CN104835181A - 一种基于排序融合学习的目标跟踪方法 - Google Patents
一种基于排序融合学习的目标跟踪方法 Download PDFInfo
- Publication number
- CN104835181A CN104835181A CN201510270176.3A CN201510270176A CN104835181A CN 104835181 A CN104835181 A CN 104835181A CN 201510270176 A CN201510270176 A CN 201510270176A CN 104835181 A CN104835181 A CN 104835181A
- Authority
- CN
- China
- Prior art keywords
- tracking
- mrow
- algorithm
- target
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000013016 learning Effects 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000004927 fusion Effects 0.000 title claims abstract description 28
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 97
- 230000003044 adaptive effect Effects 0.000 claims abstract description 4
- 238000012163 sequencing technique Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 235000000060 Malva neglecta Nutrition 0.000 abstract 1
- 241000219071 Malvaceae Species 0.000 abstract 1
- 238000011160 research Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 108010063499 Sigma Factor Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012854 evaluation process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/251—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510270176.3A CN104835181B (zh) | 2015-05-23 | 2015-05-23 | 一种基于排序融合学习的目标跟踪方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510270176.3A CN104835181B (zh) | 2015-05-23 | 2015-05-23 | 一种基于排序融合学习的目标跟踪方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104835181A true CN104835181A (zh) | 2015-08-12 |
CN104835181B CN104835181B (zh) | 2018-07-24 |
Family
ID=53813046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510270176.3A Active CN104835181B (zh) | 2015-05-23 | 2015-05-23 | 一种基于排序融合学习的目标跟踪方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104835181B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106127766A (zh) * | 2016-06-24 | 2016-11-16 | 国家新闻出版广电总局广播科学研究院 | 基于空间耦合关系和历史模型的目标跟踪方法 |
CN107689053A (zh) * | 2017-07-31 | 2018-02-13 | 温州大学 | 一种基于标签传播和排序约束的目标跟踪方法 |
CN108122013A (zh) * | 2017-12-29 | 2018-06-05 | 重庆锐纳达自动化技术有限公司 | 一种跟随运动中排除非跟随目标的方法 |
CN108734091A (zh) * | 2018-03-30 | 2018-11-02 | 暨南大学 | 车厢异常行为检测方法、计算机装置和计算机可读存储介质 |
CN108763206A (zh) * | 2018-05-22 | 2018-11-06 | 南京邮电大学 | 一种对单文本关键字进行快速排序的方法 |
CN112164092A (zh) * | 2020-10-13 | 2021-01-01 | 南昌航空大学 | 一种广义马尔可夫稠密光流确定方法及系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777185A (zh) * | 2009-12-09 | 2010-07-14 | 中国科学院自动化研究所 | 融合描述式和判别式建模的目标跟踪方法 |
CN101777184A (zh) * | 2009-11-11 | 2010-07-14 | 中国科学院自动化研究所 | 基于局部距离学习和排序队列的视觉目标跟踪方法 |
-
2015
- 2015-05-23 CN CN201510270176.3A patent/CN104835181B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101777184A (zh) * | 2009-11-11 | 2010-07-14 | 中国科学院自动化研究所 | 基于局部距离学习和排序队列的视觉目标跟踪方法 |
CN101777185A (zh) * | 2009-12-09 | 2010-07-14 | 中国科学院自动化研究所 | 融合描述式和判别式建模的目标跟踪方法 |
Non-Patent Citations (3)
Title |
---|
周扬名: "基于高斯混合模型的标签排序算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
江雪莲等: "产生式与判别式组合分类器学习算法", 《山东大学学报(理学版)》 * |
钟必能: "复杂动态场景中运动目标检测与跟踪算法研究", 《中国博士学位论文全文数据库信息科技辑》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106127766A (zh) * | 2016-06-24 | 2016-11-16 | 国家新闻出版广电总局广播科学研究院 | 基于空间耦合关系和历史模型的目标跟踪方法 |
CN106127766B (zh) * | 2016-06-24 | 2018-12-25 | 国家新闻出版广电总局广播科学研究院 | 基于空间耦合关系和历史模型的目标跟踪方法 |
CN107689053A (zh) * | 2017-07-31 | 2018-02-13 | 温州大学 | 一种基于标签传播和排序约束的目标跟踪方法 |
CN108122013A (zh) * | 2017-12-29 | 2018-06-05 | 重庆锐纳达自动化技术有限公司 | 一种跟随运动中排除非跟随目标的方法 |
CN108734091A (zh) * | 2018-03-30 | 2018-11-02 | 暨南大学 | 车厢异常行为检测方法、计算机装置和计算机可读存储介质 |
CN108763206A (zh) * | 2018-05-22 | 2018-11-06 | 南京邮电大学 | 一种对单文本关键字进行快速排序的方法 |
CN108763206B (zh) * | 2018-05-22 | 2022-04-05 | 南京邮电大学 | 一种对单文本关键字进行快速排序的方法 |
CN112164092A (zh) * | 2020-10-13 | 2021-01-01 | 南昌航空大学 | 一种广义马尔可夫稠密光流确定方法及系统 |
CN112164092B (zh) * | 2020-10-13 | 2022-09-27 | 南昌航空大学 | 一种广义马尔可夫稠密光流确定方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104835181B (zh) | 2018-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104835181B (zh) | 一种基于排序融合学习的目标跟踪方法 | |
CN107766850B (zh) | 基于结合人脸属性信息的人脸识别方法 | |
US8457391B2 (en) | Detecting device for specific subjects and learning device and learning method thereof | |
Karayev et al. | Anytime recognition of objects and scenes | |
CN111126488A (zh) | 一种基于双重注意力的图像识别方法 | |
CN102968623B (zh) | 肤色检测系统及方法 | |
US20200380292A1 (en) | Method and device for identifying object and computer readable storage medium | |
Nie et al. | 3D pose estimation based on reinforce learning for 2D image-based 3D model retrieval | |
CN110111365B (zh) | 基于深度学习的训练方法和装置以及目标跟踪方法和装置 | |
US20220164648A1 (en) | Clustering method based on self-discipline learning sdl model | |
Hao et al. | Spatio-temporal collaborative module for efficient action recognition | |
Tian et al. | Towards class-agnostic tracking using feature decorrelation in point clouds | |
Zand et al. | Flow-based Spatio-Temporal Structured Prediction of Dynamics | |
CN104050451A (zh) | 一种基于多通道Haar-like特征的鲁棒目标跟踪方法 | |
CN109858543B (zh) | 基于低秩稀疏表征和关系推断的图像可记忆度预测方法 | |
Kuhn et al. | Brcars: a dataset for fine-grained classification of car images | |
Novakovic et al. | Classification accuracy of neural networks with pca in emotion recognition | |
CN114841887B (zh) | 一种基于多层次差异学习的图像恢复质量评价方法 | |
Lai et al. | Learning graph convolution filters from data manifold | |
Hui | A survey for 2d and 3d face alignment | |
CN103218611A (zh) | 基于分布式协同学习的人体运动跟踪方法 | |
CN106650753A (zh) | 一种基于特征选择的视觉映射方法 | |
Chen et al. | Robust deep learning with active noise cancellation for spatial computing | |
Miller | Epistemic uncertainty estimation for object detection in open-set conditions | |
Wu et al. | A multi-label image classification method combining multi-stage image semantic information and label relevance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20180413 Address after: Lingxizhen Cangnan County of Wenzhou City, Zhejiang province 325800 Haixi electric science and Technology Park 14 D district two building 203 Applicant after: Cangnan Institute of Cangnan Address before: 325035 Wenzhou higher education zone, Wenzhou, Zhejiang Applicant before: Wenzhou University |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190419 Address after: 325035 Wenzhou City National University Science Park incubator, No. 38 Dongfang South Road, Ouhai District, Wenzhou, Zhejiang Patentee after: Wenzhou University Address before: 325800 Wenzhou, Cangnan, Zhejiang province Cangnan Town, D 14 district two, 203 Patentee before: Cangnan Institute of Cangnan |
|
TR01 | Transfer of patent right | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20150812 Assignee: Big data and Information Technology Research Institute of Wenzhou University Assignor: Wenzhou University Contract record no.: X2020330000098 Denomination of invention: A target tracking method based on sorting fusion learning Granted publication date: 20180724 License type: Common License Record date: 20201115 |
|
EE01 | Entry into force of recordation of patent licensing contract |