CN104834772B - Aircraft wing based on artificial neural network/wing inverse design method - Google Patents

Aircraft wing based on artificial neural network/wing inverse design method Download PDF

Info

Publication number
CN104834772B
CN104834772B CN201510198979.2A CN201510198979A CN104834772B CN 104834772 B CN104834772 B CN 104834772B CN 201510198979 A CN201510198979 A CN 201510198979A CN 104834772 B CN104834772 B CN 104834772B
Authority
CN
China
Prior art keywords
mrow
mfrac
mtd
msubsup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510198979.2A
Other languages
Chinese (zh)
Other versions
CN104834772A (en
Inventor
孙刚
王舒悦
孙燕杰
陶俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510198979.2A priority Critical patent/CN104834772B/en
Publication of CN104834772A publication Critical patent/CN104834772A/en
Application granted granted Critical
Publication of CN104834772B publication Critical patent/CN104834772B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention belongs to airplane design technical field, the specially a kind of aircraft wing based on artificial neural network/wing inverse design method.The inventive method includes:Using the expression way of aerofoil profile/wing PARSEC parametric methods reconstruct aerofoil profile/wing, pass through artificial neural network(ANN)Algorithm, realize mimetic design technology.The present invention bypassed traditional aerofoil profile/wing design it is cumbersome and inefficient enumerate alternative manner(cut‑and‑try), the relation of aerofoil profile/wing aerodynamic performance and aerofoil profile/wing geometric shape is directly established, realizes the aerofoil profile based on artificial neural network/wing parametrization mimetic design.Feature of the present invention:When it is quick, it is quite suitable in the master-plan especially initial designs of aircraft;Two be due to using artificial neural network algorithm in place so that caused result is very accurate.

Description

Aircraft wing based on artificial neural network/wing inverse design method
Technical field
The invention belongs to airplane design technical field, and in particular to a kind of aircraft wing/wing inverse design method.
Background technology
Mimetic design method in aircraft components design, i.e., a kind of " required i.e. gained ", can be pneumatic directly according to what is given Performance requirement obtains the geometric data of satisfactory aircraft components.At present, the method for common aircraft wing/wing design It is traditional, cumbersome and inefficient to enumerate-alternative manner(cut-and-try), i.e., by the way that aircraft wing/wing is calculated Design result aeroperformance, be fed back to and new change made to geometric data(Often such change and pneumatic property The relevance of energy is not very strong, and shows larger randomness), then carry out new aeroperformance and calculate, so repeatedly Iteration meets new aerofoil/wing of required aeroperformance until obtaining.Because such design method specific aim is not strong Reason, the time quantum of consumption is larger, is unfavorable for the job requirement in airplane design work especially initial design stage.
Mimetic design method on aerofoil profile/wing of aircraft, it is therefore an objective to directly constitute aircraft wing/wing aerodynamic performance with The contact of geometric data, the direct correlation from aeroperformance to geometric data is realized, it is more quick, more direct so as to obtain Aerofoil profile/Wing design method.At present, the technology in aircraft components mimetic design field usually utilizes various intelligent algorithms, carries out pneumatic The mapping of performance data and geometry data.But it is limited to aircraft components design the complex nature of the problem, the intelligence calculation taken Method is not quite similar, and obtained effect is also unsatisfactory.Based on this present situation, the present invention proposes the aircraft based on artificial neural network Aerofoil profile/wing inverse design method.
The content of the invention
In order to overcome the above-mentioned deficiencies of the prior art, the present invention proposes a kind of aircraft wing based on artificial neural network Type/wing inverse design method.
Aircraft wing based on artificial neural network/wing inverse design method provided by the invention, it is broadly divided into 5 steps Suddenly:
(1)First, aerofoil profile/wing PARSEC (Sobieczky H. Parametric airfoils and are utilized wings[M]//Recent Development of Aerodynamic Design Methodologies. Vieweg+ Teubner Verlag, 1999:71-87.) the expression way of parametric method reconstruct aerofoil profile, i.e., with 11 PARSEC profiles Parameter(Leading-edge radius rle, up/down aerofoil maximum gauge XupAnd Xlo, up/down aerofoil maximum gauge correspondence position ZupAnd Zlo, it is upper/ Lower aerofoil vertex curvature ZxxupAnd Zxxlo, trailing edge width △ ZTE, trailing edge vertical height ZTE, trailing edge angle of wedge βTE, trailing edge deflection αTE)To simulate airfoil geometry situation, with 6 Aerodynamics(Lift coefficient CL, resistance coefficient CD, moment coefficient CM, cruise Efficiency MCL/CD, coefficient of frictional resistance CDF, drag due to shock wave coefficient CDW)To summarize the aeroperformance of aerofoil profile.
Top airfoil and lower aerofoil parameter of curve expression formula are formula(1)It is shown:
(1)
a n For multinomial coefficient, for top airfoil, coefficient a n By matrix equation(2)Provide:
(2)
For lower aerofoil, coefficient a n By matrix equation(3)Provide, it is similar with top airfoil, top airfoil configuration spy will be characterized The parameter of sign amount changes the corresponding parameter of lower aerofoil into:
(3)
Fitting coefficient is obtained, can be to establish contacting for geometric parameter and actual aerofoil profiles.
On the basis of PARSEC geometric parameter methods, to aerofoil profile/wing inverse design using geometric parameter as optimization object.
(2)Then, different length positions are moulded by the selection and size scaling of aerofoil profile with the geometric parameter data of aerofoil profile The wing section put;With reference to the wing relative thickness parameter and torsion angular dimensions of different length opening positions(General 6 i.e. can reach it is pre- Phase precision), it is wing using spline curve fitting wing, the geometric data of wing is obtained, implementing procedure is referring to Fig. 3.Corresponding The parameter of wing aerodynamic performance description includes:Cruise efficiency MCL/CD, airfoil lift coefficient CLWING, wing drag coefficient CDWING, pressure drag coefficient CDP, induced drag coefficient CDI, drag due to shock wave coefficient CDW and wing moment coefficient CMQING.
(3)Then, according to preceding step obtain on aerofoil profile and the geometric data result of wing, applied to substantial amounts of On aerofoil profile, to form airfoil geometry database.Can the success or not of the technology depends on geometric database accomplish:It is 1. pneumatic Data and geometric data cover sufficiently large scope so that the mimetic design technology can have use value;2. database is at certain Whether data under one classification enrich enough, to ensure next the(4)The study of artificial neural network required for step can Not only it is complete but also accurate.At present, number of training purpose determines no general method, it is considered that, sample is very few may to make net The expression of network is not abundant enough, and so as to cause the extrapolability of network inadequate, sample redundancy phenomena excessively occurs in sample, both increases Network training burden, information content surplus is likely to occur again, network over-fitting is occurred, database passes through ANN The training of network, form available mimetic design artificial neural network.User now sets required mimetic design in input again Aerodynamic, then mimetic design artificial neural network now can export automatically meets that wing/airfoil geometry of this performance is joined Number.User can obtain the profile of wing/aerofoil profile according to this result, further be used for design work.
, it is necessary to carry out for its geometric data before the database that application has arranged carries out artificial neural network training Classification, the aerofoil profile data of the training input to ensure as mimetic design artificial neural network geometrically can connect as far as possible Closely.This way is based on considering on a mechanics:The aeroperformance that similar geometric shape is formed should be close. Such understanding, help to lower the training difficulty of artificial neural network.Sorting technique uses SOM algorithms(Kohonen T, Hynninen J, Kangas J. et al. Som pak: The self-organizing map program package [J]. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science, 1996.).
(4)Then on this basis, artificial neural network is passed through(ANN)Algorithm(Zeidenberg M. Neural networks in artificial intelligence[M]. Ellis Horwood, 1990.), in order to realize mimetic design, Carry out the training of related artificial neural network.On the training method of neutral net, using GRNN algorithms (Specht D F. A general regression neural network. Neural Networks[J], IEEE Transactions on, 1991. 2(6): p. 568-576.)(By comparing, its target coefficient correlation is horizontal and network generalization is superior to BP calculations Method and RBF algorithms):Input is the aeroperformance of wing/aerofoil profile(It can be accepted or rejected according to the demand of mimetic design, than like flying Lift-drag ratio coefficient can be chosen during machine initial designs), output end is the geometric data of corresponding wing/aerofoil profile.
(5)After mimetic design artificial neural network, which is trained, to be completed, the artificial neural network that can be finished with training herein On carry out the work of mimetic design, i.e. user in the required aerofoil profile/wing aerodynamic performance parameter of the input input of network, this When output end result be exactly Aerodynamic required by required correspondence aerofoil profile geometric parameter.Pass through step (1)In aerofoil restoring method(That is formula(1)), it is possible to obtain final result.
Compared with prior art, it is cumbersome and inefficient by mimetic design to have bypassed traditional aerofoil profile/wing design by the present invention Enumerate-alternative manner(cut-and-try), but directly establish aerofoil profile/wing aerodynamic performance and aerofoil profile/wing geometric shape Relation.It is different with general database search simultaneously:It can utilize the intellectual technology height of artificial neural network " to insert Value " obtains required result.The features of the present invention:On the one hand it is quick, is quite suitable for the master-plan of aircraft especially Among the process of initial designs;On the other hand due to application artificial neural network algorithm in place so that caused result is very accurate Really.The technology is examined in numerical simulation:It is Mach number 0.75 for operating mode, 2.53 ° of the angle of attack, Reynolds number 23, 000,000, lift-drag ratio 25.8, lift coefficient 0.5, type resistance coefficient is 0.0105, induced drag coefficient 0.009, shock wave Resistance coefficient is 0.00017, moment coefficient 0.23;Airfoil lift coefficient is 0.43, and resistance coefficient is 0.0095 and torque system Number designs for -0.13 wing profile supercritical wing, the wing that the technology application obtains with it is contemplated that phase on aerodynamic parameter It is as a result satisfactory to error within 2%(Refer to " embodiment " part hereinafter).
Brief description of the drawings
Fig. 1 is aerofoil profile/wing inverse design concept map.
Fig. 2 is GRNN network modes figure used in aerofoil profile/wing inverse design.
Fig. 3 is conversion process figure of the aerofoil profile/wing inverse design aerofoil profile parameter to wing geometric parameter, and it corresponds to step 2.
Fig. 4 is the manifestation mode of wing PARSEC parameters in the present invention.
Fig. 5 is that mimetic design obtains aerofoil profiles in specific example.
Fig. 6 is wing section geometric configuration.
Fig. 7 is the relative thickness distribution in prediction wing section(It is left)It is distributed with torsion angle(It is right).
Fig. 8 is distributed for wing isobar.
Fig. 9 is the pressure distribution in 6 wing sections.
Embodiment
Embodiment 1:
Design requirement:Under one cruise Mach number Ma=0.785, design point is the aerofoil profile of parameters described below:
Design Mach numberMa=0.71
Design angle of attack á=2.53
Reynolds numberRe=23,000,000
Initially set up airfoil database.On the construction of profile, aerofoil profile is relatively simple.In this example in airfoil database Include 208 reconstruct aerofoil profiles.Each aerofoil profile in database will have good aeroperformance;And the geometry structure of aerofoil profile Type will have span as big as possible, that is, have obvious shape differentiation between aerofoil profile.It so just can guarantee that aerofoil profile data The high efficiency and integrality in storehouse.Tables 1 and 2 is respectively that the span of aerofoil profile moving parameter and formal parameter collects.
The aerofoil profile aerodynamic parameter of table 1 collects
The aerofoil profiles parameter of table 2 collects
Minimum Value Maximum Value
r le 0.0034 0.0306
X up 0.2927 0.5074
X lo 0.275 0.4577
Z up 0.0301 0.1116
|Z lo | 0.0186 0.0923
|Z xxup | 0.02 1.1086
Z xxlo 0.096 0.919
△Z TE 0 0.0163
Z TE -0.0419 0.0082
β TE 0.01 8.4622
α TE 2.1599 16.6992
Using the artificial neural network based on mimetic design(Input and output mode is as shown in Figure 1), be trained and input and The desired aeroperformance of this example, the aerofoil profile result of mimetic design is obtained, as shown in table 3 and Fig. 5:
The Airfoil Inverse Design result of table 3
After mimetic design aerofoil profiles are obtained, to it carry out Flow Field Calculation, calculate gained design aerodynamic parameter and The expection aerodynamic parameter of target call is contrasted.The relative error of major design aerodynamic parameter is all within allowed band.
The Airfoil Inverse Design error analysis of table 4
Embodiment 2:
Design requirement:It is 25.8 to design lift-drag ratio, lift coefficient 0.5, and type resistance coefficient is 0.0105, induced drag system Number is 0.009, and drag due to shock wave coefficient is 0.00017, moment coefficient 0.23;Airfoil lift coefficient is 0.43, and resistance coefficient is 0.0095 and moment coefficient be -0.13 wing profile.
Wherein main aerodynamic parameter(Wing lift-drag ratio and lift coefficient)Itd is proposed by designer, remaining secondary aerodynamic parameter Provided with interpolation method with reference to 214 groups of pneumatic input ranges in main aerodynamic parameter and database, such as table 5.
The wing aerodynamic parameter of table 5 collects
First the wing data in database are classified according to aeroperformance with SOM neutral nets, it is pneumatic to take out target One group of corresponding data of input, select GRNN neutral nets to be calculated.
Aeroperformance is expected according to wing with mimetic design method, 78 wing formal parameters are calculated, according to parametrization Method and wing construction method construct wing profile with formal parameter.Wherein, the geometric configuration in 6 wing sections is respectively such as Fig. 6 It is shown;The relative thickness distribution in each wing section and torsion angle are distributed as shown in fig. 7, corresponding aeroperformance is as shown in Figure 9;It is whole The form and aeroperformance of individual wing are as shown in Figure 8.
The expection aerodynamic parameter of the design aerodynamic parameter and target call that calculate gained is contrasted.The phase of efficiency factor It is 0.39% to error, the relative error of multi-wall interference lift coefficient is 2.22%, and the error of airfoil lift coefficient is 1.33%. The relative error of three main aerodynamic parameters is all within allowed band.
The wing formal parameter of table 6 predicts error analysis

Claims (1)

  1. A kind of 1. aircraft wing based on artificial neural network/wing inverse design method, it is characterised in that concretely comprise the following steps:
    (1) first, the expression way of aerofoil profile is reconstructed using aerofoil profile/wing PARSEC parametric methods, i.e., with outside 11 PARSEC Shape parameter:Leading-edge radius rle, up/down aerofoil maximum gauge xupAnd xlo, up/down aerofoil maximum gauge correspondence position zupAnd zlo、 Up/down aerofoil vertex curvature zxxupAnd zxxlo, trailing edge width △ zte, trailing edge vertical height zte, trailing edge angle of wedge βte, trailing edge deflection αteTo simulate airfoil geometry situation, with 6 Aerodynamics:Lift coefficient CL, resistance coefficient CD, moment coefficient CM, cruise Efficiency M (CL/CD), coefficient of frictional resistance CDF, drag due to shock wave coefficient CDW describe the aeroperformance of aerofoil profile;Then, top airfoil It is shown in formula (1) with lower aerofoil parameter of curve expression formula:
    <mrow> <mi>z</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </munderover> <msub> <mi>a</mi> <mi>n</mi> </msub> <msup> <mi>x</mi> <mrow> <mi>n</mi> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    anFor multinomial coefficient, for top airfoil, coefficient anProvided by matrix equation (2):
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>15</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>35</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>63</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>99</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>5</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>6</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msqrt> <mrow> <mn>2</mn> <msub> <mi>r</mi> <mrow> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;z</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow> <mi>u</mi> <mi>p</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>tan</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow> <mi>x</mi> <mi>x</mi> <mi>u</mi> <mi>p</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    For lower aerofoil, coefficient anProvided by matrix equation (3):
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> <mtd> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>11</mn> <mn>2</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>9</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>15</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>35</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>63</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>99</mn> <mn>4</mn> </mfrac> <msubsup> <mi>x</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>5</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>6</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msqrt> <mrow> <mn>2</mn> <msub> <mi>r</mi> <mrow> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </msqrt> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>z</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;z</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow> <mi>l</mi> <mi>o</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>tan</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;alpha;</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>t</mi> <mi>e</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mrow> <mi>x</mi> <mi>x</mi> <mi>l</mi> <mi>o</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    Fitting coefficient is obtained, just sets up contacting for geometric parameter and actual aerofoil profiles;
    On the basis of PARSEC geometric parameter methods, to aerofoil profile/wing inverse design using geometric parameter as optimization object;
    (2) then, different length positions are moulded by the selection and size scaling of aerofoil profile using the geometric parameter data of aerofoil profile Wing section;With reference to the wing relative thickness parameter and torsion angular dimensions of different length opening positions, spline curve fitting machine is utilized Thriving shape, obtain the geometric data of wing;The parameter of corresponding wing aerodynamic performance description includes:Cruise efficiency M (CL/ CD), airfoil lift coefficient CLWING, wing drag coefficient CDWING, pressure drag coefficient CDP, induced drag coefficient CDI, swash Wave resistance force coefficient CDW and wing moment coefficient CMQING;
    (3) then, according to preceding step obtain on aerofoil profile and the result of the geometric data of wing, applied to substantial amounts of aerofoil profile On, to form airfoil geometry database;It is required that accomplish:(A) aerodynamic data and geometric data cover sufficiently large scope, make Obtaining the mimetic design technology can be with practical value;(B) data of the database under a certain classification are enriched enough, to ensure to walk below Suddenly the study of the artificial neural network required for (4) can be not only complete but also accurate;Database passes through the training of artificial neural network, Form available mimetic design artificial neural network;
    Using SOM algorithms, classify for airfoil geometry data, the training to ensure as mimetic design artificial neural network is defeated Enter the aerofoil profile data at end geometrically can be close as far as possible;
    (4) on this basis, artificial neural network algorithm, the training of progress mimetic design artificial neural network are passed through;Wherein, On the training of neutral net, using GRNN algorithms:Input be wing/aerofoil profile aeroperformance data, the aeroperformance number According to can be accepted or rejected according to the demand of mimetic design, output end is the geometric data of corresponding wing/aerofoil profile;
    (5) after mimetic design artificial neural network, which is trained, to be completed, train carried out instead on the artificial neural network finished herein The work of design, i.e. user are in the required aerofoil profile/wing aerodynamic performance parameter of the input input of network, now output end As a result the geometric parameter of the aerofoil profile of the Aerodynamic required by correspondence required for being exactly;Pass through the aerofoil in (1) step Restoring method, obtain final result.
CN201510198979.2A 2015-04-22 2015-04-22 Aircraft wing based on artificial neural network/wing inverse design method Expired - Fee Related CN104834772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510198979.2A CN104834772B (en) 2015-04-22 2015-04-22 Aircraft wing based on artificial neural network/wing inverse design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510198979.2A CN104834772B (en) 2015-04-22 2015-04-22 Aircraft wing based on artificial neural network/wing inverse design method

Publications (2)

Publication Number Publication Date
CN104834772A CN104834772A (en) 2015-08-12
CN104834772B true CN104834772B (en) 2018-01-12

Family

ID=53812656

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510198979.2A Expired - Fee Related CN104834772B (en) 2015-04-22 2015-04-22 Aircraft wing based on artificial neural network/wing inverse design method

Country Status (1)

Country Link
CN (1) CN104834772B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014451A (en) * 2017-05-03 2017-08-04 东南大学 The method of ultrasonic flow sensor coefficient is speculated based on generalized regression nerve networks
CN108733914A (en) * 2018-05-17 2018-11-02 复旦大学 Transonic airfoil Natural Laminar Flow delay based on artificial neural network turns to twist design method
DE102018210894A1 (en) * 2018-07-03 2020-01-09 Siemens Aktiengesellschaft Design and manufacture of a turbomachine blade
SG11202105438XA (en) 2018-11-26 2021-06-29 Agency Science Tech & Res Method and system for predicting performance in electronic design based on machine learning
CN110084511B (en) * 2019-04-25 2021-07-13 广东工业大学 Unmanned aerial vehicle configuration method, device, equipment and readable storage medium
CN110321588B (en) * 2019-05-10 2023-04-07 中车青岛四方车辆研究所有限公司 Rail vehicle air resistance calculation method based on numerical simulation
CN112784508A (en) * 2021-02-12 2021-05-11 西北工业大学 Deep learning-based airfoil flow field rapid prediction method
CN113849910B (en) * 2021-09-23 2022-07-08 四川大学 Dropout-based BiLSTM network wing resistance coefficient prediction method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458735A (en) * 2008-12-31 2009-06-17 重庆大学 Aerofoil with high lift-drag ratio
US8725470B1 (en) * 2010-05-17 2014-05-13 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Co-optimization of blunt body shapes for moving vehicles
CN104392075A (en) * 2014-12-15 2015-03-04 中国飞机强度研究所 Airfoil profile parametric modeling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2356788B1 (en) * 2007-12-18 2012-02-22 Airbus Operations, S.L. METHOD AND SYSTEM FOR A QUICK CALCULATION OF AERODYNAMIC FORCES IN AN AIRCRAFT.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458735A (en) * 2008-12-31 2009-06-17 重庆大学 Aerofoil with high lift-drag ratio
US8725470B1 (en) * 2010-05-17 2014-05-13 The United States of America as represented by the Administrator of the National Aeronautics & Space Administration (NASA) Co-optimization of blunt body shapes for moving vehicles
CN104392075A (en) * 2014-12-15 2015-03-04 中国飞机强度研究所 Airfoil profile parametric modeling method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于SOM神经网络的超临界翼型设计;陈杰等;《力学季刊》;20110930;第32卷(第3期);第411-417页 *
基于神经网络方法的民用飞机先进气动力机翼设计研究;陈杰;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20120415;C031-7/正文第8-66页 *

Also Published As

Publication number Publication date
CN104834772A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
CN104834772B (en) Aircraft wing based on artificial neural network/wing inverse design method
Qijun et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor
CN109460566B (en) Aerodynamic robust optimization design method for thick airfoil section on inner side of wind turbine blade
CN106055791B (en) Aircraft overall situation Aerodynamic optimization method based on Predictor-Correcting Algorithm
CN104778327B (en) Aircraft wing Optimization Design based on artificial neural network
Wickramasinghe et al. Designing airfoils using a reference point based evolutionary many-objective particle swarm optimization algorithm
Lian et al. Progress in design optimization using evolutionary algorithms for aerodynamic problems
CN106126791B (en) A kind of hypersonic wing aerodynamic force/heat analysis method for considering geometrical uncertainty
Vu et al. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for forward flight
CN112016167A (en) Aircraft aerodynamic shape design method and system based on simulation and optimization coupling
CN108733914A (en) Transonic airfoil Natural Laminar Flow delay based on artificial neural network turns to twist design method
CN105404743A (en) Wind turbine airfoil design method combining B spline with curvature smooth continuity
CN110516318A (en) Airfoil Design method based on radial basis function neural network agent model
Lane et al. A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology
CN113536458B (en) Quick geometric modeling method of deformable wing based on class shape function transformation
González et al. Optimum multidisciplinary and multi-objective wing design in CFD using evolutionary techniques
CN106741924A (en) A kind of high lift-drag ratio Low-torque characteristic 9% thickness rotor-blade airfoil under the conditions of full working scope
Cameron et al. Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils
Fasel et al. Concurrent design and flight mission optimization of morphing airborne wind energy wings
Guo et al. An aero-structure-acoustics evaluation framework of wind turbine blade cross-section based on Gradient Boosting regression tree
CN105260498B (en) A kind of large size civil aircraft wing variable camber design method
CN105787217A (en) Corrugated airfoil profile for aircraft and optimal design method thereof
Donovan et al. Optimum transverse span loads for transport category aircraft
Wei et al. Study on a rapid aerodynamic optimization method of flying wing aircraft for conceptual design
Thurman et al. Comparison of Prediction Modeling Methodologies for Aeroacoustic Characterization of Hovering sUAS Rotors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180112