CN104819872A - 一种遗址博物馆降尘的滤膜片夹采集方法 - Google Patents
一种遗址博物馆降尘的滤膜片夹采集方法 Download PDFInfo
- Publication number
- CN104819872A CN104819872A CN201510244442.5A CN201510244442A CN104819872A CN 104819872 A CN104819872 A CN 104819872A CN 201510244442 A CN201510244442 A CN 201510244442A CN 104819872 A CN104819872 A CN 104819872A
- Authority
- CN
- China
- Prior art keywords
- filter membrane
- dust
- falling dust
- analysis
- constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 43
- 239000000428 dust Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 16
- 238000005070 sampling Methods 0.000 claims abstract description 10
- 238000005303 weighing Methods 0.000 claims abstract description 9
- 239000010453 quartz Substances 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 23
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 241000238631 Hexapoda Species 0.000 claims description 2
- 238000004377 microelectronic Methods 0.000 claims description 2
- -1 polytetrafluoroethylene Polymers 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 238000004626 scanning electron microscopy Methods 0.000 claims description 2
- 230000009193 crawling Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 230000004907 flux Effects 0.000 description 22
- 238000004062 sedimentation Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
本发明公开了一种遗址博物馆降尘的滤膜片夹采集方法,包括如下步骤:将滤膜,裁剪成47mm直径的标准滤膜,其中石英材质的需要放入马弗炉中灼烧,去除残留杂质;放入恒温恒湿箱中,放置24小时以上,称重,然后放入内径47mm的降尘滤膜收集装置,然后水平或竖直放入遗址区进行降尘采集;采样结束直接取下滤膜,置于恒温恒湿箱进行24小时以上温湿度恒定,然后进行称量及各种化学分析。本发明采用降尘的滤膜片夹采集方法,取下滤膜直接称量和进行化学分析,减小了降尘收集中的二次污染,减小了降尘量和化学组分的分析误差,提高了遗址环境降尘监测的精确性和规范性,对文物和游客的干扰降到最小。
Description
技术领域
本发明涉及博物馆文物保存环境监测领域,具体涉及一种遗址博物馆降尘的滤膜片夹采集方法。
背景技术
博物馆环境安全性要求较高,博物馆环境中降尘污染是对文物造成脏污腐蚀的主要因素之一,寻求一种有效的对博物馆环境降尘监测方法,进行博物馆环境降尘进行监测,进而对其进行控制对博物馆文物长久保存极为重要。
传统的博物馆降尘收集是使用降尘盘,一方面降尘盘普遍体积较大,质量较重,影响游客观瞻,或多或少对遗址及文物造成挤压;此外在降尘分析中降尘盘的边沿定位不清,不易精确计算降尘通量,而且在降尘最终收集清扫过程中容易造成不必要的污染和损失。
发明内容
为解决上述问题,本发明提供了一种遗址博物馆降尘的滤膜片夹采集方法,采用降尘的滤膜片夹采集方法,取下滤膜直接称量和进行化学分析,消除了降尘收集中的二次污染,减小了降尘通量计算和理化表征的误差,可获得降尘中各化学组分的质量沉降通量和数量沉降通量,对文物干扰降到最小。相比于传统的降尘采集方法,本发明适用于更多类型的遗址空间内,样品采集的时间分辨率更高,所收集样品能提供的降尘物理特征、化学组分和单颗粒信息更丰富。
为实现上述目的,本发明采取的技术方案为:
一种遗址博物馆降尘的滤膜片夹采集方法,包括如下步骤:
S1、将滤膜,裁剪成47mm直径的标准滤膜,对石英材质的滤膜需要放入马弗炉中灼烧,去除残留杂质;
S2、将步骤S1所得的滤膜放入恒温恒湿箱中,放置24小时以上,称重,然后放入内径为47mm的降尘滤膜收集装置中,该装置顶部为100筛目不锈钢网(孔径150μm),防止昆虫等动物扰动或过大颗粒物落入,然后水平放置或垂直固定于采样支架,置于遗址区进行降尘采集;
S3、采样结束直接取下滤膜,置于温度20-23℃,相对湿度35-45%的恒温恒湿箱内,进行24小时以上温湿度恒定,然后进行称量及各种化学分析。
其中,所述化学分析包括离子分析、OC-EC分析、XRF分析、SEM。
其中,所述步骤S3中称量的方法为:采样后使用超微电子天平,进行两次称量,取平均值,超微电子天平的精度为0.0001mg。
其中,所述滤膜的材质为石英,聚碳酸酯,聚四氟乙烯中的一种或多种。
其中,用于大气环境监测中的成品石英滤膜一般在440μm左右;裁剪的长度也可根据具体分析项目多少适当缩放。
本发明具有以下有益效果:
采用降尘的滤膜片夹采集方法,取下滤膜直接进行称量和理化表征,消除了降尘收集中的二次污染,减小了降尘通量计算和理化表征的误差,可获得降尘中各化学组分的质量沉降通量和数量沉降通量,提高了遗址环境降尘监测的精确性和规范性,对文物和游客的干扰降降至最小。
附图说明
图1为本发明实施例中所使用的降尘滤膜收集装置的结构示意图。
图2为图1的解剖图。
图3为本发明实施例中降尘粒子的形貌。
图4为本发明实施例进一步用到的同粒径颗粒物的沉降速率示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1-2所示,本发明实施例中所使用的降尘滤膜收集装置包括100筛目不锈钢网1、上部固定托架2、滤膜3、不锈钢支撑网4和下部固定底座5。上部固定托架上部有凹孔,所述100筛目不锈钢网1下端插入上部固定托架,所述滤膜3放置于不锈钢支撑网4上,通过上部固定托架2与下部固定底座5固定。
实施例1
石英滤膜的分析结果
降尘质量沉降通量
样品的沉降通量分析使用灵敏度为1ug的微电子分析天平(SartoriusMicrobalance,ME5-F,Germany)在采样前后分别对石英滤膜进行称量。降尘颗粒物样品的两个采样点分别位于秦始皇兵马俑博物馆一号坑(室内)和室外。降尘的质量沉降通量计算公式如下:
组分质量沉降通量=组分质量浓度/(检测滤膜面积×暴露时间) (1)
按照上式算得,采样期间降尘的室内外沉降通量平均为8.7±3.3g·m-2·yr-1、26.7±13.4g·m-2·yr-1。室外和室内质量浓度范围分别为2.6-16.2g·m-2·yr-1和5.3-48.8·m-2·yr-1。
降尘化学组成
降尘有机碳和元素碳组成
对采样后的滤膜用专有切样器,直接切0.5cm2的圆形样品直接放入热-光碳分析仪(Thermal/Optical Carbon Analyzer,DRI Model 2001)进行降尘颗粒中的进行OC与EC分析,对室内、外降尘颗粒中OC与EC在不同时间尺度下的沉降通量水平。结果表明室内外OC沉降通量的年平均值分别为0.94±0.75g·m-2·yr-1、1.98±1.03g·m-2·yr-1;室内外EC沉降通量的年平均值分别为0.34±0.32g·m-2·yr-1、0.4±0.22g·m-2·yr-1。
降尘离子组成
切1/4滤膜进行溶解、超生波振荡、过滤(孔径0.45μm)后,放入Dionex-600型离子色谱(Dionex Inc.,Sunnyvale,CA,USA)仪,进行阴阳离子分析,结果发现,室内外降尘中浓度最高的为SO4 2-,其次为NO3 -和Cl-。降尘中两种主要的水溶性离子SO4 2-和NO3 -在一号坑和室外分别占总水溶性离子的62.0%和68.4%。
表1室内外降尘离子组成
Unit:g··m-2·yr-1
降尘元素的组成
将滤膜直接放入X射线荧光光谱分析仪(Energy Dispersive X-RayFluorescence spectrometer,EDXRF)(PANalytical Corp.,Netherlands),进行元素分析,结果表明,降尘颗粒中主要的元素组成为S、Cl、K、Ca、Fe、Zn、Mo和Pb,其中含量最高的是K和Ca,其沉降通量在室内分别为2.07g·m-2.yr-1和1.15g·m-2·yr-1,室外为4.68g·m-2·yr-1和2.02g·m-2·yr-1。
表3室内外降尘中各元素的沉降通量
Unit:g··m-2·yr-1
实施例2
聚碳酸酯膜的分析结果
降尘的显微形貌如图3所示
剪取采有降尘颗粒的聚碳酸酯滤膜中间位置约10×10mm2的正方形小片,贴于粘附有碳双面导电胶带的样品台上,经JEOL JFC-1600型离子溅射仪喷金处理后,置于配备有X射线能谱装置(NORAN SYSTEM SIX,ThermoElectron Corporation,USA)的扫描电子显微镜(SEM-EDX)(JSM-6460 LV,Japan Electron Optics Laboratory Co.Ltd.,JP)内进行扫描电镜和能谱分析,通过电镜图像掌握降尘颗粒物的形貌,结合EDX了解降尘颗粒物的化学组成,发现室内外降尘颗粒主要由矿物质颗粒、燃煤飞灰、烟炱集合体和生物质颗粒组成。
此外还可根据指定面积内降尘颗粒数量结合降尘颗粒的能谱分析结果来计算颗粒物的数量沉降通量:
组分数量沉降通量=组分类型颗粒计数/(检测滤膜面积×暴露时间) (2)
进一步,根据不同粒径颗粒物的沉降速率(如图4所示),还可估算遗址现场大气中各组分颗粒物的数量浓度。
CAirborne conc=Flux/Vdep
其中:CAirborne conc为大气中各组分的数量浓度,为Flux各组分的数量沉降通量,Vdep为不同粒径各组分颗粒物的沉降速率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (4)
1.一种遗址博物馆降尘的滤膜片夹采集方法,其特征在于,包括如下步骤:
S1、将滤膜,裁剪成47mm直径的标准滤膜,对石英材质的滤膜需要放入马弗炉中灼烧,去除残留杂质;
S2、将步骤S1所得的滤膜放入恒温恒湿箱中,放置24小时以上,称重,然后放入内径为47mm的降尘滤膜收集装置,装置顶部为100筛目不锈钢网,不锈钢网的孔径为150um,防止昆虫爬进或过大颗粒物落入,然后水平放置或垂直固定于采样支架,置于放入遗址区进行降尘采集;
S3、采样结束直接取下滤膜,置于温度20-23℃,相对湿度35-45%的恒温恒湿箱内,进行24小时以上温湿度恒定,然后进行称量及各种化学分析。
2.根据权利要求1所述的一种遗址博物馆降尘的滤膜片夹采集方法,其特征在于,所述化学分析包括离子分析、OC-EC分析、XRF分析、SEM分析。
3.根据权利要求1所述的一种遗址博物馆降尘的滤膜片夹采集方法,其特征在于,所述步骤S3中称量的方法为:采样后使用超微电子天平,进行两次称量,取平均值,超微电子天平的精度为0.0001mg。
4.根据权利要求1所述的一种遗址博物馆降尘的滤膜片夹采集方法,其特征在于,所述滤膜的材质为石英,聚碳酸酯,聚四氟乙烯中的一种或多种。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510244442.5A CN104819872A (zh) | 2015-05-09 | 2015-05-09 | 一种遗址博物馆降尘的滤膜片夹采集方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510244442.5A CN104819872A (zh) | 2015-05-09 | 2015-05-09 | 一种遗址博物馆降尘的滤膜片夹采集方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104819872A true CN104819872A (zh) | 2015-08-05 |
Family
ID=53730231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510244442.5A Pending CN104819872A (zh) | 2015-05-09 | 2015-05-09 | 一种遗址博物馆降尘的滤膜片夹采集方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104819872A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954075A (zh) * | 2016-04-28 | 2016-09-21 | 中国原子能科学研究院 | 适于xrf及txrf分析的系列微尘标准样品的制备方法 |
CN107328616A (zh) * | 2017-08-09 | 2017-11-07 | 厦门鉴科检测技术有限公司 | 一种同时采集气态及颗粒态的氨和有机胺的方法及装置 |
CN107328617A (zh) * | 2017-08-10 | 2017-11-07 | 清华大学 | 一种基于卡套密封方式的耐高温颗粒物收集装置 |
CN112903511A (zh) * | 2021-01-28 | 2021-06-04 | 山东合创环保科技有限公司 | 一种缩小滤筒,滤膜称重过期中质量偏差的控制方法及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030131654A1 (en) * | 2001-11-26 | 2003-07-17 | Healthy Buildings International, Inc. | Method and apparatus for monitoring building air flow |
US6779380B1 (en) * | 1999-01-08 | 2004-08-24 | Wap Reinigungssysteme Gmbh & Co. | Measuring system for the control of residual dust in safety vacuum cleaners |
CN203259379U (zh) * | 2013-04-28 | 2013-10-30 | 西安建筑科技大学 | 一种新型被动式大气采样器 |
CN103776783A (zh) * | 2014-02-20 | 2014-05-07 | 中国环境科学研究院 | 大气中阳离子表面有机活性物质浓度的测量方法 |
CN204314113U (zh) * | 2014-12-30 | 2015-05-06 | 青岛恒远科技发展有限公司 | 一种颗粒物采样滤膜夹 |
-
2015
- 2015-05-09 CN CN201510244442.5A patent/CN104819872A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6779380B1 (en) * | 1999-01-08 | 2004-08-24 | Wap Reinigungssysteme Gmbh & Co. | Measuring system for the control of residual dust in safety vacuum cleaners |
US20030131654A1 (en) * | 2001-11-26 | 2003-07-17 | Healthy Buildings International, Inc. | Method and apparatus for monitoring building air flow |
CN203259379U (zh) * | 2013-04-28 | 2013-10-30 | 西安建筑科技大学 | 一种新型被动式大气采样器 |
CN103776783A (zh) * | 2014-02-20 | 2014-05-07 | 中国环境科学研究院 | 大气中阳离子表面有机活性物质浓度的测量方法 |
CN204314113U (zh) * | 2014-12-30 | 2015-05-06 | 青岛恒远科技发展有限公司 | 一种颗粒物采样滤膜夹 |
Non-Patent Citations (5)
Title |
---|
MOHD TALIB LATIF ET AL.: "Composition of Levoglucosan and Surfactants in Atmospheric Aerosols from Biomass Burning", 《AEROSOL AND AIR QUALITY RESEARCH》 * |
李倦生等: "《环境监测实训》", 31 May 2008, 高等教育出版社 * |
李圭荣: "粉尘采样及操作过程中常见问题分析", 《医药论坛杂志》 * |
王文清: "《环境保护设备应用管理与污染控制强制性标准实用手册(下卷)》", 30 September 2003, 安徽文化影像出版社 * |
瞿德业等: "兰州市城区空气气溶胶中PM2.5和PM10污染状况分析", 《干旱区资源与环境》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954075A (zh) * | 2016-04-28 | 2016-09-21 | 中国原子能科学研究院 | 适于xrf及txrf分析的系列微尘标准样品的制备方法 |
CN107328616A (zh) * | 2017-08-09 | 2017-11-07 | 厦门鉴科检测技术有限公司 | 一种同时采集气态及颗粒态的氨和有机胺的方法及装置 |
CN107328617A (zh) * | 2017-08-10 | 2017-11-07 | 清华大学 | 一种基于卡套密封方式的耐高温颗粒物收集装置 |
CN112903511A (zh) * | 2021-01-28 | 2021-06-04 | 山东合创环保科技有限公司 | 一种缩小滤筒,滤膜称重过期中质量偏差的控制方法及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Frankel et al. | Comparison of sampling methods for the assessment of indoor microbial exposure | |
Liu et al. | Sampling and conditioning artifacts of PM2. 5 in filter-based samplers | |
Shen et al. | Chemical composition of PM10 and PM2. 5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi'an, China | |
Canha et al. | Particulate matter analysis in indoor environments of urban and rural primary schools using passive sampling methodology | |
Sparks et al. | Composition of particulate matter during a wildfire smoke episode in an urban area | |
Suryawanshi et al. | Identification and quantification of indoor air pollutant sources within a residential academic campus | |
CN104819872A (zh) | 一种遗址博物馆降尘的滤膜片夹采集方法 | |
Takahashi et al. | Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter | |
Aggarwal et al. | Traceability issue in PM 2.5 and PM 10 measurements | |
Chu et al. | Concentration, sources, influencing factors and hazards of heavy metals in indoor and outdoor dust: A review | |
Wang et al. | The characteristics and sources apportionment of water-soluble ions of PM2. 5 in suburb Tangshan, China | |
Sun et al. | Chemical characteristics of size-resolved aerosols in winter in Beijing | |
Yang et al. | Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method | |
Zhao et al. | Size-resolved carbonaceous components and water-soluble ions measurements of ambient aerosol in Beijing | |
Arshad et al. | Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer | |
Ranjan et al. | Assessment of air quality impacts on human health and vegetation at an industrial area | |
He et al. | A comparative study on arsenic fractions in indoor/outdoor particulate matters: a case in Baoding, China | |
Mantecca et al. | Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure | |
Maruthi et al. | Trace elemental characterization of chalk dust and their associated health risk assessment | |
Xie et al. | The study of atmospheric transport and deposition of cadmium emitted from primitive zinc production area | |
Fan et al. | Calibration for number size distribution of bacterial cells measured with traditional size-segregated aerosol samplers | |
Jen et al. | Partition and tempospatial variation of gaseous and particulate mercury at a unique mercury-contaminated remediation site | |
Dartey et al. | Evaluation of airborne lead levels in storage battery workshops and some welding environments in Kumasi metropolis in Ghana | |
Liang et al. | Determination of trace elements in airborne PM 10 by inductively coupled plasma mass spectrometry | |
Santoso et al. | Nuclear analytical techniques for identification of elemental composition of fine and coarse airborne particulate matter Collected in Bandung, Indonesia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150805 |