耦合电容RFID标签
技术领域
本发明涉及一种耦合电容RFID标签。
背景技术
目前,射频识别即RFID(RadioFrequencyIdentification)技术,又称电子标签、无线射频识别,是一种可通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或光学接触的通信技术。常用的无源RFID有低频(125k~134.2K)、高频(13.56Mhz)、超高频(860-960MHz)。RFID标签天线作为RFID系统的重要组成部分,它的性能将极大的影响整个RFID系统的效率与质量。影响RFID天线性能的主要因素包括天线的尺寸、工作频段、阻抗及增益等。一般常用的RFID天线常采用弯折线型偶极子形式,便于缩减天线尺寸及天线加工。该类型天线方向图为垂直于天线面,因此使用时贴附于目标物体垂直外表面;当物体的长度随之变化时,要求天线也随之变化,其增益也随之改变,因此需要设计出一款能够根据长度而改变的天线,另外,其各项天线性能也需要满足要求。
发明内容
本发明的目的在于克服以上所述的缺点,提供一种耦合电容RFID标签。
为实现上述目的,本发明的具体方案如下:包括基板,以及设于基板上的插合耦合电容RFID标签天线,所述第二天线上设有介质板,介质板上设有标签芯片,所述标签芯片与天线电性连接;
所述标签天线包括有第一天线和第二天线,所述第一天线与第二天线之间距离可伸缩调节。
第一天线包括有长条形第一本体,所述第一本体的一端设有第一增益杆,所述第一增益杆的自由端设有一弧形的第一增益天线,还包括有两个耦合槽,所述两个耦合槽开口朝向第一本体的另一端,所述两个耦合槽平行设置于第一本体内,所述每个耦合槽的上下两边均设有锯齿状的锯齿槽;所述第二天线的包括有一第二本体,所述第一本体的长度大于第二本体,所述第二本体的一端设有第二增益杆,第二增益杆的自由端设有一弧形的第二增益天线,还包括有两个设于第二本体另一端的与耦合槽配合的耦合条,所述两个耦合条平行设置,所述每个耦合条的上下两边均设有与锯齿槽配合的锯齿状的锯齿凸起,配合时,所述锯齿凸起位于锯齿槽内;
还包括有T字形调节杆,所述第二本体内设有一开口朝向第一本体的调节凹口,所述T字形调节杆的水平段位于调节凹口内;
设耦合条的自由端与耦合槽的内里面的距离为L,设T字形调节杆的水平段的自由端与调节凹口的内里面的水平距离为M,所述L=M*3.75。
其中,所述第一本体的一端为弧形面,且弧度与第一增益天线的弧度相同。
其中,所述第二本体的一端为弧形面,且弧度与第二增益天线的弧度相同。
其中,所述第一增益天线与第二增益天线的弧度相同,均为60°-80°。
其中,所述第一增益天线的一侧还设有第三增益杆,所述第三增益杆的自由端设有第三增益天线。
其中,所述第三增益杆的弧度与第一增益杆的弧度大小相同。
其中,所述第一本体的高度在小于10cm。
其中,所述所述第一天线上设有长条形的隔离槽,
其中,所述第二天线与第一天线上设有增频缺口。
本发明的有益效果:1、阅读距离长,经测试其阅读距离可达11-13m。普通RFID标签天线的阅读距离均小于10m。2、可拉伸;即长度可调,其可用于宽度基本一定,但长度不定的成套包装上,具有极大的实用价值。3、各项天线性能好、驻波比小、回波损耗低、增益高且具备全向性。其在超高频即(860-960MHz)尤其是925MHz左右的频率使用时性能较高。
附图说明
图1是本发明的标签天线的示意图;
图2是本发明的标签天线的拉长后的示意图;
图3是本发明的第一天线示意图;
图4是本发明的第二天线示意图;
图5是利用本发明的示意图;
图6是本发明的阻抗测试数据图;
图7是本发明的回波损耗测试数据图;
图8是本发明的方向性测试数据图;
图1至图8中的附图标记说明:
1-第一天线;11-耦合槽;12-锯齿槽;13-第一增益杆;14-第一增益天线;15-第三增益杆;16-第三增益天线;17-隔离槽;18-增频缺口;
2-第二天线;21-耦合条;22-锯齿凸起;23-第二增益杆;24-第二增益天线;25-调节凹口;
3-T字形调节杆;
4-介质板;
5-标签芯片;
6-基板。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的说明,并不是把本发明的实施范围局限于此。
如图1至图8所示,本实施例所述的一种插合耦合电容RFID标签天线,包括有第一天线1和第二天线2,所述第一天线1与第二天线2之间距离可伸缩调节。利用其制作的RFID标签包括基板6,以及设于基板6上的插合耦合电容RFID标签天线,所述第二天线2上设有介质板4,介质板4上设有标签芯片5,所述标签芯片5与天线电性连接。
本实施例所述的一种插合耦合电容RFID标签天线,第一天线1包括有长条形第一本体,所述第一本体的一端设有第一增益杆13,所述第一增益杆13的自由端设有一弧形的第一增益天线14,还包括有两个耦合槽11,所述两个耦合槽11开口朝向第一本体的另一端,所述两个耦合槽11平行设置于第一本体内,所述每个耦合槽11的上下两边均设有锯齿状的锯齿槽12;所述第二天线2的包括有一第二本体,所述第一本体的长度大于第二本体,所述第二本体的一端设有第二增益杆23,第二增益杆23的自由端设有一弧形的第二增益天线24,还包括有两个设于第二本体另一端的与耦合槽11配合的耦合条21,所述两个耦合条21平行设置,所述每个耦合条21的上下两边均设有与锯齿槽12配合的锯齿状的锯齿凸起22,配合时,所述锯齿凸起22位于锯齿槽12内;本实施例所述的一种插合耦合电容RFID标签天线,还包括有T字形调节杆3,所述第二本体内设有一开口朝向第一本体的调节凹口25,所述T字形调节杆3的水平段位于调节凹口25内;本实施例所述的一种插合耦合电容RFID标签天线,设耦合条21的自由端与耦合槽11的内里面的距离为L,设T字形调节杆3的水平段的自由端与调节凹口25的内里面的水平距离为M,所述L=M*3.75。
本方案通过上述特征实现了阅读距离长,经测试其阅读距离可达11-13m。普通RFID标签天线的阅读距离均小于10m。另外,其可拉伸;即长度可调,其可用于宽度基本一定,但长度不定的成套包装上,具有极大的使用价值,在不同包装上实现帖附,另外,理论上可以无限增长。最后,其各项天线性能好、驻波比小、回波损耗低、增益高且具备全向性。;其在925MHz左右的频率使用时性能较高。本实施例所述的一种插合耦合电容RFID标签天线,所述第一本体的一端为弧形面,且弧度与第一增益天线14的弧度相同。如此设置,进一步提高了增益性能,且降低回波损耗,增加辐射全向性,优化结果较佳。本实施例所述的一种插合耦合电容RFID标签天线,所述第二本体的一端为弧形面,且弧度与第二增益天线24的弧度相同。弧度相同可以减少两个天线之间驻波形成,减少波干涉,降低驻波比。本实施例所述的一种插合耦合电容RFID标签天线,所述第一增益天线14与第二增益天线24的弧度相同,均为60°-80°。通过仿真以及实际实验,该弧度天线的各项性能最佳。
本实施例所述的一种插合耦合电容RFID标签天线,所述第一增益天线14的一侧还设有第三增益杆15,所述第三增益杆15的自由端设有第三增益天线16;本实施例所述的一种插合耦合电容RFID标签天线,所述第三增益杆15的弧度与第一增益杆13的弧度大小相同;同理,如此设置,进一步提高了增益性能,且降低回波损耗,增加辐射全向性,优化结果较佳。
本实施例所述的一种插合耦合电容RFID标签天线,所述第一本体的高度在小于10cm。本实施例所述的一种插合耦合电容RFID标签天线,所述所述第一天线1上设有长条形的隔离槽17,所述隔离槽17位于两条耦合槽11之间,本实施例所述的一种插合耦合电容RFID标签天线,所述第二天线2靠近第一天线1的一面的两角处以及第一天线1靠近第二天线2的一面的两角处设有增频缺口18。增频缺口18能增加隔离度,减少驻波形成,使得驻波比接近1。本方案的天线在全向性方面也具有较好的表现,如图8所述,在全向性方面其表现优异,具有360度无死角等距全向性。如图7所示,其回波损耗性能突出,尤其在925MHz时回波损耗最小值达到-65dB,在整个高频段的回波损耗均保持在-10dB以下,水平均超过其他同类天线水平。
经测设,其在不同拉伸长度下使用有效距离均达到11-13m。测试结果如下表:
另外,该天线测试的输入阻抗如图6所示,所测得阻抗在925MHz时为11+144j欧姆,与芯片Monza4Dura的阻抗11+143j达到共轭匹配。标签在925MHz时可以达到最优效果。
以上所述仅是本发明的一个较佳实施例,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,包含在本发明专利申请的保护范围内。