CN104843721A - Organic silicon waste contact recovery method - Google Patents
Organic silicon waste contact recovery method Download PDFInfo
- Publication number
- CN104843721A CN104843721A CN201510218038.0A CN201510218038A CN104843721A CN 104843721 A CN104843721 A CN 104843721A CN 201510218038 A CN201510218038 A CN 201510218038A CN 104843721 A CN104843721 A CN 104843721A
- Authority
- CN
- China
- Prior art keywords
- silicon
- ammonium salt
- ammonia
- leaching
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 113
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 58
- 239000010703 silicon Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000011084 recovery Methods 0.000 title claims abstract description 4
- 239000002699 waste material Substances 0.000 title abstract description 51
- 239000007787 solid Substances 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000002386 leaching Methods 0.000 claims abstract description 31
- 238000001354 calcination Methods 0.000 claims abstract description 23
- 239000002253 acid Substances 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 17
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 15
- 238000002791 soaking Methods 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000000967 suction filtration Methods 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 28
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 12
- 239000000725 suspension Substances 0.000 claims description 12
- 239000003570 air Substances 0.000 claims description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 150000003863 ammonium salts Chemical class 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- 238000003786 synthesis reaction Methods 0.000 claims description 6
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- 239000004111 Potassium silicate Substances 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 2
- 235000013312 flour Nutrition 0.000 claims 4
- 238000002156 mixing Methods 0.000 claims 4
- 150000003839 salts Chemical class 0.000 claims 1
- 239000011863 silicon-based powder Substances 0.000 abstract description 55
- 238000003756 stirring Methods 0.000 abstract description 20
- 239000000243 solution Substances 0.000 abstract description 19
- 238000006243 chemical reaction Methods 0.000 abstract description 15
- 239000007800 oxidant agent Substances 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 6
- 239000011259 mixed solution Substances 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 37
- 238000004064 recycling Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 11
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 10
- 239000001099 ammonium carbonate Substances 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000011856 silicon-based particle Substances 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- 238000001291 vacuum drying Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 235000012501 ammonium carbonate Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- -1 CN1083418A Chemical compound 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910021331 inorganic silicon compound Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- XJKVPKYVPCWHFO-UHFFFAOYSA-N silicon;hydrate Chemical compound O.[Si] XJKVPKYVPCWHFO-UHFFFAOYSA-N 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 235000019794 sodium silicate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明涉及有机硅废触体回收领域,尤其涉及一种回收处理有机硅废触体制备硅溶胶的方法。The invention relates to the field of recycling organosilicon waste contacts, in particular to a method for preparing silica sol by recycling and treating organosilicon waste contacts.
背景技术Background technique
甲基氯硅烷是制备有机硅聚合物最重要的单体。其中,以二甲基二氯硅烷[M2]的用量最大,约占甲基氯硅烷的90%。在生产M2的流化床反应器中,硅粉和铜催化剂混合形成活性触体,随着反应时间的延长,触体表面的沉积物会越来越多,使触体活性降低,导致M2选择性降低,此时,其中未反应的硅粉和催化剂的混合物需排出反应器,同时加入新的触体以利于反应连续稳定地进行。另外,反应中随着硅粉的不断消耗,硅颗粒不断变小,流化床的气固分离系统连续排出表面污染严重的细粉,这两部分废渣成为废触体。这些废触体的主要成份为:硅、铜、碳、锌等,它们在废触体中的重量含量分别为65%~80%,3%~20%,1%~10%,0.05%~2.0%。废触体由于颗粒细小,且铜粉的活性较高,遇空气容易发生氧化反应,使其中的有机物质和碳燃烧冒出刺鼻的白烟,不易储存,对环境污染严重,同时给安全生产带来很大的隐患。国外早在上世纪五十年代就已开展了有机硅废触体的回收利用研究,目前国内有机硅企业对废触体的处理方式一般是通过掩埋或低价售给小型企业。这不仅造成了严重的环境污染,对硅、铜资源也是浪费。重金属的存在会污染环境;而昂贵的单质硅的废弃造成有机硅产品成本很高。Methylchlorosilane is the most important monomer for the preparation of silicone polymers. Among them, dimethyldichlorosilane [M 2 ] is used in the largest amount, accounting for about 90% of methylchlorosilane. In the fluidized bed reactor producing M2 , silicon powder and copper catalyst are mixed to form an active contact body. As the reaction time prolongs, more and more deposits will be deposited on the contact body surface, which will reduce the activity of the contact body and lead to M 2 Selectivity is reduced. At this time, the mixture of unreacted silicon powder and catalyst needs to be discharged from the reactor, and new contacts are added to facilitate the continuous and stable reaction. In addition, with the continuous consumption of silicon powder during the reaction, the silicon particles continue to become smaller, and the gas-solid separation system of the fluidized bed continuously discharges fine powder with serious surface pollution, and these two parts of waste residue become waste contacts. The main components of these waste contacts are: silicon, copper, carbon, zinc, etc., and their weight contents in waste contacts are 65%-80%, 3%-20%, 1%-10%, 0.05%- 2.0%. Due to the small particles and high activity of copper powder, the waste contact body is prone to oxidation reaction when it encounters air, causing the organic matter and carbon in it to burn and emit pungent white smoke, which is difficult to store and seriously pollutes the environment. pose great dangers. As early as the 1950s, foreign countries have carried out research on the recycling of waste organosilicon contacts. At present, domestic organosilicon companies generally dispose of waste contacts by burying them or selling them to small businesses at low prices. This not only causes serious environmental pollution, but also wastes silicon and copper resources. The presence of heavy metals will pollute the environment; and the waste of expensive elemental silicon results in high cost of organic silicon products.
本领域现有技术对废触体的综合利用研究主要集中在硅粉和铜粉的回收(如CN1083418A、CN1844422A和CN1618840A),并且开展了回收硅粉加工利用研究(CN1760124A和CN1465524A),如加工成合格硅粉返回有机硅单体生产线,或通过冶炼加工成硅块而加以利用。但现有技术对有机硅废触体综合利用的工艺复杂,过程中生成有害气体,且硅的利用率不能达到100%,仍有废硅粉生成。The comprehensive utilization research of the prior art in this field mainly focuses on the recovery of silicon powder and copper powder (such as CN1083418A, CN1844422A and CN1618840A), and has carried out the research on the processing and utilization of recycled silicon powder (CN1760124A and CN1465524A), such as processed into Qualified silicon powder is returned to the organosilicon monomer production line, or processed into silicon blocks through smelting and utilized. However, in the prior art, the process of comprehensive utilization of organosilicon waste contacts is complicated, and harmful gases are generated during the process, and the utilization rate of silicon cannot reach 100%, and waste silicon powder is still generated.
解决废触体的“三废”问题,开展环保型和经济型的废触体无害化处理工艺回收研究,是当前有机硅领域必须解决的技术难题,它对有机硅企业降低成本、降低污染,推动我国有机硅工业的健康发展具有极其重要的意义。Solving the "three wastes" problem of waste contacts and carrying out research on environmentally friendly and economical recycling of waste contacts is a technical problem that must be solved in the current organic silicon field. It will reduce costs and reduce pollution for organic silicon companies. It is of great significance to promote the healthy development of my country's organic silicon industry.
硅溶胶是纳米级二氧化硅颗粒分散于水中的胶体溶液,又名硅酸溶胶,或二氧化硅水溶胶。硅溶胶具有许多优良性质,在无机硅化合物中具有很大发展前途,由于它的耐腐蚀、耐高温、抗氧化、大比表面积、高吸附性、高分散度、高绝缘性等性能,以及原料来源广泛、便于生产、价格低廉、对人类和环境无毒害等优点,从二十世纪40年代以来,硅溶胶在机械制造、石油化工、轻纺、电子等工业部门中得到广泛应用,特别是无机高分子建筑涂料的兴起和电子工业迅速发展,硅溶胶的需求量快速增加。Silica sol is a colloidal solution in which nanoscale silica particles are dispersed in water, also known as silicic acid sol, or silica hydrosol. Silica sol has many excellent properties and has great development prospects in inorganic silicon compounds. Due to its corrosion resistance, high temperature resistance, oxidation resistance, large specific surface area, high adsorption, high dispersion, high insulation and other properties, and raw materials Since the 1940s, silica sol has been widely used in machinery manufacturing, petrochemical, textile, electronics and other industrial sectors, especially inorganic With the rise of polymer architectural coatings and the rapid development of the electronics industry, the demand for silica sol has increased rapidly.
本领域有开发一种从有机硅废触体中回收硅粉制备硅溶胶的方法的需要,所述方法应当具有过程简单,原料易得,操作方便的特性。There is a need in this field to develop a method for preparing silica sol by recovering silicon powder from organic silicon waste contacts. The method should have the characteristics of simple process, readily available raw materials and convenient operation.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的之一在于提供一种利用有机硅废触体回收的硅粉制备硅溶胶的方法,具有显著的经济效益和环保效益。In view of the deficiencies in the prior art, one of the purposes of the present invention is to provide a method for preparing silica sol from silicon powder recovered from waste organosilicon contacts, which has significant economic and environmental benefits.
本发明具体通过如下方案实现:The present invention is specifically realized through the following schemes:
一种有机硅废触体的回收方法,所述方法包括如下步骤:A method for recycling organic silicon waste contacts, said method comprising the steps of:
(1)煅烧有机硅废触体,除去其表面积碳;(1) Calcining the organic silicon waste contact body to remove carbon on its surface;
(2)在含氧化剂的氨-铵盐混合溶液中浸取步骤(1)处理后的有机硅废触体,浸取完毕,过滤,洗涤,干燥滤渣,得到含硅固体残渣;(2) leaching the waste organosilicon contacts treated in step (1) in an ammonia-ammonium salt mixed solution containing an oxidizing agent, after leaching, filtering, washing, and drying the filter residue to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入酸液进行浸泡,浸泡结束后,分离、洗涤、干燥后得到硅粉;(3) adding an acid solution to the silicon-containing solid residue obtained in step (2) for soaking, and after soaking, separate, wash and dry to obtain silicon powder;
(4)将步骤(3)得到的硅粉分散在水中,控温活化,得到悬浮液,之后加入催化剂,加热搅拌进行反应,静置后抽滤得到硅溶胶。(4) Disperse the silicon powder obtained in step (3) in water, activate it under temperature control, to obtain a suspension, then add a catalyst, heat and stir for reaction, and after standing still, suction filter to obtain silica sol.
有机硅废触体以硅、铜、碳为主,且含有少量的锡、锌等金属成分,经过本发明提供的煅烧、氨-铵盐浸取、酸液浸泡,可以得到纯净的硅粉;而硅在碱性条件下能与水生成硅酸单体和氢气,硅酸单体通过自身的聚合能形成硅溶胶。具体地,硅粉在催化剂的作用下和水发生水解反应生硅酸分子,如式(1)所示:Silicone waste contacts are mainly composed of silicon, copper, and carbon, and contain a small amount of metal components such as tin and zinc. After calcination, ammonia-ammonium salt leaching, and acid solution immersion provided by the present invention, pure silicon powder can be obtained; Silicon can form silicic acid monomer and hydrogen gas with water under alkaline conditions, and silicic acid monomer can form silica sol through its own polymerization. Specifically, silicon powder reacts with water under the action of a catalyst to generate silicic acid molecules, as shown in formula (1):
Si+2OH-+H2O→SiO3 2-+2H2↑ (1)Si+2OH - +H 2 O→SiO 3 2- +2H 2 ↑ (1)
生成的活性硅酸有强烈的自团聚趋势,故活性硅酸软团聚之后形成聚硅酸。当溶液中硅酸的浓度达到过饱和之后,发生相变反应,部分活性硅酸自行发生脱水缩合反应析出晶核,反应如式(2)所示:The generated active silicic acid has a strong self-agglomeration tendency, so the active silicic acid is softly aggregated to form polysilicic acid. When the concentration of silicic acid in the solution reaches supersaturation, a phase transition reaction occurs, and part of the active silicic acid undergoes dehydration condensation reaction to precipitate crystal nuclei. The reaction is shown in formula (2):
mH2SiO3+nH2SiO3→(n+m)SiO2+(n+m)H2O (2)mH 2 SiO 3 +nH 2 SiO 3 →(n+m)SiO 2 +(n+m)H 2 O (2)
当晶核形成后,活性硅酸就会在晶核表面吸附,使晶核不断长大,从而形成硅溶胶,反应如式(3)所示:When the crystal nucleus is formed, the active silicic acid will be adsorbed on the surface of the crystal nucleus, so that the crystal nucleus will continue to grow, thereby forming a silica sol. The reaction is shown in formula (3):
nSiO2+H2SiO3→(n+1)SiO2+H2O (3)。nSiO 2 +H 2 SiO 3 →(n+1)SiO 2 +H 2 O (3).
本发明步骤(1)所述煅烧温度为300~800℃,例如320℃、350℃、370℃、450℃、480℃、562℃、650℃、730℃、775℃等;煅烧时间为0.5~4h,例如0.8h、1.2h、1.6h、2.3h、2.8h、3.3h、3.8h等。The calcination temperature in the step (1) of the present invention is 300-800°C, such as 320°C, 350°C, 370°C, 450°C, 480°C, 562°C, 650°C, 730°C, 775°C, etc.; the calcination time is 0.5- 4h, such as 0.8h, 1.2h, 1.6h, 2.3h, 2.8h, 3.3h, 3.8h, etc.
优选地,步骤(1)所述煅烧温度为500~600℃;煅烧时间为0.5~2h。Preferably, the calcination temperature in step (1) is 500-600°C; the calcination time is 0.5-2h.
优选地,步骤(1)所述煅烧在马弗炉、管式炉或箱式炉中进行。Preferably, the calcination in step (1) is carried out in a muffle furnace, tube furnace or box furnace.
在有机硅单体合成过程中,硅粉表面会沉积碳层,形成积碳,影响后续的反应活性,因此本发明将废触体进行煅烧处理,可以除去废触体表面的积碳。During the synthesis process of organosilicon monomer, a carbon layer will be deposited on the surface of silicon powder to form carbon deposits, which will affect the subsequent reaction activity. Therefore, the present invention can remove the carbon deposits on the surface of waste contacts by calcining the waste contacts.
本发明步骤(2)所述含氧化剂的氨-铵盐混合溶液中的氧化剂为空气、氧气或双氧水中的任意1种或至少2种的组合。The oxidizing agent in the ammonia-ammonium salt mixed solution containing the oxidizing agent in step (2) of the present invention is any one or a combination of at least two of air, oxygen or hydrogen peroxide.
优选地,步骤(2)所述氨-铵盐为同时含有氨水和铵盐,所述铵盐为氯化铵、碳酸铵或碳酸氢铵中的任意1种或至少2种的组合。Preferably, the ammonia-ammonium salt in step (2) contains both ammonia water and ammonium salt, and the ammonium salt is any one or a combination of at least two of ammonium chloride, ammonium carbonate or ammonium bicarbonate.
优选地,步骤(2)所述含氧化剂的氨-铵盐混合溶液中氨水与铵盐的摩尔比为1:1.5~5,例如1:1.6、1:1.9、1:2.3、1:2.6、1:3.5、1:4.2、1:4.8等。Preferably, the molar ratio of ammonia water to ammonium salt in the oxidant-containing ammonia-ammonium salt mixed solution in step (2) is 1:1.5 to 5, such as 1:1.6, 1:1.9, 1:2.3, 1:2.6, 1:3.5, 1:4.2, 1:4.8, etc.
优选地,步骤(2)所述含氧化剂的氨-铵盐混合溶液中,氨-铵盐与浸取的有机硅废触体的质量比为0.2~1:1,例如0.2:1、0.5:1、0.6:1、0.8:1等。Preferably, in the ammonia-ammonium salt mixed solution containing the oxidizing agent described in step (2), the mass ratio of the ammonia-ammonium salt to the leached organosilicon waste contact body is 0.2 to 1:1, such as 0.2:1, 0.5: 1, 0.6:1, 0.8:1, etc.
本发明步骤(2)所述浸取温度为20~100℃,例如25℃、32℃、38℃、46℃、55℃、68℃、75℃、88℃、95℃等,浸取时间为1~8h。The leaching temperature in the step (2) of the present invention is 20 to 100°C, such as 25°C, 32°C, 38°C, 46°C, 55°C, 68°C, 75°C, 88°C, 95°C, etc., and the leaching time is 1~8h.
优选地,步骤(2)所述浸取温度为20~70℃,浸取时间为3~5h。Preferably, the leaching temperature in step (2) is 20-70° C., and the leaching time is 3-5 hours.
本发明步骤(3)所述酸液选自硝酸、硫酸、盐酸或磷酸中的任意1种或至少2种的组合;The acid solution in step (3) of the present invention is selected from any one or a combination of at least two of nitric acid, sulfuric acid, hydrochloric acid or phosphoric acid;
优选地,所述酸液中H+的浓度为2~10mol/L,例如3mol/L、5mol/L、9mol/L等;Preferably, the concentration of H + in the acid solution is 2-10 mol/L, such as 3 mol/L, 5 mol/L, 9 mol/L, etc.;
优选地,所述酸液的加入量与含硅固体残渣的质量比为0.5~1:1。Preferably, the mass ratio of the added amount of the acid solution to the silicon-containing solid residue is 0.5˜1:1.
本发明步骤(3)所述浸泡温度为20~60℃,例如23℃、25℃、36℃、42℃、48℃、55℃等,浸泡时间为1~10h;优选所述浸泡温度为20~60℃,浸泡时间为3~5h。The soaking temperature in the step (3) of the present invention is 20~60°C, such as 23°C, 25°C, 36°C, 42°C, 48°C, 55°C, etc., and the soaking time is 1~10h; preferably the soaking temperature is 20°C. ~60℃, soaking time is 3~5h.
本发明步骤(4)所述硅粉与水的质量比为1:1~20,例如1:2、1:6、1:12、1:15、1:18、1:19等。The mass ratio of silicon powder and water in the step (4) of the present invention is 1:1-20, such as 1:2, 1:6, 1:12, 1:15, 1:18, 1:19, etc.
本发明步骤(4)所述催化剂选自氢氧化钠、氢氧化钾、氢氧化锂、氨水、硅酸钠或硅酸钾中的任意1种或至少2种的组合。The catalyst in the step (4) of the present invention is selected from any one or a combination of at least two of sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonia water, sodium silicate or potassium silicate.
优选地,步骤(4)所述催化剂和硅粉的质量比为0.02~0.1:1,例如0.04:1、0.06:1、0.12:1、0.15:1、0.18:1等。Preferably, the mass ratio of the catalyst and silicon powder in step (4) is 0.02-0.1:1, such as 0.04:1, 0.06:1, 0.12:1, 0.15:1, 0.18:1, etc.
本发明步骤(4)所述加热搅拌的温度为30~100℃,例如40℃、50℃、68℃、85℃、92℃等,时间为3~10h;The heating and stirring temperature in step (4) of the present invention is 30-100°C, such as 40°C, 50°C, 68°C, 85°C, 92°C, etc., and the time is 3-10h;
优选地,步骤(4)所述加热搅拌的温度为80~90℃,时间为8~10h;Preferably, the temperature of heating and stirring in step (4) is 80-90° C., and the time is 8-10 hours;
优选地,步骤(4)所述静置时间为5h以上,例如6h、8h、11h、16h、20h、23h、25h等,优选10h以上。Preferably, the standing time in step (4) is more than 5h, such as 6h, 8h, 11h, 16h, 20h, 23h, 25h, etc., preferably more than 10h.
硅粉表面含有一层惰性膜,主要为二氧化硅膜,它可以将内部物质钝化,阻止反应发生。本发明在进行与催化剂反应之前进行活化,可以去除硅粉表面的氧化层,增加反应活性,使反应更易发生,否则处于钝化状态的硅粉将会延长反应所需时间。The surface of silicon powder contains an inert film, mainly silicon dioxide film, which can passivate the internal substances and prevent the reaction from happening. The invention activates before reacting with the catalyst, which can remove the oxide layer on the surface of the silicon powder, increase the reaction activity, and make the reaction more likely to occur, otherwise the silicon powder in a passivated state will prolong the time required for the reaction.
作为优选技术方案,本发明所述有机硅废触体的回收方法,包括如下步骤:As a preferred technical solution, the method for recycling organic silicon waste contacts of the present invention includes the following steps:
(1)在300~800℃下,对有机硅废触体进行煅烧,煅烧时间为0.5~4h,将废触体表面的积碳除去;(1) Calcining the waste organosilicon contacts at 300-800°C for 0.5-4 hours to remove the carbon deposits on the surface of the waste contacts;
(2)向步骤(1)得到的样品中加入含氧化剂的氨-铵盐混合溶液进行浸取,浸取温度20~100℃,浸取时间为1~8h,经过滤、洗涤、干燥后得到含硅固体残渣;(2) Add an ammonia-ammonium salt mixed solution containing an oxidant to the sample obtained in step (1) for leaching, the leaching temperature is 20-100°C, the leaching time is 1-8h, and after filtering, washing and drying, the obtained Silicon-containing solid residue;
(3)向步骤(2)所得的含硅固体残渣中加入酸液,在温度20~60℃下,浸泡1~10h,经分离、洗涤、干燥后得到硅粉;(3) adding acid solution to the silicon-containing solid residue obtained in step (2), soaking for 1-10 hours at a temperature of 20-60° C., and obtaining silicon powder after separation, washing and drying;
(4)将步骤(3)得到的硅粉与水充分混合,得到混合悬浮液,然后在30~100℃温度条件下活化反应10~60min;向所得混合悬浮液中加入催化剂,加热反应,其中所加入催化剂的量与步骤(3)所得硅粉的质量比为0.02:1~0.1:1,反应后进行固液分离,除去未反应的硅粉,得到的溶液即为硅溶胶。(4) Fully mix the silicon powder obtained in step (3) with water to obtain a mixed suspension, and then activate the reaction at a temperature of 30-100° C. for 10-60 minutes; add a catalyst to the obtained mixed suspension, and heat the reaction, wherein The mass ratio of the amount of the added catalyst to the silicon powder obtained in step (3) is 0.02:1-0.1:1. After the reaction, solid-liquid separation is carried out to remove unreacted silicon powder, and the obtained solution is silica sol.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明提供了采用有机硅合成工业的固体残渣废触体经过煅烧、氨浸(氨-铵盐浸)、酸浸获得纯度较高的硅粉,然后分散在含有碱性催化剂的水溶液中获得硅溶胶的方法,该方法节省了生产成本,具有明显的经济效益;降低了废触体对环境的污染,具有明显的环保效益;(1) The present invention provides the silicon powder with higher purity obtained by calcination, ammonia leaching (ammonia-ammonium salt leaching) and acid leaching using the solid residue waste contacts of the organic silicon synthesis industry, and then dispersed in an aqueous solution containing an alkaline catalyst The method of obtaining silica sol, which saves production costs and has obvious economic benefits; reduces the pollution of waste contacts to the environment and has obvious environmental benefits;
(2)本发明提供的方法可以制备出纯度较高的硅粉,既避免了重金属排放造成环境污染,又能实现物料的循环利用;(2) The method provided by the invention can prepare silicon powder with higher purity, which not only avoids environmental pollution caused by heavy metal discharge, but also realizes the recycling of materials;
(3)本发明提供的方法操作简便、成本低廉;使用的试剂市场常见,物料成本投资低,易于实现大规模生产。(3) The method provided by the invention is easy to operate and low in cost; the reagents used are common in the market, the cost of materials is low, and it is easy to realize large-scale production.
附图说明Description of drawings
图1为实施例1步骤(3)得到的硅粉的XRD谱图;Fig. 1 is the XRD spectrogram of the silicon powder that embodiment 1 step (3) obtains;
图2为实施例1制得硅溶胶的SEM图;Fig. 2 is the SEM figure that embodiment 1 makes silica sol;
图3为对比例提供的硅溶胶的SEM图。Fig. 3 is the SEM image of the silica sol provided in the comparative example.
具体实施方式Detailed ways
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。In order to facilitate understanding of the present invention, the present invention enumerates the following examples. It should be clear to those skilled in the art that the embodiments are only for helping to understand the present invention, and should not be regarded as specific limitations on the present invention.
实施例1Example 1
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到马弗炉中500℃煅烧1h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a muffle furnace for calcination at 500°C for 1 hour to remove carbon deposits on the surface of the particles;
(2)将步骤(1)得到的固体中加入17g碳酸铵,36g(25.0wt%)氨水,200mL水,在20℃下,通空气搅拌浸取3h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 17g of ammonium carbonate, 36g (25.0wt%) ammonia water, and 200mL of water to the solid obtained in step (1), at 20°C, stir and leach for 3 hours with air, after the leaching is complete, suction filter, wash, and dry A silicon-containing solid residue is obtained;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,20℃浸泡3h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为97.3%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 20°C for 3h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 97.3%;
(4)取15g步骤(3)获得的硅粉,加入200mL水分散,在80℃下活化30min,得到悬浮液;然后加入0.5g氢氧化钠,80℃下搅拌反应8h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 15g of the silicon powder obtained in step (3), add 200mL of water to disperse, and activate at 80°C for 30min to obtain a suspension; then add 0.5g of sodium hydroxide, stir and react at 80°C for 8h; then let stand overnight, Then suction filter to remove the unreacted silicon particles to obtain the silica sol.
性能测试:Performance Testing:
将实施例1从废触体回收得到的硅粉在荷兰Panalytical公司(帕纳科)生产的X′Pert PRO MPD型多功能X射线衍射仪上进行XRD测试;结果如图1所示,图1为实施例1步骤(3)得到的硅粉的XRD谱图,其中的衍射峰均为硅的特征衍射峰,未有其它的杂峰,表明采用该法实现了硅的提纯;The silicon powder that embodiment 1 reclaims from waste contacts is carried out XRD test on the X 'Pert PRO MPD type multifunctional X-ray diffractometer that Holland Panalytical Company (Panalytical) produces; Result is as shown in Figure 1, and Figure 1 It is the XRD spectrogram of the silicon powder that embodiment 1 step (3) obtains, and the diffraction peak wherein is the characteristic diffraction peak of silicon, does not have other miscellaneous peaks, shows that adopts this method to realize the purification of silicon;
将实施例1制备的硅溶胶在日本电子公司生产的JSM6700型号场发射扫描电镜观测表面形貌;图2为实施例1制得硅溶胶的SEM图。The silica sol prepared in Example 1 was used to observe the surface morphology of the JSM6700 field emission scanning electron microscope produced by Japan Electronics Corporation; FIG. 2 is an SEM image of the silica sol prepared in Example 1.
实施例2Example 2
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到马弗炉中500℃煅烧30min,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a muffle furnace for calcination at 500°C for 30 minutes to remove carbon deposits on the surface of the particles;
(2)将步骤(1)得到的固体中加入22.5g碳酸铵,40g(25.0wt%)氨水,200mL水,在40℃下,通空气搅拌浸取反应3h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 22.5g of ammonium carbonate, 40g (25.0wt%) ammonia water, and 200mL of water to the solid obtained in step (1), at 40°C, stir and leaching with air for 3h, after leaching is complete, suction filter and wash , dried to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,30℃浸泡3h,溶解其中的各种金属元素,然后减压抽滤;滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为96.8%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 30°C for 3h, dissolve various metal elements therein, and then filter under reduced pressure; the filter residue is washed with water to pH ≈ 7, and then Vacuum dry in a vacuum oven at 90°C for 2 hours to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 96.8%;
(4)取15g步骤(3)获得的硅粉,加入200mL水分散,在80℃下活化30min,得到悬浮液;然后加入0.5g氢氧化钠,90℃下搅拌反应8h;将液体静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 15g of silicon powder obtained in step (3), add 200mL of water to disperse, and activate at 80°C for 30min to obtain a suspension; then add 0.5g of sodium hydroxide, stir and react at 90°C for 8h; let the liquid stand overnight , and then suction filtered to remove the unreacted silicon particles to obtain silica sol.
实施例3Example 3
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到马弗炉中550℃煅烧1h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a muffle furnace for calcination at 550°C for 1 hour to remove carbon deposits on the surface of the particles;
(2)将步骤(1)得到的固体中加入20g碳酸铵,45.5g(25.0wt%)氨水,200mL水,在60℃下,通空气搅拌浸取3h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 20g ammonium carbonate, 45.5g (25.0wt%) ammoniacal liquor, 200mL water to the solid obtained in step (1), at 60°C, stir and leach for 3h in air, after the leaching is complete, suction filter and wash, Dry to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,40℃浸泡3h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为97.2%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 40°C for 3h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 97.2%;
(4)取25g步骤(3)获得的硅粉,加入200mL水分散,在80℃下活化30min,得到悬浮液;然后加入1.0g氢氧化钠,80℃下搅拌反应8h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 25g of the silicon powder obtained in step (3), add 200mL of water to disperse, and activate at 80°C for 30min to obtain a suspension; then add 1.0g of sodium hydroxide, stir and react at 80°C for 8h; then let stand overnight, Then suction filter to remove the unreacted silicon particles to obtain the silica sol.
实施例4Example 4
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到马弗炉中550℃煅烧2h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a muffle furnace for calcination at 550°C for 2 hours to remove carbon deposits on the surface of the particles;
(2)将步骤(1)得到的固体中加入25g碳酸氢铵,53.5g(25.0wt%)氨水,200mL水,在40℃下,通空气搅拌浸取5h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 25g of ammonium bicarbonate, 53.5g (25.0wt%) ammonia water, and 200mL of water to the solid obtained in step (1), and stir and leach for 5h at 40°C. After the leaching is completed, suction filter and wash , dried to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的硝酸,25℃浸泡3h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(硝酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为96.8%;(3) Add 100mL of 20wt% nitric acid to the silicon-containing solid residue obtained in step (2), soak at 25°C for 3h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (nitric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 96.8%;
(4)取25g步骤(3)获得的硅粉,加入200mL水分散,在80℃下活化30min,得到悬浮液;然后加入1.0g氢氧化钠,90℃下搅拌反应8h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 25g of the silicon powder obtained in step (3), add 200mL of water to disperse, and activate at 80°C for 30min to obtain a suspension; then add 1.0g of sodium hydroxide, stir and react at 90°C for 8h; then let stand overnight, Then suction filter to remove the unreacted silicon particles to obtain the silica sol.
实施例5Example 5
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到管式炉中500℃30min,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a tube furnace at 500°C for 30min to remove carbon deposits on the particle surface;
(2)将步骤(1)得到的固体中加入22.7g碳酸氢铵,58.5g(25.0wt%)氨水,200mL水,在50℃下,通空气搅拌浸取5h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 22.7g ammonium bicarbonate, 58.5g (25.0wt%) ammoniacal liquor, 200mL water to the solid obtained in step (1), at 50°C, stir and leach for 5h in air, after the leaching is complete, suction filtration, Washing and drying to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的硝酸,30℃浸泡3h,溶解其中的各种金属元素,然后减压抽滤;滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(硝酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为97.4%;(3) Add 100mL of 20wt% nitric acid to the silicon-containing solid residue obtained in step (2), soak at 30°C for 3h, dissolve various metal elements therein, and then filter under reduced pressure; the filter residue is washed with water to pH ≈ 7, and then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (nitric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide until pH ≈ 7 and discharged; the prepared silicon powder has a purity of 97.4%;
(4)取30g步骤(3)获得的硅粉,加入200mL水分散,在80℃下活化30min,得到悬浮液;然后加入1.0g氢氧化钠,90℃下搅拌反应8h;将液体静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 30g of silicon powder obtained in step (3), add 200mL of water to disperse, activate at 80°C for 30min, and obtain a suspension; then add 1.0g of sodium hydroxide, stir and react at 90°C for 8h; let the liquid stand overnight , and then suction filtered to remove the unreacted silicon particles to obtain silica sol.
实施例6Example 6
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到管式炉中500℃煅烧1h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a tube furnace for calcination at 500°C for 1 hour to remove carbon deposits on the particle surface;
(2)将步骤(1)得到的固体中加入25g碳酸铵,35.5g(25.0wt%)氨水,200mL水,在60℃下,通空气搅拌浸取5h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 25g ammonium carbonate, 35.5g (25.0wt%) ammoniacal liquor, 200mL water to the solid obtained in step (1), at 60°C, stir and leach for 5h in air, after leaching, suction filter and wash, Dry to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,50℃浸泡5h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为96.9%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 50°C for 5h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 96.9%;
(4)取20g上述获得的硅粉,加入200mL水,在80℃下活化30min,得到悬浮液;然后加入0.5g氢氧化钠,80℃下搅拌反应10h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 20g of the silicon powder obtained above, add 200mL of water, and activate at 80°C for 30min to obtain a suspension; then add 0.5g of sodium hydroxide, stir and react at 80°C for 10h; then let stand overnight, and then suction filter, The unreacted silicon particles are removed to obtain the silica sol.
实施例7Example 7
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到管式炉中550℃煅烧1h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a tube furnace for calcination at 550°C for 1 hour to remove carbon deposits on the particle surface;
(2)将步骤(1)得到的固体中加入30g碳酸铵,42.6g(25.0wt%)氨水,200mL水,在60℃下,通空气搅拌浸取反应5h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 30g of ammonium carbonate, 42.6g (25.0wt%) ammonia water, and 200mL of water to the solid obtained in step (1), and stir and leaching with air for 5 hours at 60°C. After the leaching is completed, suction filter and wash , dried to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,50℃浸泡7h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为97.3%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 50°C for 7h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide to pH ≈ 7 and discharged; the prepared silicon powder has a purity of 97.3%;
(4)取30g上述获得的硅粉,加入200mL水,在80℃下活化30min,得到悬浮液;然后加入1.0g氢氧化钠,80℃下搅拌反应10h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 30g of the silicon powder obtained above, add 200mL of water, and activate at 80°C for 30min to obtain a suspension; then add 1.0g of sodium hydroxide, stir and react at 80°C for 10h; then let stand overnight, and then suction filter, The unreacted silicon particles are removed to obtain the silica sol.
实施例8Example 8
一种有机硅废触体的回收方法,包括如下步骤:A method for recycling organic silicon waste contacts, comprising the steps of:
(1)称取100g废触体,放入到管式炉中600℃煅烧1h,以去除颗粒表面的积碳;(1) Weigh 100g of waste contacts and put them into a tube furnace for calcination at 600°C for 1 hour to remove carbon deposits on the surface of the particles;
(2)将步骤1得到的固体中加入30g碳酸氢铵,68.3g(25.0wt%)氨水,200mL水,在70℃下,通空气搅拌浸取反应5h,浸取完毕,抽滤、洗涤,干燥得到含硅固体残渣;(2) Add 30 g of ammonium bicarbonate, 68.3 g (25.0 wt %) of ammonia water, and 200 mL of water to the solid obtained in step 1, and at 70° C., stir and leaching with air for 5 h, after leaching is completed, suction filter and wash, Dry to obtain a silicon-containing solid residue;
(3)向步骤(2)得到的含硅固体残渣中加入100mL 20wt%的盐酸,60℃浸泡5h,溶解其中的各种金属元素,然后减压抽滤,滤渣用水清洗至pH≈7,之后在真空干燥箱中90℃真空干燥2h得到硅粉;酸液(盐酸)可以重复使用至不能再使用时用氢氧化钠中和至pH≈7排放;制备得到的硅粉纯度为97.5%;(3) Add 100mL of 20wt% hydrochloric acid to the silicon-containing solid residue obtained in step (2), soak at 60°C for 5h, dissolve various metal elements therein, then filter under reduced pressure, and wash the filter residue with water to pH ≈ 7, then Vacuum dry at 90°C for 2 hours in a vacuum drying oven to obtain silicon powder; the acid solution (hydrochloric acid) can be reused until it can no longer be used, and then neutralized with sodium hydroxide until pH ≈ 7; the prepared silicon powder has a purity of 97.5%;
(4)取30g上述获得的硅粉,加入200mL水,在80℃下活化30min,得到悬浮液;然后加入1.0g氢氧化钠,90℃下搅拌反应10h;之后静置过夜,然后抽滤,除掉其中未反应的硅颗粒,即获得硅溶胶。(4) Take 30g of the silicon powder obtained above, add 200mL of water, and activate at 80°C for 30min to obtain a suspension; then add 1.0g of sodium hydroxide, stir and react at 90°C for 10h; then let stand overnight, and then suction filter, The unreacted silicon particles are removed to obtain the silica sol.
对比例comparative example
商购硅溶胶,购自北京红星广厦化工建材有限公司的hx型号硅溶胶。Commercially available silica sol was purchased from Beijing Hongxing Guangsha Chemical Building Materials Co., Ltd. hx type silica sol.
图3为对比例提供的硅溶胶的SEM图;图2和图3所给出的硅溶胶均呈球形。Fig. 3 is the SEM image of the silica sol provided in the comparative example; the silica sols shown in Fig. 2 and Fig. 3 are all spherical.
实施例和对比例的性能测试结果见表1:The performance test result of embodiment and comparative example is shown in Table 1:
表1实施例和对比例提供的硅溶胶的性能测试结果The performance test result of the silica sol that table 1 embodiment and comparative example provide
性能测试方法为:SiO2含量:高温灼烧法;Na2O含量与平均粒径:滴定法;pH:PHS-3C型pH计;密度:波美比重计。The performance test methods are: SiO 2 content: high temperature burning method; Na 2 O content and average particle size: titration method; pH: PHS-3C pH meter; density: Baume hydrometer.
行业标准为:The industry standard is:
SiO2含量:≥20wt%;Na2O含量:≤0.4wt%;pH:9.0~10.0;25℃密度:1.12-1.21g/cm3;平均粒径,≤100nm。SiO 2 content: ≥20wt%; Na 2 O content: ≤0.4wt%; pH: 9.0-10.0; 25°C density: 1.12-1.21g/cm 3 ; average particle size, ≤100nm.
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the detailed process equipment and process flow of the present invention through the above-mentioned examples, but the present invention is not limited to the above-mentioned detailed process equipment and process flow, that is, it does not mean that the present invention must rely on the above-mentioned detailed process equipment and process flow process can be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510218038.0A CN104843721B (en) | 2015-04-30 | 2015-04-30 | A kind of recovery method of abandoned catalyst in direct synthesis methylchlorosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510218038.0A CN104843721B (en) | 2015-04-30 | 2015-04-30 | A kind of recovery method of abandoned catalyst in direct synthesis methylchlorosilane |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104843721A true CN104843721A (en) | 2015-08-19 |
CN104843721B CN104843721B (en) | 2017-03-01 |
Family
ID=53843772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510218038.0A Active CN104843721B (en) | 2015-04-30 | 2015-04-30 | A kind of recovery method of abandoned catalyst in direct synthesis methylchlorosilane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104843721B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105152174A (en) * | 2015-09-22 | 2015-12-16 | 中橡集团炭黑工业研究设计院 | Preparing method for high-purity white carbon black |
CN106744996A (en) * | 2016-11-28 | 2017-05-31 | 济南汇川硅溶胶厂 | A kind of Ludox and preparation method thereof |
CN109319795A (en) * | 2018-10-18 | 2019-02-12 | 江西星火狮达科技有限公司 | The method of recycling purification silicon powder production silica solution from organosilicon slag |
CN114349010A (en) * | 2022-02-23 | 2022-04-15 | 新疆大全绿创环保科技有限公司 | Method for removing carbon from waste silicon powder after copper extraction |
CN115058586A (en) * | 2022-06-30 | 2022-09-16 | 武汉理工大学 | A method for recovering copper and silicon powder from organic silicon waste contact body |
CN116462199A (en) * | 2023-05-08 | 2023-07-21 | 昆明理工大学 | Method for removing carbon in organosilicon waste contact and waste slurry slag |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853685A (en) * | 1996-08-28 | 1998-12-29 | Erickson; William R. | Process for the production of high purity silica from waste by-product silica and hydrogen fluoride |
CN1760124A (en) * | 2005-11-11 | 2006-04-19 | 山东大学 | Method for reactivating and regenerating waste silicon powder |
CN102795653A (en) * | 2011-05-25 | 2012-11-28 | 中国科学院过程工程研究所 | Method for recycling copper oxide and zinc oxide from organosilicon spent contact mass |
CN102908987A (en) * | 2012-09-19 | 2013-02-06 | 大连理工大学 | Preparation method and applications for continuous silica-based waste adsorbent |
-
2015
- 2015-04-30 CN CN201510218038.0A patent/CN104843721B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853685A (en) * | 1996-08-28 | 1998-12-29 | Erickson; William R. | Process for the production of high purity silica from waste by-product silica and hydrogen fluoride |
CN1760124A (en) * | 2005-11-11 | 2006-04-19 | 山东大学 | Method for reactivating and regenerating waste silicon powder |
CN102795653A (en) * | 2011-05-25 | 2012-11-28 | 中国科学院过程工程研究所 | Method for recycling copper oxide and zinc oxide from organosilicon spent contact mass |
CN102908987A (en) * | 2012-09-19 | 2013-02-06 | 大连理工大学 | Preparation method and applications for continuous silica-based waste adsorbent |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105152174A (en) * | 2015-09-22 | 2015-12-16 | 中橡集团炭黑工业研究设计院 | Preparing method for high-purity white carbon black |
CN106744996A (en) * | 2016-11-28 | 2017-05-31 | 济南汇川硅溶胶厂 | A kind of Ludox and preparation method thereof |
CN109319795A (en) * | 2018-10-18 | 2019-02-12 | 江西星火狮达科技有限公司 | The method of recycling purification silicon powder production silica solution from organosilicon slag |
CN109319795B (en) * | 2018-10-18 | 2020-07-31 | 江西星火狮达科技有限公司 | Method for producing silica sol by recovering and purifying silicon powder from organic silicon slag |
CN114349010A (en) * | 2022-02-23 | 2022-04-15 | 新疆大全绿创环保科技有限公司 | Method for removing carbon from waste silicon powder after copper extraction |
CN115058586A (en) * | 2022-06-30 | 2022-09-16 | 武汉理工大学 | A method for recovering copper and silicon powder from organic silicon waste contact body |
CN116462199A (en) * | 2023-05-08 | 2023-07-21 | 昆明理工大学 | Method for removing carbon in organosilicon waste contact and waste slurry slag |
CN116462199B (en) * | 2023-05-08 | 2024-10-22 | 昆明理工大学 | A method for removing carbon from waste silicone contacts and waste pulp residues |
Also Published As
Publication number | Publication date |
---|---|
CN104843721B (en) | 2017-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104843721B (en) | A kind of recovery method of abandoned catalyst in direct synthesis methylchlorosilane | |
KR101609803B1 (en) | PROCESS FOR THE COMPREHENSIVE RECOVERY OF METAL COBALT, RUTHENIUM AND ALUMINUM FROM WASTE CATALYST Co-Ru/Al2O3 IN FISCHER-TROPSCH SYNTHESIS | |
CN105478120B (en) | A kind of preparation method of red mud base Fe-series catalyst and its application in methane cracking hydrogen production | |
CN102320615B (en) | A kind of take SILICA FUME as the method that precipitated silica is prepared in raw material carbonization | |
CN1872418A (en) | Method for recovering ruthenium catalyst carried by active carbon | |
CN106587046B (en) | A kind of method of purification of diamond | |
CN102784643B (en) | A ternary copper catalyst prepared from copper powder recovered from organic silicon waste contacts and its preparation method | |
CN101920957A (en) | A kind of preparation method of high-purity graphite | |
CN104418370B (en) | Method and device for preparing anhydrous magnesium chloride | |
CN101704526B (en) | Method for producing white carbon black and active carbon by using residual rice hull ash after gasification | |
CN101200298A (en) | Method for extracting high-purity ultra-fine alumina from fly ash | |
CN110817881B (en) | Silicon-transition metal silicide nanocomposite material and its preparation method and application | |
CN105540622A (en) | Recycling and re-preparation method of silicon-steel level magnesium oxide | |
CN110950322B (en) | A method for preparing carbon nanotube composite carbon material by using red mud and raw coal | |
CN111268747B (en) | A method and system for recycling cathode material of waste ternary battery based on hydrochloric acid regeneration cycle | |
CN108607523A (en) | A kind of sorbing material and preparation method thereof of Selective Separation indium | |
CN113318768A (en) | Composite photocatalyst and preparation method thereof | |
CN107902660B (en) | Method for preparing SiO2-based ATO conductive powder material from yellow phosphorus slag | |
CN102491382B (en) | Method for preparing anhydrous magnesium chloride by utilizing ammonium camallite | |
CN113044862B (en) | A method for dehydrating different ammonium carnallite materials by utilizing the synergistic coupling effect between them | |
CN105197940A (en) | Method for preparing white carbon black from water-quenched blast furnace slag | |
CN113106498B (en) | A kind of device and method for continuous production of metallic magnesium | |
CN115893470B (en) | Micron-sized copper sulfide and preparation method and application thereof | |
CN115739203B (en) | A kind of loaded iron oxide activated carbon based on gasification slag reuse and its preparation method | |
CN104310404A (en) | Method for hydrothermal synthesis of silicon nano-powder from minerals, product and application of silicon nano-powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190507 Address after: 100190 Science and Technology Development Department, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, North Second Article, Zhongguancun, Haidian District, Beijing Patentee after: Institute of Process Engineering, Chinese Academy of Sciences Address before: 100190 No. 1 north of Zhongguancun, Haidian District, Haidian District, Beijing Co-patentee before: Nanjing He Feng new chemical materials Science and Technology Ltd. Patentee before: Institute of Process Engineering, Chinese Academy of Sciences |