CN104836549B - 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法 - Google Patents

一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法 Download PDF

Info

Publication number
CN104836549B
CN104836549B CN201510213682.9A CN201510213682A CN104836549B CN 104836549 B CN104836549 B CN 104836549B CN 201510213682 A CN201510213682 A CN 201510213682A CN 104836549 B CN104836549 B CN 104836549B
Authority
CN
China
Prior art keywords
control
pulse
coding
attenuator
modulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510213682.9A
Other languages
English (en)
Other versions
CN104836549A (zh
Inventor
雷卫平
郭荣斌
张宁
郭敏
周辉
关彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLP Kesiyi Technology Co Ltd
Original Assignee
CETC 41 Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 41 Institute filed Critical CETC 41 Institute
Priority to CN201510213682.9A priority Critical patent/CN104836549B/zh
Publication of CN104836549A publication Critical patent/CN104836549A/zh
Application granted granted Critical
Publication of CN104836549B publication Critical patent/CN104836549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Amplifiers (AREA)

Abstract

本发明提出了一种微放电效应检测顶底功率可调的脉冲调制信号产生装置,包括:耦合调制放大滤波电路和线性调制信号发生电路;所述耦合调制放大滤波电路包括电控衰减器,所述线性调制信号发生电路包括普通脉冲信号发生器和调制编码发生器模块;所述普通窄脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲参数后,控制所述普通脉冲信号发生器产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出。本发明采用以高速电控衰减器为核心部件的耦合调制放大滤波组件结合顶底电平可控的脉冲基带信号,以高精密、高可靠、低成本的方式实现顶底功率可控脉冲调制信号的产生。

Description

一种微放电效应检测顶底功率可调的脉冲调制信号产生装置 与方法
技术领域
本发明涉及测试技术领域,特别涉及一种微放电效应检测顶底功率可调的脉冲调制信号产生装置,还涉及一种微放电效应检测顶底功率可调的脉冲调制信号产生方法。
背景技术
微放电效应又称二次电子倍增效应,是指在真空条件下,自由电子在外加射频场的加速下,在两个金属表面间或单个介质表面上激发的二次电子发射与倍增效应,是一种真空谐振放电现象,是影响空间电子设备可靠性的一个十分重要的因素。
微放电效应主要发生在航天器以及航空临近空间的微波系统内。当前航天器大功率微波设备的峰值功率量级已经达到了kW级以上,伴随着功率量级的不断提高,首当其冲要解决的一个重要问题就是大功率微波器部件在真空环境下固有的微放电效应。若大功率微波器部件的微放电阈值未满足要求,其在自身结构尺寸、微波频率、电磁场强度、材料表面二次电子发射系数等参数满足一定条件时,产生的微放电现象会造成微波系统增益下降、传输性能变坏、信号噪声增大,使微波系统不能正常工作。某种情况下,微放电现象会造成微波器部件的介质材料、粘接剂等出气,形成局部低真空条件,这时微波电场可能使低真空环境的气体分子电离,产生功率击穿、电弧放电等低气压放电现象,产生的高温强电离效应会烧坏微波系统,工作寿命提前结束,使航天器出现彻底失效的灾难性故障。因此航天大功率微波器部件载荷在研制、生产到使用每个环节都要做真空微放电的试验测试,以验证微放电阈值是否满足实际工作要求,保证系统在轨运行的正常性。
航天器大功率微波器部件载荷的微放电效应检测需要为被测件输入顶底功率可调的脉冲激励信号。传统上脉冲调制信号的产生是依靠一选二电子开关实现,具体原理如图1所示,输入为连续波信号,电子开关在脉冲基带信号的控制下反复切换通道实现调制输出,脉冲基带信号为TTL或CMOS高低电平信号。
现阶段微放电效应检测中顶底功率可调的脉冲调制信号的实现原理如图2所示,是在传统脉冲调制的基础改造实现的,在两个电子开关之间的两个通道上串接可调衰减器,使用时根据试验要求,单独调节两个衰减器的衰减量,将两者之间的衰减量差值调节为固定值(一般为3dB、6dB或10dB)。衰减器衰减量设置完成后,脉冲发生器输出TTL或CMOS脉冲信号控制两个电子开关同步切换,以此完成对输入射频信号的调制,产生试验所需的顶底功率可控的脉冲调制激励信号。
现有技术的主要缺点为:
(1)成本高:如图2所示,脉冲调制部分主要由2个电子开关、2个可调衰减器构成;
(2)可靠性低:依据整机或系统可靠性的计算方式,其可靠性预计值取决于构成整机或系统的每个部件或功能单元的可靠性,同一种应用采用可靠性相近的部件,部件数量越多,整机或系统的可靠性也就越低;
(3)应用控制较为繁琐:现有技术要实现顶底功率可控的脉冲调制信号的产生,首先要调节好两个衰减器的衰减量差值,之后再发送开关脉冲,操作上需要分步骤、排次序;
(4)很难实现衰减量差值的精密控制:现技术中应用的可调衰减器最小衰减量为1dB,再加上衰减器之间固有直通插损的一致性、衰减精度、衰减重复性等因素,很难实现衰减器间衰减量差值的精密控制。
发明内容
为解决现有技术中的缺陷和不足,本发明提出了一种脉冲调制信号产生装置及方法,目的是为航天器大功率微波器部件载荷开展微放电效应检测试验提供顶底功率可控的脉冲激励信号。
本发明的技术方案是这样实现的:
一种微放电效应检测顶底功率可调的脉冲调制信号产生装置,包括:耦合调制放大滤波电路和线性调制信号发生电路;
所述耦合调制放大滤波电路包括电控衰减器,所述电控衰减器采用一级衰减量为31.5dB的6位数控衰减器和一级最大32dB衰减量的压控衰减器级联的方式实现;
所述线性调制信号发生电路包括普通脉冲信号发生器和调制编码发生器模块;所述普通窄脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲参数后,控制所述普通脉冲信号发生器产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出;
所述调制编码发生器模块包括两组子调制编码发生器,一组控制数控衰减器,一组控制压控衰减器;压控衰减器的控制编码产生后输入至D/A转换器中,将控制编码转换为模拟量,再经过衰减量线性控制驱动电路进行驱动补偿和整形后送到压控衰减器;数控衰减器的控制编码产生后,再经过衰减量线性控制驱动电路进行电平转换后送到数控衰减器。
可选地,构成所述电控衰减器的基本单元为GaAs MMIC衰减器芯片。
可选地,所述线性调制信号发生电路通过FPGA实现。
可选地,所述每组子调制编码发生器包括两个编码发生器,一个控制脉内衰减量,上升沿触发,另一个控制脉外衰减量,下降沿触发。
本发明还提供了一种微放电效应检测顶底功率可调的脉冲调制信号产生方法,通过耦合调制放大滤波电路实现射频信号的输入/输出耦合、脉冲调制、低噪声放大、滤波,通过线性调制信号发生电路产生顶电平及底电平可变的脉冲基带信号;
所述耦合调制放大滤波电路包括电控衰减器,通过不断改变衰减量来实现所通过射频信号的调制,产生一个顶功率、底功率或顶底功率比值可调的脉冲信号,所述电控衰减器采用一级衰减量为31.5dB的6位数控衰减器和一级最大32dB衰减量的压控衰减器级联的方式实现。
可选地,所述线性调制信号发生电路采用普通脉冲信号发生器加调制编码发生器的组合方式实现。
可选地,所述普通窄脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲参数后,控制普通窄脉冲信号发生器产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出;
所述压控衰减器的控制编码产生后输入至D/A转换器中,将控制编码转换为模拟量,再经过衰减量线性控制驱动电路进行驱动补偿和整形后送到压控衰减器;所述数控衰减器的控制编码产生后,再经过衰减量线性控制驱动电路进行电平转换后送到数控衰减器。
可选地,所述调制编码发生器模块包括两组子调制编码发生器,一组控制数控衰减器,一组控制压控衰减器;每组子调制编码发生器中包括两个编码发生器,一个控制脉内衰减量,上升沿触发,另一个控制脉外衰减量,下降沿触发。
本发明的有益效果是:
(1)仅需要单个电控衰减器即可产生所需的脉冲调制信号,具有结构简单实用的特点;
(2)减少了微波部件的种类及数量,所使用的电控衰减器的可靠性比机械式继电器可调衰减器的可靠性更高;
(3)可实现衰减量的精密控制,电控衰减器的分辨率高达0.03dB,可有效控制顶底功率比值误差,防止因后端经固态功放放大后产生更大的误差;
(4)应用方便、操作简单,仅需根据输入连续波功率值及所要求的输出功率值,设定好脉冲信号顶部功率、顶底功率比值,即可实现所需脉冲调制信号的输出。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为传统的脉冲调制原理控制框图;
图2为现有的顶底功率可调的脉冲调制信号实现原理控制框图;
图3为本发明的微放电效应检测顶底功率可调的脉冲调制信号产生装置控制框图;
图4为本发明的电控衰减器的电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
依据微波器部件载荷的微放电效应检测要求,本发明提出了一种微放电效应检测顶底功率可调的脉冲调制信号产生装置及方法,结合现阶段顶底功率可调脉冲调制信号的实现原理,采用以高速电控衰减器为核心部件的耦合调制放大滤波组件结合顶底电平可控的脉冲基带信号,以高精密、高可靠、低成本的方式实现顶底功率可控脉冲调制信号的产生。
如图3所示,本发明的微放电效应检测顶底功率可调的脉冲调制信号产生装置包括:耦合调制放大滤波电路及线性调制信号发生电路。耦合调制放大滤波电路主要实现射频信号的输入/输出耦合、脉冲调制、低噪声放大、滤波等功能,线性调制信号发生电路通过FPGA实现,产生顶电平及底电平可变的脉冲基带信号。
电控衰减器为耦合调制放大滤波电路的核心部件,通过不断改变衰减量来实现所通过射频信号的调制,产生一个顶功率、底功率或顶底功率比值可调的脉冲信号。比如要产生一个顶功率、底功率比值为6dB的脉冲信号,脉冲调制器输入一路功率为0dBm的连续波,在脉冲基带信号高电平来临时,控制衰减器衰减量为0dB,脉冲信号低电平时,将衰减器衰减量置为6dB,电控衰减器在周期性脉冲信号的控制下,衰减量重复变化,以此来实现顶底功率比值为6dB的脉冲调制信号。本发明仅需要单个电控衰减器即可产生所需的脉冲调制信号,结构简单实用,降低了成本、提高了可靠性。
本发明的电控衰减器采用粗调衰减器和细调衰减器级联的方式实现,图4示出了电控衰减器的一个实施例,采用一级衰减量为31.5dB的6位数控衰减器和一级最大32dB衰减量的压控衰减器级联的方式实现,6位数控衰减器用于粗调,压控衰减器用于细调,可实现衰减量的精密控制,电控衰减器的分辨率高达0.03dB,可有效控制顶底功率比值误差,防止因后端经固态功放放大后产生更大的误差。
优选地,构成电控衰减器的基本单元为GaAs MMIC衰减器芯片,其使用寿命比以继电器为衰减量切换单元的机械式衰减器更长,因此延长了装置的应用时限。
本发明的线性调制信号发生电路采用普通脉冲信号发生器加调制编码发生器的组合方式实现。如图3所示,普通窄脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲重频、占空比等脉冲参数后,控制FPGA产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出。调制编码发生器模块包括两组子调制编码发生器,一组控制数控衰减器,一组控制压控衰减器,每组中包含两个编码发生器,一个控制脉内衰减量,上升沿触发,另一个控制脉外衰减量,下降沿触发。压控衰减器的控制编码产生后输入至D/A转换器,优选高速率与高模拟输出时序指标D/A,将控制编码转换为模拟量,再经过衰减量线性控制驱动电路进行驱动补偿和整形后送到压控衰减器;数控衰减器的控制编码产生后,再经过衰减量线性控制驱动电路进行电平转换后送到数控衰减器。衰减量线性控制驱动电路用于对微弱信号进行调理,实现小信号的防干扰与保护,例如可以通过运算放大电路实现。本发明的线性调制信号发生电路应用方便、操作简单,仅需根据输入连续波功率值及所要求的输出功率值,设定好脉冲信号顶部功率、顶底功率比值,即可实现所需脉冲调制信号的输出。
要实现压控衰减器的精密控制,就需要给其提供高精准、高分辨率的模拟电压信号,模拟电压信号的精准度及分辨率由D/A来实现,输出后通过运放构建的电压跟随电路,以提高输入阻抗,减小因后部电路的负载效应而产生的压降,另外在PCB中走线时还需要防止地杂波等噪声的干扰,减小信号所产生的扰动。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种微放电效应检测顶底功率可调的脉冲调制信号产生装置,其特征在于,包括:耦合调制放大滤波电路和线性调制信号发生电路;
所述耦合调制放大滤波电路包括电控衰减器,所述电控衰减器采用一级衰减量为31.5dB的6位数控衰减器和一级最大32dB衰减量的压控衰减器级联的方式实现;
所述线性调制信号发生电路包括普通脉冲信号发生器和调制编码发生器模块;所述普通脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲参数后,控制所述普通脉冲信号发生器产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出;
所述调制编码发生器模块包括两组子调制编码发生器,一组控制数控衰减器,一组控制压控衰减器;压控衰减器的控制编码产生后输入至D/A转换器中,将控制编码转换为模拟量,再经过衰减量线性控制驱动电路进行驱动补偿和整形后送到压控衰减器;数控衰减器的控制编码产生后,再经过衰减量线性控制驱动电路进行电平转换后送到数控衰减器。
2.如权利要求1所述的微放电效应检测顶底功率可调的脉冲调制信号产生装置,其特征在于,构成所述电控衰减器的基本单元为GaAs MMIC衰减器芯片。
3.如权利要求1所述的微放电效应检测顶底功率可调的脉冲调制信号产生装置,其特征在于,所述线性调制信号发生电路通过FPGA实现。
4.如权利要求1所述的微放电效应检测顶底功率可调的脉冲调制信号产生装置,其特征在于,每组子调制编码发生器包括两个编码发生器,一个控制脉内衰减量,上升沿触发,另一个控制脉外衰减量,下降沿触发。
5.一种微放电效应检测顶底功率可调的脉冲调制信号产生方法,其特征在于,通过耦合调制放大滤波电路实现射频信号的输入/输出耦合、脉冲调制、低噪声放大、滤波,通过线性调制信号发生电路产生顶电平及底电平可变的脉冲基带信号;
所述耦合调制放大滤波电路包括电控衰减器,通过不断改变衰减量来实现所通过射频信号的调制,产生一个顶功率、底功率或顶底功率比值可调的脉冲信号,所述电控衰减器采用一级衰减量为31.5dB的6位数控衰减器和一级最大32dB衰减量的压控衰减器级联的方式实现;
所述线性调制信号发生电路采用普通脉冲信号发生器加调制编码发生器的组合方式实现;
所述普通脉冲信号发生器包括脉冲周期计数器、脉宽计数器及脉宽细调模块,主控制器从人机交互界面获取脉冲参数后,控制普通脉冲信号发生器产生相应的普通窄脉冲基带信号,输入至调制编码发生器模块中,控制调制编码的转换输出;
所述压控衰减器的控制编码产生后输入至D/A转换器中,将控制编码转换为模拟量,再经过衰减量线性控制驱动电路进行驱动补偿和整形后送到压控衰减器;所述数控衰减器的控制编码产生后,再经过衰减量线性控制驱动电路进行电平转换后送到数控衰减器;
所述调制编码发生器模块包括两组子调制编码发生器,一组控制数控衰减器,一组控制压控衰减器;每组子调制编码发生器中包括两个编码发生器,一个控制脉内衰减量,上升沿触发,另一个控制脉外衰减量,下降沿触发。
CN201510213682.9A 2015-04-23 2015-04-23 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法 Active CN104836549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510213682.9A CN104836549B (zh) 2015-04-23 2015-04-23 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510213682.9A CN104836549B (zh) 2015-04-23 2015-04-23 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法

Publications (2)

Publication Number Publication Date
CN104836549A CN104836549A (zh) 2015-08-12
CN104836549B true CN104836549B (zh) 2018-07-10

Family

ID=53814225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510213682.9A Active CN104836549B (zh) 2015-04-23 2015-04-23 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法

Country Status (1)

Country Link
CN (1) CN104836549B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106027002B (zh) * 2016-05-17 2019-06-21 电子科技大学 一种纳秒级微波窄脉冲调制器
CN107526011B (zh) * 2017-08-28 2019-12-20 广州全界通讯科技有限公司 一种大功率微放电功率加载系统
CN109298235B (zh) * 2018-08-17 2021-05-28 北京优诺信创科技有限公司 一种微放电功率动态跟踪方法
CN110890866B (zh) * 2019-12-23 2023-10-27 中国电子科技集团公司第二十九研究所 一种星载固态功率放大器抗微放电的方法及匹配电路
CN113867238B (zh) * 2021-12-06 2022-02-11 成都威频科技有限公司 带有幅度和脉冲调制功能的捷变alc系统及其控制方法
CN116821591B (zh) * 2023-04-04 2024-03-08 浙江万能弹簧机械有限公司 高频电源放电工况实时监控方法及其系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698637A (en) * 1980-04-29 1987-10-06 International Standard Electric Corporation Device for pulse modulation automatic control
CN1595214A (zh) * 2004-07-01 2005-03-16 上海交通大学 无源全光纤可调光分路器
CN103079334A (zh) * 2013-01-04 2013-05-01 中国原子能科学研究院 回旋加速器射频谐振腔体自动锻炼系统
CN104062565A (zh) * 2014-06-24 2014-09-24 西安空间无线电技术研究所 一种利用互调分量检测微波部件微放电的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4698637A (en) * 1980-04-29 1987-10-06 International Standard Electric Corporation Device for pulse modulation automatic control
CN1595214A (zh) * 2004-07-01 2005-03-16 上海交通大学 无源全光纤可调光分路器
CN103079334A (zh) * 2013-01-04 2013-05-01 中国原子能科学研究院 回旋加速器射频谐振腔体自动锻炼系统
CN104062565A (zh) * 2014-06-24 2014-09-24 西安空间无线电技术研究所 一种利用互调分量检测微波部件微放电的方法

Also Published As

Publication number Publication date
CN104836549A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
CN104836549B (zh) 一种微放电效应检测顶底功率可调的脉冲调制信号产生装置与方法
CN104849629B (zh) 微放电效应检测双路微波信号自动调零装置与方法
CN107526011B (zh) 一种大功率微放电功率加载系统
EP0397445A2 (en) Procedure for forming low power levels in a radio telephone transmitter
CN101262239B (zh) 毫米波射频收发装置
CN114614839B (zh) 一种多通道Ka波段前端组件
CN106941346B (zh) 基于PCBBlumlein传输线和PCB传输线变压器的模块化固态纳秒脉冲发生器
CN107888273A (zh) 一种中继终端射频通道
CN109375176B (zh) 一种发射机功放模块
CN111198354A (zh) 一种基于目标侦测雷达的isar功率放大模块
CN102684714B (zh) 一种td-lte系统的网络端信号发射装置
CN104852707B (zh) 微放电效应检测顶底电平可调的脉冲基带发生装置与方法
CN1694361B (zh) 一种超宽带多频点微波信号产生方法
US3458817A (en) Microwave high power short pulse shaper
EP0844493A1 (en) Spurious frequency suppressor
CN107241064A (zh) 一种顶底功率可精密调节的非归零脉冲信号产生方法
CN110958026A (zh) 射频宽带收发机
CN103440016A (zh) 大动态快速控制高功放发射机输出功率的方法
CN204633716U (zh) C波段下变频组件
Garoby et al. The LEIR RF System
CN212845905U (zh) 一种基于目标侦测雷达的isar功率放大模块
CN212905421U (zh) 便携式目标模拟器微波系统
KR101691418B1 (ko) 도허티 증폭기에서 피킹 증폭기의 성능을 최적화시키기 위한 장치 및 방법
CN104702231A (zh) 具有上下行同步控制功能的agc和alc高增益有源电路组件
CN214954051U (zh) 一种脉冲电源调制发射组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220906

Address after: 266000 No. 98 Xiangjiang Road, Huangdao District, Qingdao City, Shandong Province

Patentee after: CLP kesiyi Technology Co.,Ltd.

Address before: 266555 No. 98 Xiangjiang Road, Qingdao economic and Technological Development Zone, Shandong

Patentee before: THE 41ST INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY Group Corp.