CN104837015B - Low latency coding adaptation QP Offset adjusting methods - Google Patents

Low latency coding adaptation QP Offset adjusting methods Download PDF

Info

Publication number
CN104837015B
CN104837015B CN201510217441.1A CN201510217441A CN104837015B CN 104837015 B CN104837015 B CN 104837015B CN 201510217441 A CN201510217441 A CN 201510217441A CN 104837015 B CN104837015 B CN 104837015B
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
offset
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510217441.1A
Other languages
Chinese (zh)
Other versions
CN104837015A (en
Inventor
周益民
朱策
钟敏
罗敏珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510217441.1A priority Critical patent/CN104837015B/en
Publication of CN104837015A publication Critical patent/CN104837015A/en
Application granted granted Critical
Publication of CN104837015B publication Critical patent/CN104837015B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a kind of low latency coding adaptation QP Offset adjusting methods, belong to technical field of video coding, be related to a kind of adaptive QP Offset adjusting methods under low latency (low delay, LD) coding structure.The present invention considers video source motion intense degree QP Offset allocation strategy, information source distortion time domain propagation chain is constructed first, then the severe degree that current encoded frame moves and the influence to next code frame are calculated by source distortion statistical, finally provides the QP Offset values of adaptive current encoded frame.

Description

Low latency coding adaptation QP Offset adjusting methods
Technical field
The invention belongs to technical field of video coding.Specifically, it is to be related to encode in low latency (low-delay, LD) A kind of adaptive QP Offset adjusting methods under structure.In the case where there is maximum QP Offset restrictive conditions, target of the invention It is by adaptive regulation method, and then provides frame coded quantization parameter (QP) value, lifts coding efficiency.
Background technology
It is most of all to be set using the QP Offset of layering to be encoded at present in the video encoder of main flow.It is this Empirically value sets and not changed in an encoding process the QP Offset of layering in an encoding process.In video In cataloged procedure, the picture frame of motion intense influences to be far smaller than when moving slow to subsequent image frames in information source content Situation, therefore the picture frame of motion intense should distribute larger QP Offset, move slow picture frame should distribute it is smaller QP Offset.Layering QP Offset technologies that are presetting and maintaining a fixed value unchanged do not account for video source content Change, will cause the reduction of coding efficiency.Therefore, the motion intense degree of video source is different, the quantization parameter QP for coding Also should difference.
For the above situation, in order to lift coding efficiency, solve non-self-adapting present in layering QP Offset technologies and ask Topic, The present invention gives a kind of adaptive QP Offset adjusting methods for low latency coding.The inventive method is by video source The intensity of variation of content is considered in the QP Offset regulations of layering.
The content of the invention
The present invention considers video source motion intense degree QP Offset allocation strategy, constructs information source first Distortion time domain propagation chain, then by source distortion statistical come calculate current encoded frame move severe degree and to next code The influence of frame, finally provide the QP Offset values of adaptive current encoded frame.The technical solution adopted by the present invention is as follows:
1. the estimation of frame level source distortion
In an encoding process, coding unit is using primitive frame as reference frame, the mean square deviation of the residual error obtained after estimating motion, note It is source movement compensating distortion DOMCP.According to whole coding unit Ut,iPixel value Ft,i, calculate coding unit Ut,iSource distortion
Wherein, t represents the present encoding moment, and i represents that a two field picture splits blocking block designation.
The calculating of formula (1) can directly utilize interframe movement estimation algorithm.Without loss of generality, full searching can be used, Also fast search algorithm such as hexagon method, diamond method etc. can be used.
Because adaptive QP Offset adjusting methods are for frame level, and coding unit Ut,iSource distortionIt is For coding unit, it is therefore desirable to which the source distortion of coding unit is converted into frame level source distortion.According to coding unit Ut,i's Source distortionThe frame level source distortion at coding moment t is calculated
Wherein, M is all coding unit numbers in t frames.
2.QP Offset automatic adjusuments
Video source motion intense degree is considered in adaptive QP Offset adjusting methods, lost according to frame level source VeryIt is estimated that the severe degree of current frame motion.Utilize formula (3)
The motion intense degree of current t frames is calculated, uses mtRepresent.
According to exercise intensity mt, calculate shown in its differential term such as formula (4),
Calculate shown in its integral term such as formula (5),
Wherein l is GOP length, and generally value is 4 in low-delay codings;W is the length of sliding window, preferably Add 1 for its GOP length l.
To the motion intense degree m of present frametHandled, utilize formula
QP Offset increment is calculated, so as to carry out automatic adjusument to the QP Offset of every frame.Wherein, Δ QPt offsetRepresent QP Offset increments.F is scale factor, and the f value spans of key frame (t divides exactly GOP length) are in section In [120,240], it is 180 generally to give tacit consent to value;Non-key frame f value span is generally given tacit consent in section [70,140] Value is 105.
According to QP Offset increment Deltas QPt offset, utilize formula (7)
Calculate the QP Offset of present frame.
The QP Offset maximums that different coding device provides in advance are different, with max { QPoffsetThe default pole of presentation code device Big QP Offset values.The value is 3 in HEVC, and the value is 5 in AVS-2.For being consistent property, it is necessary to by after regulation QP Offset limitation max { QPoffsetWithin and be bundled in reasonable interval, as shown in formula (8).
Moment t is being encoded, the QP of present frame, the coding for present frame are calculated using formula (9).
QPt=QPbase+QPt offset (9)
Wherein, QPbaseThe default benchmark QP values of presentation code device, generally it is exactly first I- frames QP values.QPtRepresent that t is used for The QP values of coding.
Brief description of the drawings
Fig. 1 is the key step flow chart of the present invention;
Fig. 2 is position of the present invention in major video encoder frame;
Fig. 3 is operation result of the present invention under different cycle tests;
Fig. 4 is the logical sequencing row of AVS-2 and frame number;
Fig. 5 is BD-Rate performances of the invention in the logical survey of AVS-2 low latencies.
Embodiment
The invention will be further described with reference to the accompanying drawings and examples, and embodiments of the present invention include but is not limited to The following example.
Fig. 1 is the key step flow chart of adaptive QP Offset adjusting methods, is specifically included:
Step 101:The source distortion of coding unit calculates.Extract all coding unit U of present framet,iPixel value Ft,i, profit Use formula
Calculate the source distortion of all coding units of present frame
Step 102:Frame level motion compensation distortion is estimated.The source of all coding units of present frame obtained according to step 101 DistortionUtilize formula
Calculate frame level motion compensation distortion
Step 103:Motion intense strength estimation.The frame level motion compensation distortion calculated according to step 102, utilizes formula
Estimate the exercise intensity m of present framet, and new mtWrite into sliding window, for updating in sliding window Data.
Step 104:QP Offset incremental computations.Sliding window size w=5 is read, takes out w data m in windowt, mt-1,…,mt-w, the GOP length l=4 under LD patterns are read, according to formula
Respectively obtain exercise intensity mtDifferential term and integral term.Combine the empirical value f read, utilize formula
Calculate QP Offset increment Deltas QPt offset
Step 105:QP Offset automatic adjusuments.The Δ QP obtained according to step 104t offsetIt is default with encoder QP Offset, utilize formula
Calculate the QP Offset after adjustment.The default maximum QP Offset of encoder are read, utilize formula
QP Offset are limited in max { QPoffsetWithin and be bundled in reasonable interval.
Step 106:Calculate QP values.The QP obtained according to step 105t offsetWith the default QP of encoderbase, utilize formula
QPt=QPbase+QPt offset
Calculate QPt, encoded for t frames.
The present invention has been realized integrated and interface is provided in a manner of dynamic link, and it is in major video encoder frame Position is as shown in Figure 2.In order to illustrate the overall performance of the present invention, by taking AVS-2 (10.1 version) encoder as an example, can directly adjust With interface of the present invention, QP Offset automatic adjusuments are realized.
The logical survey condition formulated according to AVS-2, cycle tests is as shown in figure 4, the QP Offset automatic adjusuments of the present invention Method is implemented under LDP configurations, and the standard configuration testing under 27,32,38,45 4 measuring points.Test result such as Fig. 5 institutes Show, BD-Rate represents the relation between bit rate and distortion, and it is a percentages, and its value is that negative indication reaches identical Visual quality, the ratio that bit rate is saved, for the positive ratio for representing bit rate and excessively consuming.From figure 5 it can be seen that this hair After bright QP Offset automatic adjusuments function is opened, BD-Rate obtains obvious gain under LDP coding structures.
Fig. 3 is operation result of the present invention under different cycle tests.X- axial coordinates represent the time that video image plays Scale, Y- axles represent QP Offset values.It can be seen that QP Offset values can change with the change of video source contents, show QP Offset adjusting methods of the present invention possess very strong adaptive ability.

Claims (5)

1. a kind of low latency coding adaptation QP Offset adjusting methods, it is characterised in that comprise the following steps:
Step 1: the estimation of frame level source distortion
In an encoding process, coding unit the mean square deviation of the residual error obtained after estimating motion, is denoted as source using primitive frame as reference frame Motion compensation distortion DOMCP;According to whole coding unit Ut,iPixel value Ft,i, calculate coding unit Ut,iSource distortion
<mrow> <msubsup> <mi>D</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>P</mi> </mrow> </msubsup> <mo>=</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, t represents the present encoding moment, and i represents that a two field picture splits blocking block designation;
The source distortion of coding unit is converted into frame level source distortion, according to coding unit Ut,iSource distortionCalculate To coding moment t frame level source distortion
<mrow> <msubsup> <mi>D</mi> <mi>t</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>P</mi> </mrow> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>D</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>P</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, M is all coding unit numbers in t frames;
Step 2: QP Offset automatic adjusuments
Video source motion intense degree is considered in adaptive QP Offset adjusting methods, according to frame level source distortionIt is estimated that the severe degree of current frame motion, is utilized formula (3)
<mrow> <msub> <mi>m</mi> <mi>t</mi> </msub> <mo>=</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mrow> <mo>(</mo> <msubsup> <mi>D</mi> <mi>t</mi> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>M</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>D</mi> <mrow> <mi>t</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mi>O</mi> <mi>M</mi> <mi>C</mi> <mi>P</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
The motion intense degree of current t frames is calculated, uses mtRepresent;
According to exercise intensity mt, calculate shown in its differential term such as formula (4),
<mrow> <msub> <mi>&amp;delta;m</mi> <mi>t</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>dm</mi> <mi>t</mi> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>m</mi> <mi>t</mi> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>l</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Calculate shown in its integral term such as formula (5),
<mrow> <mo>&amp;Integral;</mo> <msub> <mi>m</mi> <mi>t</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mi>t</mi> <mo>-</mo> <mi>w</mi> </mrow> <mi>t</mi> </msubsup> <msub> <mi>m</mi> <mi>i</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>w</mi> </munderover> <msub> <mi>m</mi> <mrow> <mi>t</mi> <mo>-</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Wherein l is GOP length, and w is the length of sliding window;
To the motion intense degree m of present frametHandled, utilize formula
<mrow> <msubsup> <mi>&amp;Delta;QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mi>f</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <msub> <mi>&amp;delta;m</mi> <mi>t</mi> </msub> </mrow> <mrow> <mo>&amp;Integral;</mo> <msub> <mi>m</mi> <mi>t</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
QP Offset increment is calculated, so as to carry out automatic adjusument to the QP Offset of every frame;Wherein,Represent QP Offset increments, f are scale factor;
According to QP Offset incrementsUtilize formula (7)
<mrow> <msubsup> <mi>QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>QP</mi> <mrow> <mi>s</mi> <mi>y</mi> <mi>s</mi> <mi>t</mi> <mi>e</mi> <mi>m</mi> </mrow> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Calculate the QP Offset of present frame
The QP Offset maximums that different coding device provides in advance are different, with max { QPoffsetThe default very big QP of presentation code device Offset values;By the QP Offset limitation max { QP after regulationoffsetWithin and be bundled in reasonable interval, as shown in formula (8)
<mrow> <msubsup> <mi>QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>max</mi> <mo>{</mo> <msup> <mi>QP</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <mo>}</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mi> </mi> <mi>mod</mi> <mn>2</mn> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mi>l</mi> <mi>i</mi> <mi>p</mi> <mi>s</mi> <mo>{</mo> <mn>1</mn> <mo>,</mo> <msubsup> <mi>QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>QP</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>2</mn> </mrow> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>}</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mi> </mi> <mi>mod</mi> <mi> </mi> <mi>l</mi> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>c</mi> <mi>l</mi> <mi>i</mi> <mi>p</mi> <mi>s</mi> <mo>{</mo> <mn>2</mn> <mo>,</mo> <msubsup> <mi>QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>,</mo> <mi>max</mi> <mo>{</mo> <msup> <mi>QP</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <mo>}</mo> <mo>}</mo> </mrow> </mtd> <mtd> <mrow> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Moment t is being encoded, the QP of present frame, the coding for present frame are calculated using formula (9)
<mrow> <msub> <mi>QP</mi> <mi>t</mi> </msub> <mo>=</mo> <msub> <mi>QP</mi> <mrow> <mi>b</mi> <mi>a</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>QP</mi> <mi>t</mi> <mrow> <mi>o</mi> <mi>f</mi> <mi>f</mi> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Wherein, QPbaseThe default benchmark QP values of presentation code device, generally it is exactly first I- frames QP values;QPtRepresent that t is used to encode QP values.
A kind of 2. low latency coding adaptation QPOffset adjusting methods as claimed in claim 1, it is characterised in that:Formula (1) calculating utilizes interframe movement estimation algorithm, full searching or fast search algorithm.
A kind of 3. low latency coding adaptation QP Offset adjusting methods as claimed in claim 1, it is characterised in that:GOP's Length value in low-delay codings is 4.
A kind of 4. low latency coding adaptation QP Offset adjusting methods as claimed in claim 1, it is characterised in that:It is crucial For the span of frame f values in section [120,240], acquiescence value is 180;The span of non-key frame f values is in section In [70,140], acquiescence value is 105.
A kind of 5. low latency coding adaptation QP Offset adjusting methods as claimed in claim 1, it is characterised in that:Slide Window w value is preferably that its GOP length l adds 1.
CN201510217441.1A 2015-04-30 2015-04-30 Low latency coding adaptation QP Offset adjusting methods Expired - Fee Related CN104837015B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510217441.1A CN104837015B (en) 2015-04-30 2015-04-30 Low latency coding adaptation QP Offset adjusting methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510217441.1A CN104837015B (en) 2015-04-30 2015-04-30 Low latency coding adaptation QP Offset adjusting methods

Publications (2)

Publication Number Publication Date
CN104837015A CN104837015A (en) 2015-08-12
CN104837015B true CN104837015B (en) 2017-11-17

Family

ID=53814619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510217441.1A Expired - Fee Related CN104837015B (en) 2015-04-30 2015-04-30 Low latency coding adaptation QP Offset adjusting methods

Country Status (1)

Country Link
CN (1) CN104837015B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327895B (en) * 2018-12-17 2022-05-24 深圳市中兴微电子技术有限公司 Data processing method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101668197A (en) * 2009-09-18 2010-03-10 浙江大学 Code rate control method in scalable video coding based on linear model
CN102742275A (en) * 2010-06-15 2012-10-17 联发科技股份有限公司 Apparatus and method of adaptive offset restoration for video coding
CN103167282A (en) * 2011-12-16 2013-06-19 中国科学院沈阳自动化研究所 Online updating method for image compression dynamic regulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955152B2 (en) * 2012-02-07 2018-04-24 Sun Patent Trust Image coding method and image decoding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101668197A (en) * 2009-09-18 2010-03-10 浙江大学 Code rate control method in scalable video coding based on linear model
CN102742275A (en) * 2010-06-15 2012-10-17 联发科技股份有限公司 Apparatus and method of adaptive offset restoration for video coding
CN103167282A (en) * 2011-12-16 2013-06-19 中国科学院沈阳自动化研究所 Online updating method for image compression dynamic regulation

Also Published As

Publication number Publication date
CN104837015A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
KR100484148B1 (en) Advanced method for rate control and apparatus thereof
CN103281530B (en) HEVC bit rate control method based on rate-distortion optimization
CN100574427C (en) The control method of video code bit rate
CN104469367B (en) The video code rate control method adjusted based on frame losing and quantization parameter
CN101552917B (en) Bit rate control method for video compression
ATE525858T1 (en) TWO-PASS RATE CONTROL TECHNIQUES FOR VIDEO CODING USING RATE DISTORTION METERS
CN102137258B (en) Method for controlling three-dimensional video code rates
WO2008042259A3 (en) Method for rho-domain frame level bit allocation for effective rate control and enhanced video coding quality
CN101895758B (en) H.264 code rate control method based on frame complexity
CN102932641A (en) Constant quality code rate controlling method
CN104754335B (en) A kind of code rate controlling method for video coding
EP2091040A4 (en) A decoding method and device
CN102148973A (en) Three-layer rate control method based on Lagrange&#39;s multiplier factors
CN103618906B (en) A kind of H.264 bit rate control method of subjectively-based video quality
CN102075784B (en) Video quality assessment method under condition of comprehensively considering compression and packet loss impairment
CN107454397A (en) The image coding/decoding method and device of color space conversion are performed to predicted value
CN102752591B (en) H.264 code rate control method based on comprehensive factor
CN104837015B (en) Low latency coding adaptation QP Offset adjusting methods
CN1332576A (en) Quantization and code stream control method for image compressing transmission
CN1434638A (en) Method for controlling video coding bit rate
CN103237221B (en) A kind of H.264 frame layer rate control method of structure based likeness coefficient
JP2007325262A (en) Method of video compression
CA2524809A1 (en) Methods and apparatus for improving video quality in statistical multiplexing
JP4104066B2 (en) Video information multiple simultaneous encoding device
TWI238664B (en) Method and apparatus for compressing video data

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171117

CF01 Termination of patent right due to non-payment of annual fee