CN104867868A - Method of transversely growing nanonet circuit without catalyst - Google Patents
Method of transversely growing nanonet circuit without catalyst Download PDFInfo
- Publication number
- CN104867868A CN104867868A CN201510291933.5A CN201510291933A CN104867868A CN 104867868 A CN104867868 A CN 104867868A CN 201510291933 A CN201510291933 A CN 201510291933A CN 104867868 A CN104867868 A CN 104867868A
- Authority
- CN
- China
- Prior art keywords
- silicon
- nanowire network
- catalyst
- nano
- silicon substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000003054 catalyst Substances 0.000 title claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 46
- 239000010703 silicon Substances 0.000 claims abstract description 46
- 239000002070 nanowire Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 230000000737 periodic effect Effects 0.000 claims abstract description 22
- 239000000376 reactant Substances 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 21
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 17
- 239000002061 nanopillar Substances 0.000 claims abstract description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000012159 carrier gas Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002106 nanomesh Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Silicon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Catalysts (AREA)
Abstract
本发明提供一种无催化剂横向生长纳米线网电路的方法,应用于半导体领域,所述方法包括:1)提供一表面制备有周期性纳米硅柱的硅衬底和供盛放化学反应物的舟;2)将所述硅衬底制备有周期性纳米硅柱的一面朝向盛有化学反应物的舟进行放置;3)采用高温化学气相沉积方法于各纳米硅柱侧面棱角处制备出横向生长的氧化锌纳米线网。本发明将表面制备有周期纳米柱的硅电极衬底生长面向下放置在盛有化学反应物的舟上放置,进而能控制横向生长纳米线网形成纳米网桥接电路,不需要镀金膜作为催化剂,节省工序降低成本。
The invention provides a catalyst-free method for laterally growing nanowire network circuits, which is applied in the field of semiconductors. The method includes: 1) providing a silicon substrate with periodic nano-silicon pillars prepared on the surface and a container for containing chemical reactants 2) Place the side of the silicon substrate prepared with periodic nano-silicon pillars facing the boat containing the chemical reactants; 3) Use high-temperature chemical vapor deposition to prepare lateral growth at the corners of the sides of each nano-silicon pillar. ZnO nanowire network. In the present invention, the growth surface of the silicon electrode substrate with periodic nanopillars prepared on the surface is placed downward on a boat filled with chemical reactants, and then the laterally grown nanowire network can be controlled to form a nanonet bridging circuit without the need for a gold-plated film as a catalyst. Save process and reduce cost.
Description
技术领域technical field
本发明涉及一种,特别是涉及一种无催化剂横向生长纳米线网电路的方法。The invention relates to a method, in particular to a catalyst-free method for laterally growing nanowire network circuits.
背景技术Background technique
科学研究表明,纳米线网可以提高半导体材料的比表面积和电学性能,故对于如何制备纳米线网的研究也在不断地研究。现有的关于制备纳米线网的技术主要有两种:Scientific research shows that nanowire nets can improve the specific surface area and electrical properties of semiconductor materials, so the research on how to prepare nanowire nets is also constantly being studied. There are two main types of existing technologies for preparing nanowire networks:
其一,在已经公开的文献1中(具体见文末),揭示了一种利用后处理的方法制备横向单臂碳纳米管网(Carbon nanotube nanonets)电路的方法,可以参见图1,该方法是将纳米管分布在二氧化硅的硅衬底表面,然后利用紫外曝光光刻的方法镀金属膜作为栅极、漏极、门电极的技术方法,制备基于碳纳米管网的三极管电子器件。First, in the published document 1 (see the end of the article for details), a method for preparing a horizontal single-arm carbon nanotube network (Carbon nanotube nanonets) circuit using a post-processing method is disclosed, as can be seen in Figure 1. The method is Distribute the nanotubes on the surface of the silicon substrate of silicon dioxide, and then use the method of ultraviolet exposure photolithography to coat the metal film as the technical method of the grid, drain and gate electrodes to prepare the triode electronic device based on the carbon nanotube network.
上述方法虽然可制得纳米线网,但其存在一定的缺陷。上述现有技术一的缺点在于:在制备工艺中需要在纳米线表面甩胶、紫外曝光等光刻工艺,工艺复杂,处理的多步工艺,两栅极和漏极电极之间所包含的纳米线的密度很难控制,无法保证每次制备的纳米网电子器件所包含的纳米网线的均一性。Although the above method can be used to prepare nanowire nets, it has certain defects. The disadvantage of the above-mentioned prior art 1 is that in the preparation process, photolithography processes such as glue removal and ultraviolet exposure on the surface of the nanowires are required. The density of the wires is difficult to control, and the uniformity of the nano-net wires contained in each prepared nano-net electronic device cannot be guaranteed.
其二,在已经公开的相关技术文献(2)中,公开了一种利用静电纺丝(electro-netting)的方法制备了类肥皂泡状的聚丙烯酸纳米网(polyacrylic acid nano-nets),其具有巨大的比表面积。Second, in the published related technical literature (2), it is disclosed that a soap-like polyacrylic acid nano-nets (polyacrylic acid nano-nets) prepared by electrospinning (electro-netting) is used. Has a huge specific surface area.
上述方法二中所制得的纳米线网虽然具有较大的比表面积,但是在制备工艺中需要添加各种各种添加剂,而且还需要各种酸碱化学环境,从而不利于硅基纳电子器件的应用。Although the nanowire network prepared in the above method 2 has a large specific surface area, various additives need to be added in the preparation process, and various acid-base chemical environments are also required, which is not conducive to the development of silicon-based nanoelectronic devices. Applications.
综上所述,经由现有技术所制备的纳米线网,不仅在制备工艺上较为复杂,步骤繁多,需要各种添加剂,并且在制作过程中对于纳米网线的密度以及最后的均一性都不好控制。因此,很有必要对此进行改进。To sum up, the nanowire network prepared by the existing technology is not only complicated in the preparation process, but also requires various additives, and the density and final uniformity of the nanowire network are not good during the production process. control. Therefore, it is necessary to improve this.
附:现有公开文献:Attachment: Existing public documents:
文献1,[Ninad Pimparkar and Muhammad Ashraful Alam,IEEE ELECTRON DEVICELETTERS,VOL.29,NO.9,1036-1039,2008];Document 1, [Ninad Pimparkar and Muhammad Ashraful Alam, IEEE ELECTRON DEVICELETTERS, VOL.29, NO.9, 1036-1039, 2008];
文献2,[Shangbin Yang et al,Nanoscale,2011,3,564–568]。Literature 2, [Shangbin Yang et al, Nanoscale, 2011, 3, 564–568].
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种无催化剂横向生长纳米线网电路的方法,用于解决现有技术所制备的纳米线网,不仅在制备工艺上较为复杂,步骤繁多,需要各种添加剂,并且在制作过程中对于纳米网线的密度以及最后的均一性都不好控制的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a method for laterally growing nanowire network circuits without a catalyst, which is used to solve the problem that the nanowire network prepared in the prior art is not only complicated in the preparation process, but also There are many steps, various additives are required, and it is difficult to control the density and final uniformity of the nanowires during the production process.
为实现上述目的及其他相关目的,本发明提供以下解决方案:In order to achieve the above object and other related objects, the present invention provides the following solutions:
一种无催化剂横向生长纳米线网电路的方法,所述方法包括:1)提供一表面制备有周期性纳米硅柱的硅衬底和供盛放化学反应物的舟;2)将所述硅衬底制备有周期性纳米硅柱的一面朝向盛有化学反应物的舟进行放置;3)采用高温化学气相沉积方法于各纳米硅柱侧面棱角处制备出横向生长的氧化锌纳米线网。A method for laterally growing nanowire network circuits without a catalyst, the method comprising: 1) providing a silicon substrate with periodic nano-silicon pillars on the surface and a boat for containing chemical reactants; 2) placing the silicon The side of the substrate prepared with periodic nano-silicon pillars is placed facing the boat containing the chemical reactants; 3) using a high-temperature chemical vapor deposition method to prepare laterally grown zinc oxide nanowire networks at the corners of the sides of each nano-silicon pillar.
作为上述无催化剂横向生长纳米线网电路的方法的优选方式,所述方法中的步骤3)具体包括:3-1)将盛有化学反应物的舟以及放置于其上的硅衬底一同放入一高温管式真空炉中;3-2)维持所述高温管式真空炉为真空并将其中的真空管加热至900-1000℃;3-3)通入100-150sccm惰性载流气体和1-2sccm氧气,并控制压强至300mbar;3-4)保持生长时间为30-35分钟,然后让所述高温管式真空炉自然降温,以在硅衬底的纳米柱侧面棱角处制备出横向生长的氧化锌纳米线网。As a preferred mode of the above-mentioned method for laterally growing nanowire network circuits without a catalyst, step 3) in the method specifically includes: 3-1) placing the boat containing the chemical reactants and the silicon substrate placed thereon together 3-2) maintain the high temperature tube vacuum furnace as a vacuum and heat the vacuum tube therein to 900-1000°C; 3-3) feed 100-150sccm inert carrier gas and 1 -2sccm oxygen, and control the pressure to 300mbar; 3-4) keep the growth time for 30-35 minutes, then let the high-temperature tubular vacuum furnace cool down naturally, to prepare lateral growth at the corners of the nano-column side of the silicon substrate ZnO nanowire network.
作为优选方案的进一步优化,所述惰性载流气体为氮气或氩气。As a further optimization of the preferred solution, the inert carrier gas is nitrogen or argon.
作为优选方案的进一步优化,所述惰性载流气体和氧气的体积流量比为100:1.5。As a further optimization of the preferred solution, the volume flow ratio of the inert carrier gas and oxygen is 100:1.5.
作为上述无催化剂横向生长纳米线网电路的方法及其优选方案的进一步优化,所述化学反应物为氧化锌粉和石墨粉。As a further optimization of the above catalyst-free method for laterally growing nanowire network circuits and its preferred solution, the chemical reactants are zinc oxide powder and graphite powder.
作为上述无催化剂横向生长纳米线网电路的方法的优选方式,所述周期性纳米硅柱为蚀刻成形于所述硅衬底上的多个多边形硅柱。As a preferred method of the catalyst-free method for laterally growing nanowire network circuits, the periodic nano-silicon pillars are a plurality of polygonal silicon pillars etched and formed on the silicon substrate.
作为优选方案的进一步优化,每个所述多边形硅柱的高度为500-800μm,且所述多个多边形硅柱相互间的间距范围为50-200μm。As a further optimization of the preferred solution, the height of each of the polygonal silicon pillars is 500-800 μm, and the distance between the plurality of polygonal silicon pillars is in the range of 50-200 μm.
如上所述,本发明的具有以下有益效果:本发明将表面制备有周期纳米柱的硅电极衬底生长面向下放置在盛有化学反应物的舟上放置,进而能控制横向生长纳米线网形成纳米网桥接电路,不需要镀金膜作为催化剂,节省工序降低成本。As mentioned above, the present invention has the following beneficial effects: the present invention places the growth surface of the silicon electrode substrate with periodic nanocolumns on the boat containing the chemical reactant downwards, and then can control the formation of lateral growth nanowire network The nano-network bridging circuit does not require a gold-plated film as a catalyst, which saves the process and reduces the cost.
附图说明Description of drawings
图1显示为本利用后处理的方法制备横向单臂碳纳米管网电路的效果图。Figure 1 shows the effect diagram of the horizontal single-arm carbon nanotube network circuit prepared by the post-processing method.
图2显示为本发明提供的一种无催化剂横向生长纳米线网电路的方法的实现流程图。Fig. 2 is a flow chart showing a method for laterally growing a nanowire network circuit without a catalyst provided by the present invention.
图3显示为上述图1步骤S50中的具体实施方式流程图。FIG. 3 is a flow chart of a specific embodiment of step S50 in FIG. 1 above.
附图标号说明Explanation of reference numbers
S10-S50 方法步骤S10-S50 method steps
S501-S507 方法步骤S501-S507 Method steps
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that, in the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in the following embodiments are only schematically illustrating the basic ideas of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
先具体提供有关本发明所提供的无催化剂横向生长纳米线网电路的方法之前,发明人还提供了一种在硅电极上定位横向生长氧化锌纳米线的方法(请参见CN103966662A),该方法公开了一种能够在硅电极上单独制得横向生长的氧化锌纳米线的方法,发明人在其基础上,又经过实验和研究,再次提出了一种无催化剂横向生长纳米线网电路的方法,详细方案请参考以下实施例。Before specifically providing the catalyst-free method for laterally growing nanowire network circuits provided by the present invention, the inventor also provides a method for positioning and laterally growing zinc oxide nanowires on silicon electrodes (see CN103966662A), which discloses A method for independently producing zinc oxide nanowires grown laterally on a silicon electrode was developed. On the basis of the method, the inventors again proposed a method for laterally growing nanowire network circuits without catalysts through experiments and research. Please refer to the following examples for the detailed scheme.
实施例1Example 1
请参见图2,本发明提供的一种无催化剂横向生长纳米线网电路的方法,该方法至少包括以下步骤:Please refer to FIG. 2, a method for laterally growing a nanowire network circuit without a catalyst provided by the present invention, the method at least includes the following steps:
步骤S10,提供一表面制备有周期性纳米硅柱的硅衬底和供盛放化学反应物的舟;Step S10, providing a silicon substrate with periodic nano-silicon columns prepared on the surface and a boat for containing chemical reactants;
步骤S30,将所述硅衬底制备有周期性纳米硅柱的一面朝向盛有化学反应物的舟进行放置;Step S30, placing the side of the silicon substrate prepared with periodic nano-silicon columns facing the boat containing the chemical reactants;
步骤S50,采用高温化学气相沉积方法于各纳米硅柱侧面棱角处制备出横向生长的氧化锌纳米线网。Step S50 , using a high-temperature chemical vapor deposition method to prepare laterally grown zinc oxide nanowire networks at the corners of the sides of each nano-silicon pillar.
具体地,在上述步骤S10中,所提供硅衬底的一表面上制备有周期性纳米硅柱,该周期性纳米硅柱具体为在所述硅衬底上蚀刻而成的多个多边形硅柱,所述多边形硅柱既可以是规则的正方形柱体或长方形柱体,也可以是不规则的多边形柱体,例如梯形柱体、三角形柱体等。而且,同一硅衬底的端面上也可以包括多种不同的多边形硅柱,或者只包括多个一种多边形硅柱。也即是,只要所述周期性纳米柱具有棱角即可,而不在意其具体形状。Specifically, in the above step S10, periodic nano-silicon pillars are prepared on a surface of the provided silicon substrate, and the periodic nano-silicon pillars are specifically a plurality of polygonal silicon pillars etched on the silicon substrate , the polygonal silicon pillars can be regular square pillars or rectangular pillars, or irregular polygonal pillars, such as trapezoidal pillars, triangular pillars and the like. Moreover, the end face of the same silicon substrate may also include multiple different polygonal silicon pillars, or only include multiple polygonal silicon pillars. That is, as long as the periodic nanopillars have edges and corners, the specific shape thereof is not important.
更加详细地来说,虽然对于周期性纳米柱的形状有各种选择,但是所述周期性纳米柱中的每个多边形硅柱之间的间距范围是有一定限制,一般将间距防伪设计在50-200μm为俱佳。如果将间距设计的过窄那么所制备得到的纳米线效果并不理想,而且还需要更加严格或者规格更好的反应条件,那么不利于简单制备的条件;而如果间距过大,那么有可能将得不到的纳米网线,而且制备的时间也会相应的增加。In more detail, although there are various options for the shape of the periodic nanopillars, the range of spacing between each polygonal silicon pillar in the periodic nanopillars is limited, and the anti-counterfeiting design of the spacing is generally 50 -200μm is all good. If the spacing is too narrow, the effect of the prepared nanowires is not ideal, and more stringent or better reaction conditions are required, which is not conducive to the conditions for simple preparation; and if the spacing is too large, it may be The unobtainable nanometer network wire, and the preparation time will increase accordingly.
还有,每个所述多边形硅柱的高度一般为500-800μm俱佳,如果高度过高那么反应气体并不能有效地与周期性纳米柱接触反映,进而导致无法制得纳米网线;而如果是高度过低,那么也不利于反应气体流畅地通过,从而也无法制得较长的横向纳米线。Also, the height of each of the polygonal silicon pillars is generally 500-800 μm. If the height is too high, the reaction gas cannot effectively contact and reflect with the periodic nano-pillars, resulting in the inability to make nano-network wires; and if it is If the height is too low, it is not conducive to the smooth passage of the reaction gas, so that it is impossible to produce longer horizontal nanowires.
进一步地,在上述步骤S30中,将把表面制备有周期纳米柱的硅电极衬底生长面向下放置在盛有化学反应物的舟上,能控制横向生长纳米线网形成纳米网桥接电路,不需要镀金膜作为催化剂,节省工序降低成本。Further, in the above step S30, the growth side of the silicon electrode substrate prepared with periodic nanocolumns on the surface is placed downward on the boat containing the chemical reactants, which can control the lateral growth of the nanowire network to form a nanonet bridging circuit. A gold-plated film is required as a catalyst, which saves the process and reduces the cost.
更进一步地,请参见图3.,在所述步骤S50中,利用高温化学气相沉淀方法来制备氧化锌纳米线网的具体方法为:Further, please refer to Fig. 3., in said step S50, utilize the high temperature chemical vapor deposition method to prepare the specific method of zinc oxide nanowire network as follows:
步骤S501,将盛有化学反应物的舟以及放置于其上的硅衬底一同放入一高温管式真空炉中;Step S501, putting the boat containing the chemical reactants and the silicon substrate placed on it together into a high-temperature tube vacuum furnace;
步骤S503,维持所述高温管式真空炉为真空并将其中的真空管加热至900-1000℃,一般地,加热至950℃左右为俱佳;Step S503, maintaining the vacuum of the high-temperature tube-type vacuum furnace and heating the vacuum tube therein to 900-1000°C, generally, heating to about 950°C is better;
步骤S505,通入100-150sccm惰性载流气体和1-2sccm氧气,并控制压强至300mbar,一般地,可以采用氮气或者氩气等惰性气体作为所述载流气体;Step S505, injecting 100-150 sccm inert carrier gas and 1-2 sccm oxygen, and controlling the pressure to 300 mbar, generally, inert gas such as nitrogen or argon can be used as the carrier gas;
步骤S507,保持生长时间为30-35分钟,然后让所述高温管式真空炉自然降温,以在硅衬底的纳米柱侧面棱角处制备出横向生长的氧化锌纳米线网。In step S507, keep the growth time for 30-35 minutes, and then let the high-temperature tubular vacuum furnace cool down naturally, so as to prepare laterally grown zinc oxide nanowire network at the corners of the nanopillar sides of the silicon substrate.
本发明提供的上述实施例1中的方法,通过把没有镀金属催化剂的、刻有周期硅纳米柱的硅衬底面向化学反应物的舟上,在硅衬底纳米柱的侧面棱角处实现了横向生长纳米线网的目的,此种方法可利用纳米线网桥接多个硅电极制备真正意义上的纳米电路,并在刻蚀的硅微电极上进行纳米网电路的制备,为实现真正意义上的纳米网电路和纳电子器件提供了一个简洁的方法。The method in the above-mentioned embodiment 1 provided by the present invention is realized at the side corners of the silicon substrate nano-pillars by facing the silicon substrate of the periodic silicon nano-columns without the metal-plated catalyst on the boat of the chemical reactants. The purpose of growing nanowire network laterally, this method can use nanowire network to bridge multiple silicon electrodes to prepare nano-circuits in the true sense, and prepare nano-network circuits on etched silicon micro-electrodes. The nanomesh circuits and nanoelectronic devices provide a concise approach.
从上述实施方式可以知道,本发明的关键点在于把不镀金属膜的、表面刻蚀有周期分布纳米柱的硅电极生长面面向化学反应物直接放置在盛有反应物的舟上,进行化学反应。As can be known from the foregoing embodiments, the key point of the present invention is to directly place the silicon electrode growth surface, which is not plated with a metal film and has periodically distributed nanopillars, facing the chemical reactants on a boat containing the reactants, and conducts the chemical reaction. reaction.
实施例2Example 2
进一步地,本实施例根据通过上述实施例1方法在各纳米硅柱侧面棱角处制备出横向生长的氧化锌纳米线网。要制得氧化锌纳米线网,那么在舟中所盛放的化学反应物为氧化锌粉和石墨粉,并以氮气作为惰性载流气体,然后按照上述实施例1中所提供的制备步骤,即可制得氧化锌纳米线网。Further, in this embodiment, according to the method of the above-mentioned embodiment 1, a laterally grown zinc oxide nanowire network is prepared at the corners of the sides of each nano-silicon pillar. To make the zinc oxide nanowire network, the chemical reactants contained in the boat are zinc oxide powder and graphite powder, and nitrogen is used as the inert carrier gas, and then according to the preparation steps provided in the above-mentioned embodiment 1, Zinc oxide nanowire network can be prepared.
优选地,在本实施例中,将所述惰性载流气体和氧气的体积流量比设置为100:1.5,并保持管内氮气和氧气气氛压强在300mbar,从而可以较快地得到氧化锌纳米线网。Preferably, in this embodiment, the volume flow ratio of the inert carrier gas and oxygen is set to 100:1.5, and the pressure of the nitrogen and oxygen atmosphere in the tube is kept at 300mbar, so that the zinc oxide nanowire network can be obtained quickly .
综上所述,本发明的原理在于,根据晶体生长原理,由于电极边沿棱角处结合能低,利用把表面刻有周期纳米柱的硅电极生长面面向化学反应原料放置,并通过控制气氛流量分布从而实现只在纳米柱电极边沿横向生长纳米网桥接电极,不在表面生长的结果,减少了处理电极表面上利用传统生长方法时生长的不必要的氧化锌纳米线。本发明的创新点为:将表面制备有周期纳米柱的硅电极衬底生长面向下放置在盛有化学反应物的舟上放置,进而能控制横向生长纳米线网形成纳米网桥接电路,不需要镀金膜作为催化剂,节省工序降低成本。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, the principle of the present invention is that, according to the principle of crystal growth, due to the low binding energy at the edges and corners of the electrodes, the silicon electrode growth surface engraved with periodic nano-columns on the surface is placed facing the chemical reaction raw materials, and by controlling the gas flow distribution In this way, the nano-network bridging electrode is only grown laterally on the edge of the nano-column electrode, and the result is not grown on the surface, which reduces unnecessary zinc oxide nanowires grown on the surface of the electrode by using a traditional growth method. The innovative point of the present invention is: place the growth side of the silicon electrode substrate with periodic nano-columns on the surface downwards on a boat filled with chemical reactants, and then control the lateral growth of nano-wire network to form a nano-network bridge circuit, without The gold-plated film is used as a catalyst, which saves the process and reduces the cost. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510291933.5A CN104867868B (en) | 2015-06-01 | 2015-06-01 | Method without catalyst cross growth nanowire mesh circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510291933.5A CN104867868B (en) | 2015-06-01 | 2015-06-01 | Method without catalyst cross growth nanowire mesh circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104867868A true CN104867868A (en) | 2015-08-26 |
CN104867868B CN104867868B (en) | 2018-06-26 |
Family
ID=53913616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510291933.5A Active CN104867868B (en) | 2015-06-01 | 2015-06-01 | Method without catalyst cross growth nanowire mesh circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104867868B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105845714A (en) * | 2016-02-27 | 2016-08-10 | 黄辉 | Nanowire device based on bridging growth and manufacturing method thereof |
CN109490262A (en) * | 2018-10-23 | 2019-03-19 | 中国科学院重庆绿色智能技术研究院 | Microcystin sensor and preparation method, application based on zinc oxide nanowire |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727524A (en) * | 2004-11-30 | 2006-02-01 | 中国科学院长春光学精密机械与物理研究所 | Method for preparing low-temperature catalyst-free acicular Zn0 nanowires |
CN101281133A (en) * | 2008-05-12 | 2008-10-08 | 中国科学院合肥智能机械研究所 | Preparation method of surface-enhanced Raman active substrate of large-area micro-nano tree structure array |
CN103296141A (en) * | 2013-06-03 | 2013-09-11 | 厦门大学 | Method for producing dendritic heterojunction nanowire array structural materials |
CN103303967A (en) * | 2012-03-08 | 2013-09-18 | 国家纳米科学中心 | Tower-shaped layered zinc oxide nanometer rod, and preparation method and application thereof |
CN103966662A (en) * | 2014-04-01 | 2014-08-06 | 中国科学院重庆绿色智能技术研究院 | Method for positioning transversely-growing zinc oxide nanowires on silicon electrode |
-
2015
- 2015-06-01 CN CN201510291933.5A patent/CN104867868B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727524A (en) * | 2004-11-30 | 2006-02-01 | 中国科学院长春光学精密机械与物理研究所 | Method for preparing low-temperature catalyst-free acicular Zn0 nanowires |
CN101281133A (en) * | 2008-05-12 | 2008-10-08 | 中国科学院合肥智能机械研究所 | Preparation method of surface-enhanced Raman active substrate of large-area micro-nano tree structure array |
CN103303967A (en) * | 2012-03-08 | 2013-09-18 | 国家纳米科学中心 | Tower-shaped layered zinc oxide nanometer rod, and preparation method and application thereof |
CN103296141A (en) * | 2013-06-03 | 2013-09-11 | 厦门大学 | Method for producing dendritic heterojunction nanowire array structural materials |
CN103966662A (en) * | 2014-04-01 | 2014-08-06 | 中国科学院重庆绿色智能技术研究院 | Method for positioning transversely-growing zinc oxide nanowires on silicon electrode |
Non-Patent Citations (1)
Title |
---|
王伶俐: "生长于硅纳米孔柱阵列衬底上氧化锌的场发射和气体传感器性能研究", 《中国博士学位论文全文数据库》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105845714A (en) * | 2016-02-27 | 2016-08-10 | 黄辉 | Nanowire device based on bridging growth and manufacturing method thereof |
CN105845714B (en) * | 2016-02-27 | 2019-12-03 | 黄辉 | A nanowire device based on bridge growth and its preparation method |
CN109490262A (en) * | 2018-10-23 | 2019-03-19 | 中国科学院重庆绿色智能技术研究院 | Microcystin sensor and preparation method, application based on zinc oxide nanowire |
Also Published As
Publication number | Publication date |
---|---|
CN104867868B (en) | 2018-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Geng et al. | Recent advances in growth of novel 2D materials: beyond graphene and transition metal dichalcogenides | |
Zhang et al. | Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures | |
Li et al. | Controllable synthesis of graphene by plasma‐enhanced chemical vapor deposition and its related applications | |
Tao et al. | The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method | |
Yi | Semiconductor nanostructures for optoelectronic devices: processing, characterization and applications | |
CN102104079B (en) | Preparation method of one-dimensional ZnO/ZnS core-shell structure nano array and single crystal ZnS nano tube array | |
CN104726845B (en) | The preparation method of the upper graphene nanobelts of h-BN | |
CN103378224B (en) | The preparation method of epitaxial structure | |
CN109809372B (en) | A method for preparing monolayer tungsten diselenide nanoribbons based on spatial confinement strategy | |
CN103378223B (en) | The preparation method of epitaxial structure | |
Zhang et al. | Synthesis and field emission characteristics of bilayered ZnO nanorod array prepared by chemical reaction | |
CN103378237B (en) | epitaxial structure | |
CN112875742B (en) | Gallium oxide nanotube and preparation method and application thereof | |
Xu et al. | Fabrication and optical properties of highly ordered ZnO nanodot arrays | |
Zheng et al. | CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates | |
CN102618849A (en) | One-dimensional ZnO/SnO2Preparation method of core-shell structure nano heterojunction semiconductor material | |
CN104867868B (en) | Method without catalyst cross growth nanowire mesh circuit | |
CN110002504A (en) | A kind of preparation method of rhenium disulfide nanometer sheet | |
CN204752195U (en) | A reaction unit that is used for on silicon electrode horizontal nanometer gauze of preparation | |
Shen et al. | Single-crystalline and twinned Zn3P2 nanowires: Synthesis, characterization, and electronic properties | |
CN104402039B (en) | A kind of method preparing three-dimensional ZnO nano gauze | |
CN102953048B (en) | Nano doping structure and preparation method thereof | |
KR20160144194A (en) | Method for preparing graphene using solid carbon source | |
Ma et al. | Synthesis of pod-like Cu2O nanowire arrays on Cu substrate | |
CN109962010B (en) | Wafer-level large-area semiconductor nanosheet and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |