CN104836221A - DC micro network secondary adjusting control method based on line loss optimization - Google Patents

DC micro network secondary adjusting control method based on line loss optimization Download PDF

Info

Publication number
CN104836221A
CN104836221A CN201510243166.0A CN201510243166A CN104836221A CN 104836221 A CN104836221 A CN 104836221A CN 201510243166 A CN201510243166 A CN 201510243166A CN 104836221 A CN104836221 A CN 104836221A
Authority
CN
China
Prior art keywords
mrow
msub
munderover
sigma
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510243166.0A
Other languages
Chinese (zh)
Other versions
CN104836221B (en
Inventor
马俊超
贺凡波
赵争鸣
曹阳
袁立强
鲁挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510243166.0A priority Critical patent/CN104836221B/en
Publication of CN104836221A publication Critical patent/CN104836221A/en
Application granted granted Critical
Publication of CN104836221B publication Critical patent/CN104836221B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention belongs to the interdisciplinary field of a power distribution network technology and an electric power and electronics technology, and especially relates to a DC micro network secondary adjusting control method based on line loss optimization. First of all, a DC micro network system is constructed, an upper-layer control center, according to sampling information of each converter, calculates the line loss power of the DC micro network system; then a controllable voltage source sagging control intercept common mode and a differential mode adjusting amount are calculated; and output voltage of each controllable power supply in a DC micro network is adjusted through sagging control parameters such that the output of each power supply is controlled, the trend on each distribution branch is adjusted accordingly, and the line loss is reduced. According to the invention, the line loss of the DC micro network is optimized under the condition that line impedance and enormous operation information are measured without reliance on high-sensitivity sensors. Experiment results indicate that compared to a conventional DC micro network control method, the control method provided by the invention can effectively reduce the line loss, and the specific reduction amplitude is determined according to the distribution condition of the line impedance and loads.

Description

Direct-current micro-grid secondary regulation control method based on line loss optimization
Technical Field
The invention belongs to the field of crossing of a power distribution network technology and a power electronic technology, and particularly relates to a direct-current micro-grid secondary regulation control method based on line loss optimization.
Background
Different from the form of a single power supply and a tree structure of a traditional power distribution network system, a plurality of direct-current voltage sources exist in the direct-current micro-grid. This makes it possible to achieve line loss optimization by controlling power flow in a power distribution network. In recent years, a direct-current micro-grid system has gradually risen, and at present, methods for optimally controlling the line loss are not available. In the alternating-current microgrid, line loss optimization is realized by gradually iterating through measuring line impedance and transmission power in some research, but the method is over-high in dependence on sensor precision and is difficult to realize in practice or even suitable for the contrary.
For the operation control of the direct-current micro-grid power supply, a distributed droop control method is generally adopted at present. Some researches propose to adopt a low-frequency communication system to carry out secondary regulation on the droop parameter of the converter on the basis of a droop control method operated by each power supply bottom layer. Some researches propose to stabilize the bus voltage through secondary regulation and counteract the bus voltage fluctuation caused by droop control, but do not consider the problem of line impedance; some researches propose a control method for current sharing of each power supply on the basis of considering line impedance, but the method has no optimization effect on line loss, and even can improve the line loss.
Conventional droop control is shown in equation (1):
U*=U0-Ik (1)
droop control can be seen as a system that performs closed-loop differential regulation of the voltage output by each power source through a power electronic converter. The output voltage-current characteristic is a straight line which inclines downwards, and a virtual resistor with the size of k is connected in series with the power supply output end similarly. By the aid of the method, common bus operation of a plurality of direct-current voltage sources can be realized, backflow is avoided, and current equalization is realized. However, this method causes the dc bus voltage to float, and cannot accurately control the output voltage of each power supply, so that power flow control and line loss optimization cannot be achieved. In order to realize power flow control and further realize line loss optimization of the direct-current micro-grid, a low-frequency communication system and an upper-layer control center are required to be introduced among all converters in the micro-grid. The secondary regulation of the output voltage of each port is realized through the sharing of the operation information, so that the output of each port is controlled, and the tide of the whole microgrid is controlled. However, even if secondary regulation is introduced, how to control the power flow can achieve the minimum line loss of the system still has no related achievement at present. The main purpose of the current secondary regulation is to stabilize the bus voltage and counteract the bus voltage offset caused by droop control, and the control block diagram is shown in fig. 1 a. Some researches propose a secondary regulation method aiming at the current sharing of each power supply based on the aim of storage battery management in a microgrid, a control block diagram is shown as a figure 1b, specifically as a formula (2),
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>&delta;u</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>Gs</mi> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>dc</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>&delta;u</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>Gs</mi> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>dc</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&delta;i</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>Gs</mi> <mrow> <mo>(</mo> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mi>&delta;</mi> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>Gs</mi> <mrow> <mo>(</mo> <mover> <mi>i</mi> <mo>&OverBar;</mo> </mover> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>U</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mi>k</mi> </mtd> <mtd> <msubsup> <mi>U</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mi>k</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
although the power equalizing method expressed in the formula (2) can achieve the balance of the output of each power supply, the output mode is obviously not favorable for the optimization of the line loss. For example, when there is one power source across a load, the line impedance connecting the two power sources is large and small. To reduce the line loss, it is obvious to make the power output with high line impedance smaller and the power output with the other larger. The method in equation (2) forces the two power sources to have the same output, which inevitably increases the line loss.
In some control of the alternating current power grid, some methods for optimizing line loss through controlling power flow are needed, but the methods need to measure line impedance through a sensor or make a difference between two adjacent line losses through a line loss iteration method, the methods depend on sensor precision excessively, and a theoretical effect cannot be achieved in practice.
Disclosure of Invention
In order to implement the multivariable control of the converter by adopting the transient electromagnetic energy balance principle, the invention provides a direct-current microgrid secondary regulation control method based on line loss optimization, which comprises the following steps:
step 1, constructing a direct-current microgrid system, wherein the system comprises a plurality of controllable voltage sources, a plurality of current sources or power source loads, a plurality of power transmission lines, a plurality of converters, a low-bandwidth communication system and an upper-layer control center; the upper control center is connected with each controllable voltage source through a low-bandwidth communication system and a converter bottom control platform in sequence, and is connected with a current source or a power source load through the low-bandwidth communication system; the power transmission line is divided into a power supply branch line and a main power transmission line, the power supply branch line connects a plurality of controllable voltage sources and current sources or power source loads together, and the main power transmission line connects each power supply branch line and a plurality of current sources or power source loads together;
step 2, the low-bandwidth communication system uploads the operation and sampling information of each converter to an upper control center;
step 3, the upper control center calculates the line loss power of the direct current micro-grid system according to the operation information transmitted from each converter;
step 4, the upper control center establishes the condition of the optimal line power loss of the direct-current micro-grid system;
step 5, the upper control center calculates droop control intercept common mode and differential mode regulating variables of each controllable voltage source;
and 6, the upper control center downloads the adjustment quantity to each converter through the low-bandwidth communication system, and secondary adjustment control of the direct-current micro-grid system is achieved through adjustment of droop control parameters.
The calculated line loss power of the direct current micro-grid system comprises loss power of each power supply branch and each main transmission line, and the total formula is as follows:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>l</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>P</mi> <mi>li</mi> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein the line loss P of the ith power branchliThe following formula is calculated:
<math> <mrow> <msub> <mi>P</mi> <mi>li</mi> </msub> <mo>=</mo> <msubsup> <mi>i</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mi>im</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </math>
wherein, PlFor line loss power, i, of DC microgrid systemiIs the output current of the ith controllable voltage source, I is 1,2, …, n is the number of controllable voltage sources, IijThe rated current of the jth load on the ith controllable voltage source branch is j equal to 1,2, …, m is the number of loads on the power source branch, and R isi(q+1)Impedance of a q +1 th section of power transmission line on the ith controllable voltage source branch, wherein q is 1,2, …, and p is the number of the power transmission line sections on the power source branch; i isq-1Rated current of q-1 load on main transmission line, RqImpedance of a q-th section of power transmission line on the main power transmission line; a. b and c are the total number of loads on the 1 st controllable voltage source branch, the 2 nd controllable voltage source branch and the 3 rd controllable voltage source branch respectively.
The condition establishing process of the optimal line power loss comprises the following steps:
line loss power P of direct current micro-grid systemlThe minimum value is obtained by satisfying:for i1、i2
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mi>l</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>p</mi> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mi>l</mi> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
To obtain <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
And because of <math> <mrow> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>12</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>12</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mrow> </math>
Then it is obtained when PlWhen the minimum value is obtained, there is U1=U2(ii) a In the same way, when PlWhen the minimum value is obtained, U1=U2=U3=…=UnWherein P isl1、Pl2Line losses, i, of the 1 st and 2 nd power supply branches, respectively1、i2Output currents of the 1 st and 2 nd controllable voltage sources, U1、U2Current voltage measurement values, U, of the 1 st and 2 nd controllable voltage sources, respectivelynFor the current voltage measurement of the nth controllable voltage source, U12For the 2 nd responsible operating voltage on the 1 st controllable voltage source branch.
The calculation formula of the intercept common mode adjustment quantity is as follows:
<math> <mrow> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mi>com</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>Gs</mi> <mi>com</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>dc</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
whereinAs intercept common mode adjustment, GscomAnd the common mode regulator adopts PI regulation.Rated bus voltage u for DC micro-grid systemaveAnd the common mode adjustment quantity of droop control intercept of each converter voltage source is the same for the average value of the bus voltage of each controllable voltage source.
The formula for calculating the adjustment quantity of the intercept difference module is as follows:
<math> <mrow> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <mi>G</mi> <msub> <mi>s</mi> <mi>dif</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
wherein GsdifFor the differential mode regulator, PI regulation is adopted. u. ofaveIs the average value of the bus voltages of the respective controllable voltage sources, uiAnd for the current voltage measured value of the ith controllable voltage source, the droop control intercept difference mode adjustment quantity of each converter voltage source is different.
The calculation formula of the converter droop control parameter adjustment is as follows:
<math> <mrow> <msubsup> <mi>U</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mi>com</mi> <mo>*</mo> </msubsup> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mi>k</mi> </mrow> </math>
wherein,is the output voltage of the ith controllable voltage source, U0In order to control the intercept for the droop,as an amount of adjustment of the common mode intercept,for the adjustment of the intercept difference module, iiThe output current of the ith controllable voltage source is 1,2, …, n, n is the number of controllable voltage sources, k is the slope of the droop line, and the slope of the droop line of each converter set initially is the same and is kept unchanged in the operation process.
The communication frequency of the low-bandwidth communication system downloaded to each converter is in the order of seconds.
The invention has the following advantages:
1. the microgrid line loss reaches the theoretical optimum: according to the line loss calculation and optimal loss solving analysis results of the direct-current micro-grid, the theoretical minimum value of the line loss can be realized by controlling the grid-connected voltage of each power supply according to the method.
2. Does not rely on high precision sensors: the method has no step of subtracting physical quantities with similar sizes in the implementation process, so that the non-negligible deviation cannot be introduced due to the problem of sensor precision.
3. The calculation amount of each controller is small: the method does not involve the identification calculation of line loss and the output calculation of each power supply and each load, so that the operation resources of each controller are greatly reduced, and the control frequency is favorably improved;
4. the reliability is high: according to the method, each converter still operates droop control, and the upper control center only gives parameter adjustment quantity of the droop control, so that even if a communication system or the upper control center fails, a power supply in the whole direct-current micro-grid still operates in a droop control state, and the problems of power supply circulation and the like cannot be caused.
Drawings
Fig. 1a is a flow chart of a direct current microgrid secondary regulation control method based on voltage stabilization.
Fig. 1b is a flow chart of a power-current-sharing-based secondary regulation control method for a direct-current microgrid.
Fig. 2 is a diagram of a dc microgrid architecture.
Fig. 3 is a simplified schematic diagram of a dc microgrid circuit.
Fig. 4 is a flow chart of a direct-current microgrid secondary regulation control method based on line loss optimization.
Fig. 5 is a diagram of a dc microgrid structure of an example of a circuit used in the research method.
Fig. 6a is a schematic diagram of the line loss variation with line parameters according to the proposed method.
Fig. 6b is a schematic diagram of the secondary adjustment control method of the direct-current microgrid based on voltage stabilization along with the change of line parameters.
Fig. 6c is a schematic diagram of a secondary adjustment control method for a direct-current microgrid based on power source current sharing, which is based on the change of line parameters.
Fig. 7a is a diagram illustrating a direct current microgrid secondary regulation control method based on voltage stabilization and a line loss differential effect of the method.
Fig. 7b is a schematic diagram of a secondary regulation control method for a dc micro-grid based on power source current sharing and a line loss difference of the method.
Detailed Description
Constructing a direct-current microgrid system, as shown in fig. 2, wherein the system comprises a plurality of controllable voltage sources, a plurality of current sources or power source loads, a plurality of transmission lines, a plurality of converters, a low-bandwidth communication system and an upper-layer control center; the upper control center is connected with each controllable voltage source through a low-bandwidth communication system and a converter bottom control platform in sequence, and is connected with a current source or a power source load through the low-bandwidth communication system; the power transmission line is divided into a power supply branch line and a main power transmission line, the power supply branch line connects a plurality of controllable voltage sources and current sources or power source loads together, and the main power transmission line connects each power supply branch line and a plurality of current sources or power source loads together; a simplified diagram of which is shown in figure 3.
In the specific implementation process, in order to reduce economic cost, the low-bandwidth communication system is suggested to adopt a bus form, such as 485, CAN and the like. The communication protocol suggests a communication mode for participating in upper-layer polling and bottom-layer response. Because of the adoption of the mode of polling one by one, if each converter returns the running information of the polled time, in a communication period, the information of each converter obtained by the upper control center is not at the same time actually. This will have a large impact on the proposed method. Therefore, the communication mode that all converters simultaneously store the operation information and upload the operation information one by one is adopted. The specific implementation flow is as follows:
after the q-1 communication period is completed and before each converter receives a command of locking and operating information of the q-1 control center, carrying out droop control on the output of the converter according to a control command transmitted by the q-1 control center, wherein the formula is (1):
<math> <mrow> <msubsup> <mi>U</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mrow> <mi>com</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> <mo>+</mo> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>I</mi> <mi>i</mi> </msub> <mi>k</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
at a certain moment, all the converters are simultaneously connected with a latch command sent by an upper-layer control center, and at the moment, all the converters simultaneously latch operation information output voltage u1q、u2q、…、unqAnd an output current i1q、i2q、…、inq
The upper control center polls each converter, and the converter i which inquires the running information by calling returns the latched information uiqAnd iiq
After polling all the converters, the upper control center calculates the q-th droop control adjustment quantity according to the feedback operation information, specifically as formula (2):
<math> <mrow> <msub> <mi>u</mi> <mrow> <mi>ave</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>u</mi> <mi>iq</mi> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mrow> <mi>com</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>Gs</mi> <mi>com</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>dc</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>ave</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msubsup> <mi>u</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <mi>G</mi> <msub> <mi>s</mi> <mi>dif</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>ave</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>iq</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
the upper control center willCalculated q-th droop control adjustment quantityAndthe droop control regulating quantity is sequentially sent to each converter, and the converter only stores the droop control regulating quantity after receiving the qth droop control regulating quantity and does not immediately regulate the droop control regulating quantity;
the upper control center sends out a synchronous updating command after downloading the kth droop control regulating quantity of all the converters, and all the converters uniformly update the droop control regulating quantity at the same time after receiving the updating commandAndthe process is then repeated.
According to the above steps of calculating the input active power control amount, a secondary regulation control of the direct current microgrid based on line loss optimization is constructed as shown in fig. 4.
Fig. 5 is an example of a circuit used in the research method. Wherein the parameters are shown in table 1.
TABLE 1 exemplary Circuit parameter selection
Fig. 6a-c and fig. 7a-b compare droop control, current sharing control with line loss in the proposed method. Wherein fig. 6a-c illustrate the variation of line loss with line impedance and load size for three methods. It is readily seen that the proposed method can significantly reduce the line impedance. Fig. 7a-b show the line loss difference of the other two methods and the line impedance difference of the proposed method under the same parameters. It can be seen that the line loss of the proposed method is always less than that of the other two, and in some cases, the loss can be even optimized to be about 50%.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any changes or substitutions that can be easily conceived by those skilled in the art within the technical scope of the present invention are included in the scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the protection scope of the claims.

Claims (7)

1. A direct current micro-grid secondary regulation control method based on line loss optimization is characterized by comprising the following steps:
step 1, constructing a direct-current microgrid system, wherein the system comprises a plurality of controllable voltage sources, a plurality of current sources or power source loads, a plurality of power transmission lines, a plurality of converters, a low-bandwidth communication system and an upper-layer control center; the upper control center is connected with each controllable voltage source through a low-bandwidth communication system and a converter bottom control platform in sequence, and is connected with a current source or a power source load through the low-bandwidth communication system; the power transmission line is divided into a power supply branch line and a main power transmission line, the power supply branch line connects a plurality of controllable voltage sources and current sources or power source loads together, and the main power transmission line connects each power supply branch line and a plurality of current sources or power source loads together;
step 2, the low-bandwidth communication system uploads the operation and sampling information of each converter to an upper control center;
step 3, the upper control center calculates the line loss power of the direct current micro-grid system according to the operation information transmitted from each converter;
step 4, the upper control center establishes the condition of the optimal line power loss of the direct-current micro-grid system;
step 5, the upper control center calculates droop control intercept common mode and differential mode regulating variables of each controllable voltage source;
and 6, the upper control center downloads the adjustment quantity to each converter through the low-bandwidth communication system, and secondary adjustment control of the direct-current micro-grid system is achieved through adjustment of droop control parameters.
2. The method according to claim 1, wherein the calculating of the line loss power of the direct current microgrid system comprises the loss power of each power supply branch and each main transmission line, and the total formula is as follows:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mi>l</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>P</mi> <mi>li</mi> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein the line loss P of the ith power branchliThe following formula is calculated:
<math> <mrow> <msub> <mi>P</mi> <mi>li</mi> </msub> <mo>=</mo> <msubsup> <mi>i</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mi>im</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </msub> </mrow> </math>
wherein, PlFor line loss power, i, of DC microgrid systemiIs the output current of the ith controllable voltage source, i is 1,2, …, n is controllableNumber of voltage sources, IijThe rated current of the jth load on the ith controllable voltage source branch is j equal to 1,2, …, m is the number of loads on the power source branch, and R isi(q+1)Impedance of a q +1 th section of power transmission line on the ith controllable voltage source branch, wherein q is 1,2, …, and p is the number of the power transmission line sections on the power source branch; i isq-1Rated current of q-1 load on main transmission line, RqImpedance of a q-th section of power transmission line on the main power transmission line; a. b and c are the total number of loads on the 1 st controllable voltage source branch, the 2 nd controllable voltage source branch and the 3 rd controllable voltage source branch respectively.
3. The method of claim 1, wherein the condition establishing procedure for the optimal line loss power comprises:
line loss power P of direct current micro-grid systemlThe minimum value is obtained by satisfying:for i1、i2
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>l</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>1</mn> </msub> </mfrac> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mi>l</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>2</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mn>1</mn> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>a</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>b</mi> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>q</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mi>q</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>i</mi> <mn>3</mn> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>a</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>b</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>c</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mi>j</mi> </mrow> </msub> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>p</mi> </munderover> <msub> <mi>I</mi> <mrow> <mi>q</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>q</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
To obtain <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>2</mn> </msub> </mfrac> <mo>,</mo> </mrow> </math>
And because of <math> <mrow> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>12</mn> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>1</mn> </msub> </mfrac> </mrow> </math>
<math> <mrow> <msub> <mi>U</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>U</mi> <mn>12</mn> </msub> <mo>+</mo> <mfrac> <msub> <mrow> <mo>&PartialD;</mo> <mi>P</mi> </mrow> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>i</mi> </mrow> <mn>2</mn> </msub> </mfrac> </mrow> </math>
Then it is obtained when PlWhen the minimum value is obtained, there is U1=U2(ii) a In the same way, when PlWhen the minimum value is obtained, U1=U2=U3=…=UnWherein P isl1、Pl2Line losses, i, of the 1 st and 2 nd power supply branches, respectively1、i2Output currents of the 1 st and 2 nd controllable voltage sources, U1、U2Current voltage measurement values, U, of the 1 st and 2 nd controllable voltage sources, respectivelynFor the current voltage measurement of the nth controllable voltage source, U12For the 2 nd responsible operating voltage on the 1 st controllable voltage source branch.
4. The method of claim 1, wherein the intercept common mode adjustment is calculated by the formula:
<math> <mrow> <msubsup> <mi>&delta;u</mi> <mi>com</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>Gs</mi> <mi>com</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>dc</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
whereinAs intercept common mode adjustment, GscomIs a common-mode regulator, adopts PI regulation,rated bus voltage u for DC micro-grid systemaveAnd the common mode adjustment quantity of droop control intercept of each converter voltage source is the same for the average value of the bus voltage of each controllable voltage source.
5. The method of claim 1, wherein the intercept difference mode adjustment is calculated by the formula:
<math> <mrow> <msubsup> <mi>&delta;u</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>Gs</mi> <mi>dif</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>ave</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
wherein GsdifDifferential mode regulator using PI regulation, uaveIs the average value of the bus voltages of the respective controllable voltage sources, uiAnd for the current voltage measured value of the ith controllable voltage source, the droop control intercept difference mode adjustment quantity of each converter voltage source is different.
6. The method of claim 1, wherein the converter droop control parameter adjustment is calculated by:
<math> <mrow> <msubsup> <mi>U</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>U</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&delta;u</mi> <mi>com</mi> <mo>*</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&delta;u</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mi>i</mi> </msub> <mi>k</mi> </mrow> </math>
wherein,is the output voltage of the ith controllable voltage source, U0In order to control the intercept for the droop,as an amount of adjustment of the common mode intercept,for the adjustment of the intercept difference module, iiThe output current of the ith controllable voltage source is 1,2, …, n, n is the number of controllable voltage sources, k is the slope of the droop line, and the slope of the droop line of each converter set initially is the same and is kept unchanged in the operation process.
7. The method of claim 1, wherein the communication frequency dropped by the low bandwidth communication system to each transducer is on the order of seconds.
CN201510243166.0A 2015-05-13 2015-05-13 Based on the direct-current micro-grid Secondary Control control method that line loss optimizes Expired - Fee Related CN104836221B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510243166.0A CN104836221B (en) 2015-05-13 2015-05-13 Based on the direct-current micro-grid Secondary Control control method that line loss optimizes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510243166.0A CN104836221B (en) 2015-05-13 2015-05-13 Based on the direct-current micro-grid Secondary Control control method that line loss optimizes

Publications (2)

Publication Number Publication Date
CN104836221A true CN104836221A (en) 2015-08-12
CN104836221B CN104836221B (en) 2017-04-05

Family

ID=53813920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510243166.0A Expired - Fee Related CN104836221B (en) 2015-05-13 2015-05-13 Based on the direct-current micro-grid Secondary Control control method that line loss optimizes

Country Status (1)

Country Link
CN (1) CN104836221B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233434A (en) * 2017-12-20 2018-06-29 北京千驷驭电气有限公司 Energy reversible traction substation, method and system
CN114006408A (en) * 2021-11-30 2022-02-01 国网湖南省电力有限公司 Dynamic micro-grid group secondary coordination control method and device based on data optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751728A (en) * 2012-07-26 2012-10-24 浙江大学 Energy management method for isolated network running mode in micro network based on load interruption model
CN103236712A (en) * 2013-04-08 2013-08-07 嘉兴清源电气科技有限公司 Direct-current micro-grid system and control method thereof
CN103986381A (en) * 2014-05-28 2014-08-13 东南大学 Micro grid optimal power factor compound control method of wave power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751728A (en) * 2012-07-26 2012-10-24 浙江大学 Energy management method for isolated network running mode in micro network based on load interruption model
CN103236712A (en) * 2013-04-08 2013-08-07 嘉兴清源电气科技有限公司 Direct-current micro-grid system and control method thereof
CN103986381A (en) * 2014-05-28 2014-08-13 东南大学 Micro grid optimal power factor compound control method of wave power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233434A (en) * 2017-12-20 2018-06-29 北京千驷驭电气有限公司 Energy reversible traction substation, method and system
CN114006408A (en) * 2021-11-30 2022-02-01 国网湖南省电力有限公司 Dynamic micro-grid group secondary coordination control method and device based on data optimization
CN114006408B (en) * 2021-11-30 2023-08-18 国网湖南省电力有限公司 Dynamic micro-grid group secondary coordination control method and device based on data optimization

Also Published As

Publication number Publication date
CN104836221B (en) 2017-04-05

Similar Documents

Publication Publication Date Title
CN108363306B (en) Micro-grid distributed controller parameter determination method based on linear quadratic optimization
WO2018121732A1 (en) Non-linearity state observer-based distributed voltage control method for microgrid
EP3316433B1 (en) Voltage control at windfarms
CN105226664B (en) A kind of active distribution network reactive voltage layer distributed control method for coordinating
CN106655226B (en) Active power distribution network asymmetric operation optimization method based on intelligent Sofe Switch
CN103236702B (en) Microgrid reactive power balanced allocation method based on impedance composite control
KR101043572B1 (en) Distribution Automation System and its voltage control method for reactive power compensation
US11817708B2 (en) Power conversion system and management apparatus for the same, and distributed power supply apparatus
EP3360225B1 (en) Solar power conversion system and method
CN103904654B (en) Three-phase combined inverter bridge circuit parallel Operation Control method
CN110912137B (en) Flexible power distribution network operation domain model construction method considering alternating current power flow
US9389631B2 (en) System and method for reactive power compensation
CN110212551B (en) Micro-grid reactive power automatic control method based on convolutional neural network
CN104836221B (en) Based on the direct-current micro-grid Secondary Control control method that line loss optimizes
CN110365004A (en) A kind of direct-current grid power distribution control method
CN105981287A (en) Improvements in or relating to the control of converters
CN107005056A (en) The control system of photo-voltaic power generation station
Wang et al. Optimal power flow in distribution networks with high penetration of photovoltaic units
CN112271741B (en) Active power distribution network distributed voltage regulation method based on multi-energy storage
CN112152268B (en) AC/DC sub-microgrid control method and inter-sub-microgrid group control method
CN105576652A (en) Voltage control method and system for high-voltage direct-current power transmission end
CN109103946A (en) Wind-powered electricity generation is through flexible direct current power grid transmitting system capacitor group switching scheduling method
CN104917170A (en) Method for adjusting voltage and frequency through micro power grid self-adaption droop control based on PI control
CN107302224A (en) A kind of multi-terminal direct current transmission system current conversion station control method based on interior point method
CN109066709B (en) Meta-model-based distributed power supply in-situ voltage control strategy improvement method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170405

CF01 Termination of patent right due to non-payment of annual fee