * 2019-05-06 2022-06-21 中国石化工程建设有限公司 一种丙烷脱氢制丙烯反应生成气的分离装置及分离方法
CN114165986B (zh) * 2021-11-25 2022-08-16 北京恒泰洁能科技有限公司 一种干燥脱炔裂解气深冷分离方法
CN114805007A (zh) * 2022-05-11 2022-07-29 苏州金宏气体股份有限公司 一种高纯乙烯制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039576A (zh) * 1988-01-28 1990-02-14 林德股份公司 分离烃类的工艺和设备
CN1046729A (zh) * 1989-04-05 1990-11-07 美孚公司 气体混合物的低温分离
CN1063051A (zh) * 1992-01-29 1992-07-29 华东化工学院 轻烃分离节能流程

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039576A (zh) * 1988-01-28 1990-02-14 林德股份公司 分离烃类的工艺和设备
CN1046729A (zh) * 1989-04-05 1990-11-07 美孚公司 气体混合物的低温分离
CN1063051A (zh) * 1992-01-29 1992-07-29 华东化工学院 轻烃分离节能流程

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306973B (zh) * 2007-05-16 2011-09-21 中国石油化工股份有限公司 乙醇脱水制乙烯工艺中回收乙烯的方法
CN101967077B (zh) * 2009-07-27 2013-10-16 中国石油天然气股份有限公司 乙烯装置前脱乙烷分离工艺方法
CN103127802A (zh) * 2011-11-28 2013-06-05 中国石油天然气股份有限公司 一种尾气中乙烯的深冷回收系统及回收方法
CN103127802B (zh) * 2011-11-28 2014-11-26 中国石油天然气股份有限公司 一种尾气中乙烯的深冷回收系统及回收方法

Also Published As

Publication number Publication date
CN1157280A (zh) 1997-08-20

Similar Documents

Publication Publication Date Title
CN1048713C (zh) 提高乙烯回收率的轻烃分离方法
CN1096440C (zh) 从裂化气中回收烯烃的改进型化学吸收方法
CN1277095C (zh) 液化天然气生产过程中的集成高压天然气液体回收方法
CN1186582C (zh) 回收c 烃的氮制冷方法
CN101558276B (zh) 整合的烯烃回收过程
CN101445419B (zh) 精馏与溶剂吸收相结合的含轻质气体低碳烃的分离方法
CN102382680B (zh) 一种催化裂化吸收稳定系统和碳三中冷油吸收的组合工艺
CN104792117B (zh) 一种烯烃聚合物生产中排放气回收的装置及方法
CN1019105B (zh) 烃类气体分离过程
CN103159581B (zh) 一种吸收分离催化裂解产品气制聚合级丙烯的系统及方法
CN101602959B (zh) 催化裂化装置下游分离系统提高液化气收率的方法
CN105783421B (zh) 一种天然气轻烃回收的方法及装置
AU1615799A (en) Enhanced ngl recovery processes
RU2014343C1 (ru) Способ выделения жидких углеводородов и установка для его осуществления
JPH08311460A (ja) クラッキング炉流出物からオレフィンを分離回収するハイブリッド凝縮・吸収法
CN1234787A (zh) 烃气体的处理
CN1134748A (zh) 深冷分离
CN1195717C (zh) 从含有烃类的混合气中分离回收乙烯、乙烷、丙烯和氢气的方法
CN108610229B (zh) 一种轻烃分离系统及方法
CN103449950B (zh) 用贫液效应在脱甲烷过程中回收尾气中乙烯的方法及系统
CN1946979A (zh) 天然气液化
CN1131410C (zh) 生产一氧化碳和氢气的方法和设备
CN100422675C (zh) 一种改进的轻烃深冷分离方法
CN206276186U (zh) 一种聚烯烃尾气回收系统
CN111320524A (zh) 一种从裂解气和/或干气中分离乙烯和丙烯的方法及装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20000126

EXPY Termination of patent right or utility model
DD01 Delivery of document by public notice
DD01 Delivery of document by public notice

Addressee: East China University of Science and Technology

Document name: Notification of Expiration of Patent Right Duration