CN104865003A - Integration liquid saturated vapor pressure and vaporization latent heat combined test system - Google Patents

Integration liquid saturated vapor pressure and vaporization latent heat combined test system Download PDF

Info

Publication number
CN104865003A
CN104865003A CN201510272744.3A CN201510272744A CN104865003A CN 104865003 A CN104865003 A CN 104865003A CN 201510272744 A CN201510272744 A CN 201510272744A CN 104865003 A CN104865003 A CN 104865003A
Authority
CN
China
Prior art keywords
reaction vessel
heating
pressure
system comprises
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510272744.3A
Other languages
Chinese (zh)
Other versions
CN104865003B (en
Inventor
胡宇鹏
鲁亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Engineering Research Institute China Academy of Engineering Physics
Original Assignee
General Engineering Research Institute China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Engineering Research Institute China Academy of Engineering Physics filed Critical General Engineering Research Institute China Academy of Engineering Physics
Priority to CN201510272744.3A priority Critical patent/CN104865003B/en
Publication of CN104865003A publication Critical patent/CN104865003A/en
Application granted granted Critical
Publication of CN104865003B publication Critical patent/CN104865003B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention discloses an integration liquid saturated vapor pressure and vaporization latent heat combined test system comprising a liquid pool system, an air exhaust system, a temperature control system, a heating condensation system and a measuring system; the liquid pool system comprises a reaction container and a working medium liquid storage ball; the air exhaust system comprises a compound vacuum gauge and a vacuum pump; the temperature control system comprises a compressor, an evaporator, a motor, a stirrer, a heating pipe, a pressure regulator and a constant temperature water bath; the heating condensation system comprises a refrigerant liquid storage ball, a cold liquid pump, a power meter, an adjustable DC regulated power supply, a condenser and a heating sheet; the measuring system comprises a pressure sensor, a weighing device, a data acquisition recorder and a temperature sensor. The test system can carry out combined measurement for the liquid saturated vapor pressure and vaporization latent heat, is stable in pressure control, strong in temperature control capability, high in integration, simple in operation, thus greatly reducing experiment errors, improving experiment accuracy, and enhancing system testing functions.

Description

A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system
Technical field
The present invention relates to a kind of hold-up vapour pressure test macro, particularly relate to a kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system.
Background technology
Liquid-gas phase transition is a kind of states of matter change of occurring in nature, all relates to liquid-gas phase transition process, and the feature of liquid-gas phase transition can be utilized to carry out separation and the heat transfer of material at many engineering fields such as chemical industry, energy source and power.In recent years, along with the fast development of material science, various novel working medium continues to bring out, and the data of relevant rudimentary thermophysical property extremely lack, and constrain application and the development of Biological process.Saturated vapor pressure refers at a certain temperature, the pressure showed by steam when liquid gasification speed i.e. liquids and gases equal to condensation of gas speed reach equilibrium state in closed container, is the indispensable basic data of liquid working substance development & application.Certain saturated vapour pressure, the heat that saturated liquid becomes required for saturated gas is called the latent heat of vaporization.Compare the sensible heat that single-phase liquid or gaseous working medium temperature variation absorb or discharge, the latent heat of vaporization is much larger than the sensible heat of Single-phase medium.Therefore, utilize the latent heat of vaporization of working medium to carry out heat transmission and greatly can improve heat exchanger effectiveness in commercial production, and then enhance productivity.In addition, accurately and production control temperature industrially carries out diabatic process sustainedly and stably time be very difficult, and the liquid-gas phase transition occurred under certain temperature and pressure can solve this difficult point.In a word, saturated vapor pressure and the latent heat of vaporization are the key parameters in liquid-gas phase transition process.Saturated vapor pressure and the latent heat of vaporization are not only relevant with liquid working substance kind, also have important relation with conditions such as temperature.At present, extremely lack about various Biological process saturated vapor pressure and latent heat of vaporization data, how Obtaining Accurate relevant test data needs urgently to be resolved hurrily.
Static method is the method for mensuration Liquid saturated vapor comparatively general at present, based on static method traditional liquid saturated vapour pressure measuring device as shown in Figure 1, form primarily of water bath 1, balance pipe 2, surge flask 3, suction bottle 4, first T-valve 5, second T-valve 6, the 3rd T-valve 8, thermometer 7, condenser pipe 9, stirring rod 10 and pressure gauge 11, this measurement mechanism can directly measure ullage vapor pressure, it is less that error of measured data compares additive method, and be applicable to the measurement of the larger liquid working substance saturated vapor pressure of temperature range.But there is following defect in this measurement mechanism:
First, balance pipe operating difficulties: original balance pipe is when adding testing sample, need a small amount of through repeatedly adding, liquid can not enter liquid storage ball automatically, needs to enter liquid storage ball to make testing sample, because balance pipe caliber is thin by carrying out heating cooling processing to liquid storage ball, can cause that inner air tube is more difficult to be drained, determination data out of true, easily causes working medium suck-back simultaneously, causes the failure of an experiment; In addition, clean balance pipe and also there is very large difficulty.
The second, pressure system controls difficulty: the gas pressure measurement above liquid need carry out under high vacuum condition, if residual impurities gas above liquid, Liquid saturated vapor measured value will be made to produce relatively large deviation, thus have higher requirements to the leakproofness of device; Typical measuring arrangements each joint leakproofness is poor, is difficult to air to drain; In addition, use T-valve to carry out gas circuit control, less stable, when Stress control instability causes level balance, compole is short, and during often there is reading, liquid level just changes, thus causes measuring error.
3rd, temperature control capacity is more weak: the constant temperature water bath of typical measuring arrangements due to structure too simple, thermal uniformity is poor, and working method is one-way heating, and the cooling effectiveness of Temperature fall is lower; Thermometric adopts thermometer naked eyes reading mode, and error is larger.
4th, each component spread of measurement mechanism, bulky, all need to take off each junction during each experiment and carry out encapsulation process, complex operation, leakproofness is poor.
5th, measurement mechanism lacks latent heat of vaporization test component, only can measure hold-up vapour pressure, the latent heat of vaporization can not be measured simultaneously, test function is single, make hold-up vapour pressure and the latent heat of vaporization often each leisure independently measuring table is measured, economy and time cost are all higher.
Summary of the invention
Object of the present invention is just to provide to solve the problem the integrated hold-up vapour pressure and latent heat of vaporization combined test system that a kind of measuring accuracy is high, processing cost is low.
The present invention is achieved through the following technical solutions above-mentioned purpose:
A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system, comprise liquid pool system, extract system, temperature control system, heating-condensing system and measuring system, described liquid pool system comprises reaction vessel and working medium liquid storing ball, described extract system comprises compound type vacuum meter and vacuum pump, described temperature control system comprises compressor, evaporator, motor, stirrer, heating tube, pressure regulator and constant temperature water bath, described heating-condensing system comprises refrigerant liquid storing ball, condenser pump, power measurement instrument, adjustable D. C regulated, condenser and heating plate, described measuring system comprises pressure transducer, weighing instrument, data acquisition recorder and temperature sensor, described evaporator, described stirrer, described heating tube and described temperature sensor are all placed in described constant temperature water bath with the described reaction vessel closed, described compressor is connected with described evaporator and for lowering the temperature, described motor is connected with described stirrer and for stirring, described pressure regulator is connected with described heating tube and for heating, described working medium liquid storing ball and described reaction vessel are connected and its connecting pipe are provided with by-pass valve control, described vacuum pump is connected with described reaction vessel and for vacuumizing, described compound type vacuum meter is for detecting the vacuum tightness of described vacuum pump, described temperature sensor is for monitoring the bath temperature in described constant temperature water bath, described heating plate is placed in the lower floor in described reaction vessel, described condenser and described pressure transducer are all placed in the upper strata in described reaction vessel, described adjustable D. C regulated to be connected with described heating plate and for heating by described power measurement instrument, described refrigerant liquid storing ball to be connected with described condenser by described condenser pump and for providing cold to maintain the saturated vapor pressure in described reaction vessel, described pressure transducer is for measuring the saturated vapour pressure in described reaction vessel, the signal output part of described temperature sensor is connected with the signal input part of described data acquisition recorder respectively with the signal output part of described pressure transducer, described weighing instrument is placed in the below of described reaction vessel and the weight for measuring described reaction vessel.
As preferably, described liquid pool system, described extract system, described temperature control system, described heating-condensing system and described measuring system are all placed in a housing.
Beneficial effect of the present invention is:
Integrated hold-up vapour pressure of the present invention and latent heat of vaporization combined test system can carry out combined measurement to hold-up vapour pressure and the latent heat of vaporization, Stress control is stable, temperature control capacity is strong and integrating property is high, easy and simple to handle, considerably reduce experimental error, improve the accuracy of experiment, enhance System test function; Be embodied in:
(1) the present invention devises closed reaction vessel and replaces traditional balance pipe and control pressurer system, and be furnished with liquid pool system and extract system, be easy to draining of realization response tainer air, working medium to be measured can disposablely be injected, not easily there is suck-back in working medium, easy to operate, Stress control is stablized; Meanwhile, owing to adopting modular design, reaction vessel is also convenient to cleaning;
(2) the present invention improves constant temperature water bath and heating arrangement on traditional test device basic, adds cooling device, is configured with forced-convection heat transfer parts and stirrer, improves temperature control capacity and precision;
(3) the present invention adopts over all Integration to design, and reduces the scattered property of test macro, enhances the airtight performance of test macro, improve experiment operability;
(4) pre-buried heating plate in the lower floor of the present invention in reaction vessel and liquid layer, installs condenser in the upper strata in reaction vessel and gas blanket, makes this test macro can realize the measurement of gas latent heat, perfect test function.
Accompanying drawing explanation
Fig. 1 is the structural representation of the traditional liquid saturated vapour pressure measuring device based on static method;
Fig. 2 is the structural representation of integrated hold-up vapour pressure of the present invention and latent heat of vaporization combined test system, there is shown inner structure.
Embodiment
Below in conjunction with accompanying drawing, the invention will be further described:
As shown in Figure 2, integrated hold-up vapour pressure of the present invention and latent heat of vaporization combined test system, comprise the liquid pool system be all placed in a housing 20, extract system, temperature control system, heating-condensing system and measuring system, described liquid pool system comprises reaction vessel 29 and working medium liquid storing ball 32, described extract system comprises compound type vacuum meter 37 and vacuum pump 38, described temperature control system comprises compressor 25, evaporator 26, motor 27, stirrer 28, heating tube 34, pressure regulator 35 and constant temperature water bath 42, described heating-condensing system comprises refrigerant liquid storing ball 21, condenser pump 22, power measurement instrument 23, adjustable D. C regulated 24, condenser 30 and heating plate 36, described measuring system comprises pressure transducer 31, weighing instrument 39, data acquisition recorder 40 and temperature sensor 41, evaporator 26, stirrer 28, heating tube 34 and temperature sensor 41 are all placed in constant temperature water bath 42 with the reaction vessel 29 closed, compressor 25 is connected with evaporator 26 and for lowering the temperature, motor 27 is connected with stirrer 28 and for stirring, pressure regulator 35 is connected with heating tube 34 and for heating, working medium liquid storing ball 32 and reaction vessel 29 are connected and its connecting pipe are provided with by-pass valve control 33, vacuum pump 38 is connected with reaction vessel 29 and for vacuumizing, compound type vacuum meter 37 is for detecting the vacuum tightness of vacuum pump 38, temperature sensor 41 is for monitoring the bath temperature in constant temperature water bath 42, heating plate 36 is placed in the lower floor in reaction vessel 29, condenser 30 and pressure transducer 31 are all placed in the upper strata in reaction vessel 29, adjustable D. C regulated 24 to be connected with heating plate 36 by power measurement instrument 23 and for heating, refrigerant liquid storing ball 21 to be connected with condenser 30 by condenser pump 22 and for providing cold to maintain the saturated vapor pressure in reaction vessel 29, pressure transducer 31 is for measuring the saturated vapour pressure in reaction vessel 29, the signal output part of temperature sensor 41 is connected with the signal input part of data acquisition recorder 40 respectively with the signal output part of pressure transducer 31, weighing instrument 39 is placed in the below of reaction vessel 29 and the weight for measuring reaction vessel 29.The by-pass valve control 33 on being installed between compressor 25 and evaporator 26 and be installed between vacuum pump 38 and reaction vessel 29 pipeline is also show in Fig. 1.
As shown in Figure 2, the experimental procedure of integrated hold-up vapour pressure of the present invention and latent heat of vaporization combined test system is as follows:
1, to vacuumize and injection process: open the by-pass valve control 33 on the pipeline between vacuum pump 38 and reaction vessel 29, start vacuum pump 38, vacuumize in reaction vessel 29.After vacuum tightness in question response container 29 meets testing requirements, close this by-pass valve control 33.Open the by-pass valve control 33 on the connecting pipe between working medium liquid storing ball 32 and reaction vessel 29, the test worker quality liquid in working medium liquid storing ball 32 enters in reaction vessel 29, at this moment, closes this by-pass valve control 33, completes and vacuumize and injection process.
2, water bath with thermostatic control regulates: open pressure regulator 35, exports appropriate voltage to heating tube 34, to heating water bath.Meanwhile, in order to accelerate heat interchange in water-bath, devising forced convertion parts and stirrer 28, action of forced stirring is carried out to liquid in water-bath, strengthen heat exchange, ensure uniform temperature fields.When water-bath need lower the temperature or cool, start compressor 25, the cold of compressor 25 passes to water-bath by evaporator 26, lowers the temperature to water-bath.Read the data of putting temperature sensor 41 in water-bath by data acquisition recorder 40 at any time, carry out monitoring temperature.
3, saturated vapor pressure is measured: working medium to be measured can be subject to the impact of environment temperature after entering the reaction vessel 29 of vacuum, carries out the transformation of liquid gas.Pressure value can be passed to data acquisition recorder 40 by pressure transducer 31 in reaction vessel 29 in real time, when numerical value no longer changes, illustrate that the gas-liquid state in reaction vessel 29 reaches balance, pressure is now exactly the saturated vapor pressure of this working medium under current bath temperature.
4, latent heat is measured: after working medium vapor liquid equilibrium, heat the heating plate 36 being embedded in liquid internal in reaction vessel 29, liquid obtains the required latent heat changing gas into, will carry out liquid-gas shift.At this moment the pressure in reaction vessel 29 can increase, and affects latent heat test result.In order to ensure constant pressure, devise condenser 30, gaseous working medium touches condenser 30, again discharges latent heat, can condense into liquid state and to be attached in condenser 30 and to fall into gathering-device.In the power of suitable adjustment heating plate 36 and condenser 30, the flow of cold liquid, when pressure is stabilized to the saturated vapor pressure under bath temperature again, illustrates in reaction vessel 29 and again reaches mobile equilibrium.At this moment, by the Mass lost situation of reaction vessel 29 in weighing instrument 39 record unit time, record the power of heating plate 36 simultaneously, the latent heat of test working medium can be calculated.
Illustrate: the experimental technique related in above-mentioned experimentation, on the architecture basics of this test macro, just carry out the conventional method of testing, its method itself is not innovative solution of the present invention, does not protect.
Above-described embodiment is preferred embodiment of the present invention; it is not the restriction to technical solution of the present invention; as long as without the technical scheme that creative work can realize on the basis of above-described embodiment, all should be considered as falling within the scope of the rights protection of patent of the present invention.

Claims (2)

1. an integrated hold-up vapour pressure and latent heat of vaporization combined test system, it is characterized in that: comprise liquid pool system, extract system, temperature control system, heating-condensing system and measuring system, described liquid pool system comprises reaction vessel and working medium liquid storing ball, described extract system comprises compound type vacuum meter and vacuum pump, described temperature control system comprises compressor, evaporator, motor, stirrer, heating tube, pressure regulator and constant temperature water bath, described heating-condensing system comprises refrigerant liquid storing ball, condenser pump, power measurement instrument, adjustable D. C regulated, condenser and heating plate, described measuring system comprises pressure transducer, weighing instrument, data acquisition recorder and temperature sensor, described evaporator, described stirrer, described heating tube and described temperature sensor are all placed in described constant temperature water bath with the described reaction vessel closed, described compressor is connected with described evaporator and for lowering the temperature, described motor is connected with described stirrer and for stirring, described pressure regulator is connected with described heating tube and for heating, described working medium liquid storing ball and described reaction vessel are connected and its connecting pipe are provided with by-pass valve control, described vacuum pump is connected with described reaction vessel and for vacuumizing, described compound type vacuum meter is for detecting the vacuum tightness of described vacuum pump, described temperature sensor is for monitoring the bath temperature in described constant temperature water bath, described heating plate is placed in the lower floor in described reaction vessel, described condenser and described pressure transducer are all placed in the upper strata in described reaction vessel, described adjustable D. C regulated to be connected with described heating plate and for heating by described power measurement instrument, described refrigerant liquid storing ball to be connected with described condenser by described condenser pump and for providing cold to maintain the saturated vapor pressure in described reaction vessel, described pressure transducer is for measuring the saturated vapour pressure in described reaction vessel, the signal output part of described temperature sensor is connected with the signal input part of described data acquisition recorder respectively with the signal output part of described pressure transducer, described weighing instrument is placed in the below of described reaction vessel and the weight for measuring described reaction vessel.
2. integrated hold-up vapour pressure according to claim 1 and latent heat of vaporization combined test system, is characterized in that: described liquid pool system, described extract system, described temperature control system, described heating-condensing system and described measuring system are all placed in a housing.
CN201510272744.3A 2015-05-26 2015-05-26 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system Active CN104865003B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510272744.3A CN104865003B (en) 2015-05-26 2015-05-26 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510272744.3A CN104865003B (en) 2015-05-26 2015-05-26 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system

Publications (2)

Publication Number Publication Date
CN104865003A true CN104865003A (en) 2015-08-26
CN104865003B CN104865003B (en) 2017-06-16

Family

ID=53910988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510272744.3A Active CN104865003B (en) 2015-05-26 2015-05-26 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system

Country Status (1)

Country Link
CN (1) CN104865003B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865968A (en) * 2016-05-20 2016-08-17 北京大学 Device for measuring saturated vapor pressure of liquid in porous medium
CN107632117A (en) * 2017-09-11 2018-01-26 深圳冠亚水分仪科技有限公司 A kind of measurement sensor of quick detection water activity
CN108983846A (en) * 2018-06-21 2018-12-11 南方电网科学研究院有限责任公司 Medium parameter measurement and control method
CN110044764A (en) * 2019-05-10 2019-07-23 哈尔滨工业大学 One kind measuring CO based on the grand equation of Clausius carat shellfish2The method and system of the latent heat of vaporization
CN112285152A (en) * 2020-09-27 2021-01-29 西安交通大学 High-temperature heat pipe alkali metal working medium evaporation and condensation measuring system and method
CN114002375A (en) * 2021-09-27 2022-02-01 浙江泰林医学工程有限公司 Hydrogen peroxide concentration sensor calibration device and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661529A2 (en) * 1993-12-28 1995-07-05 INTECU Gesellschaft für Innovation, Technologie und Umwelt mbH Procedure and device for leak testing of a volume and for determining the leaking amount
CN101174703A (en) * 2006-10-18 2008-05-07 奥林巴斯映像株式会社 Fuel battery margin testing method and device
US20110174070A1 (en) * 2010-01-20 2011-07-21 Envicor Incorporated Storage tank assembly and system for storing waste cooking oil
CN102607993A (en) * 2012-04-09 2012-07-25 上海化工研究院 Modularized vacuum system of saturated vapor pressure and solid density of tested substance and applications
KR101427341B1 (en) * 2013-05-29 2014-08-06 (주) 예스티 Temperature Sensor Box
CN104406715A (en) * 2014-12-15 2015-03-11 重庆市勘测院 Precision evaluation method and system for remote sensing estimation of surface sensible heat/latent heat flux
CN204649346U (en) * 2015-05-26 2015-09-16 中国工程物理研究院总体工程研究所 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0661529A2 (en) * 1993-12-28 1995-07-05 INTECU Gesellschaft für Innovation, Technologie und Umwelt mbH Procedure and device for leak testing of a volume and for determining the leaking amount
EP0661529A3 (en) * 1993-12-28 1996-05-29 Intecu Ges Fuer Innovation Tec Procedure and device for leak testing of a volume and for determining the leaking amount.
CN101174703A (en) * 2006-10-18 2008-05-07 奥林巴斯映像株式会社 Fuel battery margin testing method and device
US20110174070A1 (en) * 2010-01-20 2011-07-21 Envicor Incorporated Storage tank assembly and system for storing waste cooking oil
CN102607993A (en) * 2012-04-09 2012-07-25 上海化工研究院 Modularized vacuum system of saturated vapor pressure and solid density of tested substance and applications
KR101427341B1 (en) * 2013-05-29 2014-08-06 (주) 예스티 Temperature Sensor Box
CN104406715A (en) * 2014-12-15 2015-03-11 重庆市勘测院 Precision evaluation method and system for remote sensing estimation of surface sensible heat/latent heat flux
CN204649346U (en) * 2015-05-26 2015-09-16 中国工程物理研究院总体工程研究所 A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865968A (en) * 2016-05-20 2016-08-17 北京大学 Device for measuring saturated vapor pressure of liquid in porous medium
CN105865968B (en) * 2016-05-20 2018-11-23 北京大学 The saturated vapor pressure measuring device of liquid in a kind of porous media
CN107632117A (en) * 2017-09-11 2018-01-26 深圳冠亚水分仪科技有限公司 A kind of measurement sensor of quick detection water activity
CN108983846A (en) * 2018-06-21 2018-12-11 南方电网科学研究院有限责任公司 Medium parameter measurement and control method
CN110044764A (en) * 2019-05-10 2019-07-23 哈尔滨工业大学 One kind measuring CO based on the grand equation of Clausius carat shellfish2The method and system of the latent heat of vaporization
CN110044764B (en) * 2019-05-10 2021-10-15 哈尔滨工业大学 CO measurement based on Clausis Claberon equation2Method and system for latent heat of vaporization
CN112285152A (en) * 2020-09-27 2021-01-29 西安交通大学 High-temperature heat pipe alkali metal working medium evaporation and condensation measuring system and method
CN112285152B (en) * 2020-09-27 2021-08-13 西安交通大学 High-temperature heat pipe alkali metal working medium evaporation and condensation measuring system and method
CN114002375A (en) * 2021-09-27 2022-02-01 浙江泰林医学工程有限公司 Hydrogen peroxide concentration sensor calibration device and method
CN114002375B (en) * 2021-09-27 2024-05-17 浙江泰林医学工程有限公司 Calibration device and method for hydrogen peroxide concentration sensor

Also Published As

Publication number Publication date
CN104865003B (en) 2017-06-16

Similar Documents

Publication Publication Date Title
CN104865003A (en) Integration liquid saturated vapor pressure and vaporization latent heat combined test system
CN204649346U (en) A kind of integrated hold-up vapour pressure and latent heat of vaporization combined test system
CN109283273A (en) A kind of low-temperature mixed object gas-liquid phase equilibrium experiment test system and its measuring method
Hasegawa et al. The NBS two-pressure humidity generator, mark 2
CN101936939A (en) Saturated saline solution method for humidity calibration of humidity sensitive element for measuring micro-water contained in SF6 gas and device thereof
CN113092310A (en) Transformer oil gas content testing device and method for measuring density by U-shaped oscillation tube
Vitkovskii et al. Development of a standard system for metrological assurance of measurements of the pressure of saturated vapors of petroleum and petroleum products
CN104062201A (en) Experimental device for measuring technological parameters of vacuum drying and vacuum freeze drying processes
CN103837567A (en) Liquid specific heat capacity measuring device capable of realizing self-balanced pressurization and measuring method
CN103196618B (en) Petroleum products fully automatic vacuum formula saturated vapour pressure analyzer and assay method
CN207488217U (en) The apparent thermal conductivity of multilayer insulant and outgassing rate test device
CN103808820B (en) A kind of Freon gas detection alarm device and detection method thereof
CN106383066A (en) Method and device for measuring solubility of refrigerant and refrigerating machine oil
Fredenslund et al. An apparatus for accurate determinations of vapour-liquid equilibrium properties and gas PVT properties
Zvizdic et al. New primary dew-point generators at HMI/FSB-LPM in the Range from− 70° C to+ 60° C
Orr et al. Versatile vapor-liquid equilibrium still
US4671099A (en) Device for measuring the thermodynamic characteristics of a fluid
CN109342253A (en) A kind of loop heat pipe capillary core performance testing device and its test method
CN101561406A (en) Calorimetric method and instrument for measuring activity of water
CN209117514U (en) A kind of loop heat pipe capillary core performance testing device
CN206960396U (en) A kind of means for correcting of dew point hygrometer
CN205787948U (en) A kind of high-precision thermostat bath control system
Yuan et al. Specific heat measurements on aqueous lithium bromide
CN112834562A (en) Device and method for detecting helium concentration in heat-conducting mixed gas
CN211553166U (en) Liquid vapor pressure measuring device for teaching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant