CN104819649A - 基于稳压电源电路的消除型焦炉余热发电系统 - Google Patents
基于稳压电源电路的消除型焦炉余热发电系统 Download PDFInfo
- Publication number
- CN104819649A CN104819649A CN201510246304.0A CN201510246304A CN104819649A CN 104819649 A CN104819649 A CN 104819649A CN 201510246304 A CN201510246304 A CN 201510246304A CN 104819649 A CN104819649 A CN 104819649A
- Authority
- CN
- China
- Prior art keywords
- pole
- electric capacity
- triode
- diode
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Rectifiers (AREA)
Abstract
本发明公开了基于稳压电源电路的消除型焦炉余热发电系统,主要由焦炉炉顶大坑以及覆盖在其顶部表面的炉顶缸砖组成,在焦炉炉顶大坑的内部从下至上依次设置的有孔钢板、隔热板层及有孔钢板,在有孔钢板与隔热板层之间设置的保温砖层在焦炉炉顶大坑的内部缝隙处填灌耐热密封浆料组成,在焦炉炉顶大坑外部设置有形成封闭回路的换热器与蒸发器,在蒸发器上还设置有余热发电系统,在余热发电系统中设置有余热控制电路,该余热控制电路中设置有静电消除电路与依次相连的控制式电源电路、稳压电源电路以及控制式输出电路。
Description
技术领域
本发明涉及一种余热发电系统,具体地说,是涉及基于稳压电源电路的消除型焦炉余热发电系统。
背景技术
焦炉又称为炼焦炉,是一种由耐火砖和耐火砌块砌成的炉子,用于使煤炭化以生产焦炭的主要热工设备,而现代焦炉是指以生产冶金焦为主要目的、可以回收炼焦化学产品的水平室式焦炉,其主要由炉体和附属设备构成。
由于焦炉生产的特点,现有的焦炉表面温度较高,其炉顶面温度在90℃左右,约占焦炉总耗热量的8%以上。目前,国际上和国内的所有焦炉均主要存在以下缺陷:其一,由于国际上和国内对焦炉的表面散热余热都没有合适的回收技术,同时因焦炉炉顶需长期行走设备和操作工,所以无法实施外保温技术,因此不仅造成了能源的浪费,而且还因为炉体表面的高温时常造成操作工人的安全事故;其二,由于焦炉顶表面温度很高,因此容易造成焦炉护炉拉条因高温而腐蚀。
为了解决上述问题,目前在工业窑炉领域,设计了一款余热回收系统,虽然能够对部分的余热进行回收再利用,但是依旧浪费了大量的热量浪费,不能满足现在国际上对焦炉节能减排的需求。
综上所述,目前高炉生产存在极大的能源浪费,如何充分有效的利用高炉生产过程中所浪费掉的余热,使其能二次再利用便是人们所要攻克的难题。
发明内容
本发明的目的在于克服目前人们无法充分将焦炉生产中炉顶所产生的余热来进行全面利用的缺陷,提供了一种基于稳压电源电路的消除型焦炉余热发电系统。
为了实现上述目的,本发明采用以下技术方案实现:
基于稳压电源电路的消除型焦炉余热发电系统,主要由焦炉炉顶大坑以及覆盖在其顶部表面的炉顶缸砖组成,在焦炉炉顶大坑的内部从下至上依次设置的有孔钢板、隔热板层及有孔钢板,在有孔钢板与隔热板层之间设置的保温砖层在焦炉炉顶大坑的内部缝隙处填灌耐热密封浆料组成,在焦炉炉顶大坑外部设置有形成封闭回路的换热器与蒸发器,换热器由水泥制成的基座,以及在该基座内部呈螺旋盘绕或“S”形盘绕的换热热管组成,且在该换热热管的表面上还设有翅片,该换热热管的两端则分别与蒸发器的上升管和下降管相连通,在蒸发器外侧设置有余热发电系统,且该余热发电系统由发电机,与发电机相连接的汽轮机,与换热器相连接并用于推动汽轮机叶轮转动的射汽增压器,以及与汽轮机相连接的余热控制电路组成;该余热控制电路中设置有静电消除电路与依次相连的控制式电源电路、稳压电源电路以及控制式输出电路;静电消除电路由变压器T101,变压器T102,三极管VT101,三极管VT102,负极与变压器T101的非同名端相连接、正极经电阻R101与变压器T101的同名端相连接的电容C101,P极与三极管VT101的发射极相连接、N极与三极管VT101的集电极相连接的二极管D101,并联在二极管D101上的电容C102,并联在二极管D101上的电阻R102,一端与电容C101的正极相连接、另一端与三极管VT102的发射极相连接的电阻R103,P极与二极管D101的N极相连接、N极与三极管VT102的集电极相连接的二极管D103,P极与二极管D103的N极相连接、N极与三极管VT102的发射极相连接的二极管D104,正极与二极管D104的N极相连接、负极经电阻R106接地的电容C103,P极与电容C101的负极相连接、N极经电阻R105接地的二极管D102,一端与二极管D102的N极相连接、另一端与电容C103的负极相连接的电阻R104,一端与电容C103的负极相连接、另一端与变压器T102的原边线圈的同名端相连接的电阻R107,P极与变压器T102的副边线圈的同名端相连接、N极顺次经电容C105、电阻R108与变压器T102的副边线圈的非同名端相连接的二极管D105,两个输入端分别与变压器T101的副边线圈的两端相连接的二极管桥式整流器U101,正极与二极管桥式整流器U101的正输出端相连接、负极经电阻R109接地的电容C104,引脚1与电容C104的正极相连接、引脚2接地、引脚3顺次经电阻R117、二极管D109后接地的稳压芯片IC001,正极与电容C103的负极相连接、负极经电阻R110与电容C104的负极相连接、输出端顺次经电阻R114、二极管D106后接地的运算放大器P101,正极与电容C103的负极相连接、负极经电阻R111与运算放大器P101的负极相连接、输出端顺次经电阻R115、二极管D107后接地的运算放大器P102,正极与电容C103的负极相连接、负极经电阻R112与运算放大器P102的负极相连接、输出端顺次经电阻R116、二极管D108后接地的运算放大器P103,以及一端与运算放大器P103的负极相连接、另一端与稳压芯片IC001的引脚3相连接的电阻R113组成;其中,变压器T101的同名端还与三极管VT101的发射极相连接,三极管VT101的基极与电容C101的正极相连接,二极管D101的N极还与三极管VT102的基极相连接,变压器T102的原边线圈的非同名端与二极管D104的P极相连接,二极管桥式整流器U101的负输出端接地。
其中,稳压电源电路由变压器T2,三极管VT3,三极管VT4,三极管VT5,7805稳压器,两个输入端分别连接在变压器T2的副边线圈两端的二极管桥式整流器U1,正极与二极管桥式整流器U1的正输出端相连、负极与二极管桥式整流器U1的负输出端相连的电容C4,正极与电容器C4的正极相连接、负极与三极管VT3的集电极相连接的电容C5,一端与三极管VT3的发射极相连接、另一端与三极管VT4的集电极相连接的电感L1,负极与7805稳压器的引脚2相连接、正极与7805稳压器的引脚3相连接的电容C7,一端与电容C7的正极相连接、另一端经电阻R6与三极管VT4的基极相连接的电阻R5,正极与三极管VT4的基极相连接、负极与三极管VT4的集电极相连接的电容C6,一端与电容C7的负极相连接、另一端与三极管VT5的基极相连接的电阻R7,P极与三极管VT5的发射极相连接、N极与电容C7的正极相连接的二极管D5,P极与三极管VT5的集电极相连接、N极与电容C6的负极相连接的二极管D6,以及正极与电容C7的正极相连接、负极与电容C6的负极相连接的电容C8组成;其中,电容C4的负极还与三极管VT3的发射极相连接,电容C5的正极还与7805稳压器的引脚1相连接,三极管VT3的基极与三极管VT4的发射极相连接,二极管桥式整流器U1的正输出端与7805稳压器的引脚2相连接,电容C6的负极与三极管VT5的基极相连接。
进一步的,上述控制式电源电路由电源开关,三极管VT1,变压器T1,P极与三极管VT1的集电极相连接、N极顺次经过二极管D1、电阻R1后与三极管VT1的发射极相连接的二极管D2,与二极管D2相并联的继电器K,正极与二极管D2的N极相连接、负极经电阻R2后与三极管VT1的基极相连接的电容C2,以及正极与变压器T1的副边线圈的同名端相连接、而负极与该副边线圈的非同名端相连接的电容C1组成;所述二极管D1的P极与电容C1的正极相连接,而三极管VT1的发射极则与电容C1的负极相连接;所述电源开关由按钮S,以及与该按钮S相并联的继电器K的常闭触点K-1组成,变压器T1的原边线圈的同名端与按钮S的一端相连接,而变压器T1的原边线圈的非同名端则与按钮S的另一端一起形成外部电源的输入端-1与开关S组成,且常闭式继电器开关K-1与开关S并联后串联在电源上;电容C1的负极连接在变压器T2的原边线圈的非同名端上,电容C2的正极连接在变压器T2的原边线圈的同名端上。
再进一步的,上述控制式输出电路由三极管VT2,一端与三极管VT2的发射极相连接、另一端经滑动变阻器RP1后接地的电阻R3,负极与电阻R3和滑动变阻器RP1的连接点相连接、正极与电容C2的正极相连接的电容C3,以及P极与三极管VT2的发射极相连接、N极顺次经二极管D4、电阻R4后与三极管VT2的基极相连接的二极管D3组成;滑动变阻器RP1的滑动触点与三极管VT2的集电极以及电容C2的负极相连,同时该滑动触电接地;三极管VT2的发射极与电容C8的正极相连接,电容C3的负极与电容C8的负极相连接。
本发明较现有技术相比,具有以下优点及有益效果:
(1)本发明设计非常合理,不仅结构简单、层次分明、实现方便、自动化程度高,而且还能有效的降低人工调节失误,能有效的降低人力成本。同时,本发明无须再另行设置冷却塔,不仅可以有效节约电能,同时也可以降低冷却水用量,降低运行成本。
(2)本发明通过内嵌在高炉体侧壁上的超导环型换热环和与之相对应的环型管道系统来集中导出换热后的热水,因此增大了换热强度、提高了换热效率与冷却效率,并且使传统的冷却水温度从40℃提高到了250℃,从而使冷却热的利用成为了可能。
(3)本发明设置在高炉体冷却系统炉壁外的管路比传统的冷却系统管路减少了近90%,而且炉壳开孔的数量也只有传统冷却工艺开孔数量的2~5%,不仅有效的减小了热损失,而且有利于高炉炉壁的保温,从而彻底改变了高炉外壳无法进行保温的现状,从本质上改善了炉壁散热。
(4)本发明在超导环型换热环的外壁设有环行翅片和蜡纸,因此既能降低超导环型换热环的渗碳现象,又能阻挡75%以上的炭渗透,从而有效的降低了冷却管道的渗炭脆裂,使得其使用寿命提高了两倍以上。同时,由于环行翅片的使用,使得本发明的高炉内衬抗冲刷性能比现有系统提高5倍以上。
(6)本发明能充分的利用高炉生产过程中产生的热量来生产蒸汽,进而在实现节能环保的同时使高炉冷却余热得到有效利用。同时,本发明采用的发电系统、配套的余热制冷机组及相关联接方法有效的提高了余热发电效率,将高炉水冷余热利用率提高到90%左右,算上传统冷却塔能耗,本发明的余热发电效率提高了一倍以上,提高了整个高炉炼铁行业的余热利用水平。
(7)本发明在余热制冷机组内部设有创新的余热控制处理系统,能确保整个余热制冷机组的稳定运行,能确保该余热制冷机组的余热利用率达90%以上。
(8)本发明设置有余热发电系统,使得蒸发器在进行温度交换时所产生的余热通过余热发电系统进行发电利用,更好的利用了余热,避免了热量的浪费,提高了能源的利用率,进而节省了企业的生产成本。
(9)本发明在余热发电系统中设置有余热控制电路,该余热控制电路中还设置有稳压电源电路,能够更好的稳定电压,使得余热控制电路的运行环境更加平稳,避免了异常电压损坏电路,提高了电路的使用寿命,降低了企业维护与更换的频率,进一步降低了企业的生产成本。
(10)本发明在余热发电系统中设置有静电消除电路,能够很好的将电路运行过程中产生的静电消除,避免了静电干扰电路的正常运行,提高了电路运行的稳定性,进一步加强了电路的使用寿命。
附图说明
图1为本发明的整体结构示意图。
图2为本发明的环型管道系统结构示意图。
图3为图2所示的局部剖面结构示意图。
图4为本发明的余热控制处理系统电路结构示意图。
图5为本发明的余热控制电路的电路图。
图6为本发明的稳压电源电路的电路图。
图7为本发明的静电消除电路的电路图。
其中,附图中的附图标记名称分别为:
1-焦炉炉顶大坑,2-炉顶缸砖,3-有孔钢板,4-隔热板层,5-耐热密封浆料,6-保温砖层,7-无孔钢板,8-换热器,9-蒸发器,10-基座,11-换热热管,12-翅片,13-底座。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1~4所示,本发明的焦炉炉顶大坑1由砖块或水泥等堆砌而成,其内部空腔的横截面呈倒梯形状,即该焦炉炉顶大坑1的底部宽度小于其顶部宽度,而焦炉炉顶大坑1的底部则为焦炉炉顶大坑1的底座13,在该焦炉炉顶大坑1内部还设有特殊的换热器系统及无孔钢板7。
为了确保本发明能有效的进行保温,杜绝冒烟、冒火等缺陷,因此在该焦炉炉顶大坑1的空腔内部从下至上依次设有有孔钢板3、隔热板层4、有孔钢板3及炉顶缸砖2。由于在铺设时,不仅所述的有孔钢板3与隔热板层4之间、隔热板层4与有孔钢板3之间、有孔钢板3与炉顶缸砖2之间存在缝隙,而且这些有孔钢板3和隔热板层4与焦炉炉顶大坑1的内壁之间也存有缝隙,因此,本发明必须在这些缝隙处灌填耐热密封浆料5,以确保焦炉炉顶大坑1内部为一个密封的整体。
根据施工时的实际需求,本发明也可以在焦炉炉顶大坑1的内部,在有孔钢板3与隔热板层4之间还铺设一层保温砖层6。相应地,其彼此之间的缝隙也需要灌填耐热密封浆料5。
本发明的耐热密封浆料5优先由耐火泥浆和浓度为5%~10%的钾水玻璃混合而成,所述的隔热板层4则为由两层厚度均为100mm的隔热板整块砌筑而成,或者咬砌而成,而所述的有孔钢板3的孔径则优先制作成60mm。
本发明在焦炉炉顶大坑1的内部从下至上依次设有换热器系统、无孔钢板7、隔热板层4、有孔钢板3及炉顶缸砖2,且该炉顶缸砖2的平面要与焦炉炉顶大坑1的平面在同一水平面上。
所述的换热器系统则由设置在无孔钢板7与焦炉炉顶大坑1的底座13之间的换热器8以及设置在焦炉炉顶大坑1外部的蒸发器9组成。本发明所述的换热器8同传统的换热器结构不同,其是由水泥制作的基座10,以及设置在该基座10的内部的换热热管11构成。
为了确保使用效果,该换热热管11在基座10的内部呈“S”形布置,或呈螺旋形布置,且该换热热管11在基座10的内部仅设有一层。而该换热热管11的两端则分别引出管道与蒸发器9的上升管和下降管相连通,即使得蒸发器9与换热器8之间形成一个密封的循环回路。同时,在该换热热管11上还设有翅片12,以确保能进一步的提高其换热率。
同理,本实施例子不仅在基座10与底座13之间、无孔钢板7与基座10之间、隔热板层4与无孔钢板7之间、有孔钢板3与隔热板层4之间以及炉顶缸砖2与有孔钢板3之间灌填有耐热密封浆料5,而且在基座10、无孔钢板7、隔热板层4、有孔钢板3与焦炉炉顶大坑1的内壁之间也灌填有耐热密封浆料5,即通过该耐热密封浆料5使整个焦炉炉顶大坑1的内部成为一个整体。
由于焦炉是一个大型的炉体,在其顶部设置的焦炉炉顶大坑1的数量可以多达几十个,甚至上百个,但在施工时,每个焦炉炉顶大坑1的内部都只设置一个换热器8,而在焦炉炉顶大坑1的外部也只设置一个蒸发器9,所有的换热器8都通过管道与该蒸发器9相连通。
为了确保使用效果,该换热器8与蒸发器9所形成的封闭式回路需要处于真空状态,即所述的换热热管11与蒸发器9相连通的管道内部为真空状态,且在其封闭的管道内还设有用于参与循环的循环液。该循环液的体积根据夏季和冬季的区别可以进行调节,从而确保其换热效率。
所述的蒸发器9具有四个管口,即下降管、上升管、进水口和出汽口,下降管和上升管与基座10内的换热热管11形成封闭的循环管路,而进水口与出汽口之间则形成的是开放式的循环管路。使用时,循环液从焦炉炉顶大坑1中吸收热能变成蒸汽,然后流动到蒸发器9的上升管处,从进水口进入蒸发器9内部的水源则与该高温蒸汽进行热交换后形成蒸汽,然后从出汽口排放出去,而管道内的循环液在释放热能后变成液体,从下降管流回换热器8内部,重新参与循环。
如图5-7所示,在蒸发器外侧设置有余热发电系统,且该余热发电系统由发电机,与发电机相连接的汽轮机,与换热器相连接并用于推动汽轮机叶轮转动的射汽增压器,使得蒸发器在进行温度交换时所产生的余热通过余热发电系统进行发电利用,在余热发电系统中设置有余热控制电路,该余热控制电路中设置有静电消除电路与依次相连的控制式电源电路、稳压电源电路以及控制式输出电路。
静电消除电路由变压器T101,变压器T102,三极管VT101,三极管VT102,电阻R101,电阻R102,电阻R103,电阻R104,电阻R105,电阻R106,电阻R107,电阻R108,电阻R109,电阻R110,电阻R111,电阻R112,电阻R113,电阻R114,电阻R115,电阻R116,电阻R117,二极管D101,二极管D102,二极管D103,二极管D104,二极管D105,二极管D106,二极管D107,二极管D108,二极管D109,电容C101,电容C102,电容C103,电容C104,稳压芯片IC001,二极管桥式整流器U101组成。连接时,电容C101的负极与变压器T101的非同名端相连接、正极经电阻R101与变压器T101的同名端相连接,二极管D101的P极与三极管VT101的发射极相连接、N极与三极管VT101的集电极相连接,电容C102并联在二极管D101上,电阻R102并联在二极管D101上,电阻R103的一端与电容C101的正极相连接、另一端与三极管VT102的发射极相连接,二极管D103的P极与二极管D101的N极相连接、N极与三极管VT102的集电极相连接,二极管D104的P极与二极管D103的N极相连接、N极与三极管VT102的发射极相连接,电容C103的正极与二极管D104的N极相连接、负极经电阻R106接地,二极管D102的P极与电容C101的负极相连接、N极经电阻R105接地,电阻R104的一端与二极管D102的N极相连接、另一端与电容C103的负极相连接,电阻R107的一端与电容C103的负极相连接、另一端与变压器T102的原边线圈的同名端相连接,二极管D105的P极与变压器T102的副边线圈的同名端相连接、N极顺次经电容C105、电阻R108与变压器T102的副边线圈的非同名端相连接,二极管桥式整流器U101的两个输入端分别与变压器T101的副边线圈的两端相连接,电容C104的正极与二极管桥式整流器U101的正输出端相连接、负极经电阻R109接地,稳压芯片IC001的引脚1与电容C104的正极相连接、引脚2接地、引脚3顺次经电阻R117、二极管D109后接地,运算放大器P101的正极与电容C103的负极相连接、负极经电阻R110与电容C104的负极相连接、输出端顺次经电阻R114、二极管D106后接地,运算放大器P102的正极与电容C103的负极相连接、负极经电阻R111与运算放大器P101的负极相连接、输出端顺次经电阻R115、二极管D107后接地,运算放大器P103的正极与电容C103的负极相连接、负极经电阻R112与运算放大器P102的负极相连接、输出端顺次经电阻R116、二极管D108后接地,电阻R113的一端与运算放大器P103的负极相连接、另一端与稳压芯片IC001的引脚3相连接;其中,变压器T101的同名端还与三极管VT101的发射极相连接,三极管VT101的基极与电容C101的正极相连接,二极管D101的N极还与三极管VT102的基极相连接,变压器T102的原边线圈的非同名端与二极管D104的P极相连接,二极管桥式整流器U101的负输出端接地。静电消除电路能够很好的将电路运行过程中产生的静电消除,避免了静电干扰电路的正常运行,提高了电路运行的稳定性,加强了电路的使用寿命。
稳压电源电路由变压器T2,三极管VT3,三极管VT4,三极管VT5,7805稳压器,二极管桥式整流器U1,电容C4,电容C5,电容C6,电容C7,电容C8,电阻R5,电阻R6,电阻R7,二极管D5,以及二极管D6组成。连接时,二极管桥式整流器U1的两个输入端分别连接在变压器T2的副边线圈两端,电容C4的正极与二极管桥式整流器U1的正输出端相连、负极与二极管桥式整流器U1的负输出端相连,电容C5的正极与电容器C4的正极相连接、负极与三极管VT3的集电极相连接,电感L1的一端与三极管VT3的发射极相连接、另一端与三极管VT4的集电极相连接,电容C7的负极与7805稳压器的引脚2相连接、正极与7805稳压器的引脚3相连接,电阻R5的一端与电容C7的正极相连接、另一端经电阻R6与三极管VT4的基极相连接,电容C6的正极与三极管VT4的基极相连接、负极与三极管VT4的集电极相连接,电阻R7的一端与电容C7的负极相连接、另一端与三极管VT5的基极相连接,二极管D5的P极与三极管VT5的发射极相连接、N极与电容C7的正极相连接,二极管D6的P极与三极管VT5的集电极相连接、N极与电容C6的负极相连接,电容C8的正极与电容C7的正极相连接、负极与电容C6的负极相连接;其中,电容C4的负极还与三极管VT3的发射极相连接,电容C5的正极还与7805稳压器的引脚1相连接,三极管VT3的基极与三极管VT4的发射极相连接,二极管桥式整流器U1的正输出端与7805稳压器的引脚2相连接,电容C6的负极与三极管VT5的基极相连接。该稳压电源电路,能够更好的稳定电压,使得余热控制电路的运行环境更加平稳,避免了异常电压损坏电路,提高了电路的使用寿命,降低了企业维护与更换的频率,进一步降低了企业的生产成本。
控制式电源电路由电源开关,三极管VT1,变压器T1,电容C1,电容C2,二极管D1,二极管D2,电阻R1,电阻R2,继电器K组成。连接时,二极管D2的P极与三极管VT1的集电极相连接、N极顺次经过二极管D1、电阻R1后与三极管VT1的发射极相连接,继电器K与二极管D2相并联,电容C2的正极与二极管D2的N极相连接、负极经电阻R2后与三极管VT1的基极相连接,电容C1的正极与变压器T1的副边线圈的同名端相连接、负极与该副边线圈的非同名端相连接;所述二极管D1的P极与电容C1的正极相连接,而三极管VT1的发射极则与电容C1的负极相连接;所述电源开关由按钮S,以及与该按钮S相并联的继电器K的常闭触点K-1组成,变压器T1的原边线圈的同名端与按钮S的一端相连接,而变压器T1的原边线圈的非同名端则与按钮S的另一端一起形成外部电源的输入端-1与开关S组成,且常闭式继电器开关K-1与开关S并联后串联在电源上。该电路能够根据电路的实际运行情况来判断是否还需对其进行供电,当继电器K通电时,继电器开关K-1将会自行断开,在不需进行供电时,电路将会自行断开,从而达到自动控制断电的效果。
控制式输出电路由三极管VT2,电阻R3,电阻R4,滑动变阻器RP1,电容C3,二极管D3,二极管D4组成。连接时,电阻R3的一端与三极管VT2的发射极相连接、另一端经滑动变阻器RP1后接地,电容C3的负极与电阻R3和滑动变阻器RP1的连接点相连接、正极与电容C2的正极相连接,二极管D3的P极与三极管VT2的发射极相连接、N极顺次经二极管D4、电阻R4后与三极管VT2的基极相连接;滑动变阻器RP1的滑动触点与三极管VT2的集电极以及电容C2的负极相连,同时该滑动触电接地;三极管VT2的发射极与电容C8的正极相连接,电容C3的负极与电容C8的负极相连接。
如上所述,便可较好的实现本发明。
Claims (4)
1.基于稳压电源电路的消除型焦炉余热发电系统,主要由焦炉炉顶大坑(1),覆盖在焦炉炉顶大坑(1)顶部表面的炉顶缸砖(2),在焦炉炉顶大坑(1)内部从下至上依次设置有有孔钢板(3)、隔热板层(4)及有孔钢板(3),设置在有孔钢板(3)与隔热板层(4)之间的保温砖层(6),填灌在焦炉炉顶大坑(1)的内部缝隙处的耐热密封浆料(5),设置在焦炉炉顶大坑(1)外部并形成封闭回路的换热器(8)与蒸发器(9),与换热器(8)相连接并由水泥制成的基座(10),设置在该基座(10)内部并呈螺旋盘绕或“S”形盘绕的换热热管(11),以及设置在该换热热管(11)表面上的翅片(12)组成,所述换热热管(11)的两端分别与蒸发器(9)的上升管和下降管相连通,其特征在于,在蒸发器(9)外侧设置有余热发电系统,且该余热发电系统由发电机,与发电机相连接的汽轮机,与换热器相连接并用于推动汽轮机叶轮转动的射汽增压器,以及与汽轮机相连接的余热控制电路组成;该余热控制电路由静电消除电路与依次相连的控制式电源电路、稳压电源电路以及控制式输出电路组成;所述静电消除电路由变压器T101,变压器T102,三极管VT101,三极管VT102,负极与变压器T101的非同名端相连接、正极经电阻R101与变压器T101的同名端相连接的电容C101,P极与三极管VT101的发射极相连接、N极与三极管VT101的集电极相连接的二极管D101,并联在二极管D101上的电容C102,并联在二极管D101上的电阻R102,一端与电容C101的正极相连接、另一端与三极管VT102的发射极相连接的电阻R103,P极与二极管D101的N极相连接、N极与三极管VT102的集电极相连接的二极管D103,P极与二极管D103的N极相连接、N极与三极管VT102的发射极相连接的二极管D104,正极与二极管D104的N极相连接、负极经电阻R106接地的电容C103,P极与电容C101的负极相连接、N极经电阻R105接地的二极管D102,一端与二极管D102的N极相连接、另一端与电容C103的负极相连接的电阻R104,一端与电容C103的负极相连接、另一端与变压器T102的原边线圈的同名端相连接的电阻R107,P极与变压器T102的副边线圈的同名端相连接、N极顺次经电容C105、电阻R108与变压器T102的副边线圈的非同名端相连接的二极管D105,两个输入端分别与变压器T101的副边线圈的两端相连接的二极管桥式整流器U101,正极与二极管桥式整流器U101的正输出端相连接、负极经电阻R109接地的电容C104,引脚1与电容C104的正极相连接、引脚2接地、引脚3顺次经电阻R117、二极管D109后接地的稳压芯片IC001,正极与电容C103的负极相连接、负极经电阻R110与电容C104的负极相连接、输出端顺次经电阻R114、二极管D106后接地的运算放大器P101,正极与电容C103的负极相连接、负极经电阻R111与运算放大器P101的负极相连接、输出端顺次经电阻R115、二极管D107后接地的运算放大器P102,正极与电容C103的负极相连接、负极经电阻R112与运算放大器P102的负极相连接、输出端顺次经电阻R116、二极管D108后接地的运算放大器P103,以及一端与运算放大器P103的负极相连接、另一端与稳压芯片IC001的引脚3相连接的电阻R113组成;其中,变压器T101的同名端还与三极管VT101的发射极相连接,三极管VT101的基极与电容C101的正极相连接,二极管D101的N极还与三极管VT102的基极相连接,变压器T102的原边线圈的非同名端与二极管D104的P极相连接,二极管桥式整流器U101的负输出端接地。
2.根据权利要求1所述的基于稳压电源电路的消除型焦炉余热发电系统,其特征在于,所述稳压电源电路由变压器T2,三极管VT3,三极管VT4,三极管VT5,7805稳压器,两个输入端分别连接在变压器T2的副边线圈两端的二极管桥式整流器U1,正极与二极管桥式整流器U1的正输出端相连、负极与二极管桥式整流器U1的负输出端相连的电容C4,正极与电容器C4的正极相连接、负极与三极管VT3的集电极相连接的电容C5,一端与三极管VT3的发射极相连接、另一端与三极管VT4的集电极相连接的电感L1,负极与7805稳压器的引脚2相连接、正极与7805稳压器的引脚3相连接的电容C7,一端与电容C7的正极相连接、另一端经电阻R6与三极管VT4的基极相连接的电阻R5,正极与三极管VT4的基极相连接、负极与三极管VT4的集电极相连接的电容C6,一端与电容C7的负极相连接、另一端与三极管VT5的基极相连接的电阻R7,P极与三极管VT5的发射极相连接、N极与电容C7的正极相连接的二极管D5,P极与三极管VT5的集电极相连接、N极与电容C6的负极相连接的二极管D6,以及正极与电容C7的正极相连接、负极与电容C6的负极相连接的电容C8组成;其中,电容C4的负极还与三极管VT3的发射极相连接,电容C5的正极还与7805稳压器的引脚1相连接,三极管VT3的基极与三极管VT4的发射极相连接,二极管桥式整流器U1的正输出端与7805稳压器的引脚2相连接,电容C6的负极与三极管VT5的基极相连接。
3.根据权利要求2所述的基于稳压电源电路的消除型焦炉余热发电系统,其特征在于,所述控制式电源电路由电源开关,三极管VT1,变压器T1, P极与三极管VT1的集电极相连接、N极顺次经过二极管D1、电阻R1后与三极管VT1的发射极相连接的二极管D2,与二极管D2相并联的继电器K,正极与二极管D2的N极相连接、负极经电阻R2后与三极管VT1的基极相连接的电容C2,以及正极与变压器T1的副边线圈的同名端相连接、而负极与该副边线圈的非同名端相连接的电容C1组成;所述二极管D1的P极与电容C1的正极相连接,而三极管VT1的发射极则与电容C1的负极相连接;所述电源开关由按钮S,以及与该按钮S相并联的继电器K的常闭触点K-1组成,变压器T1的原边线圈的同名端与按钮S的一端相连接,而变压器T1的原边线圈的非同名端则与按钮S的另一端一起形成外部电源的输入端-1与开关S组成,且常闭式继电器开关K-1与开关S并联后串联在电源上;电容C1的负极连接在变压器T2的原边线圈的非同名端上,电容C2的正极连接在变压器T2的原边线圈的同名端上。
4.根据权利要求3所述的基于稳压电源电路的消除型焦炉余热发电系统,其特征在于,所述控制式输出电路由三极管VT2,一端与三极管VT2的发射极相连接、另一端经滑动变阻器RP1后接地的电阻R3,负极与电阻R3和滑动变阻器RP1的连接点相连接、正极与电容C2的正极相连接的电容C3,以及P极与三极管VT2的发射极相连接、N极顺次经二极管D4、电阻R4后与三极管VT2的基极相连接的二极管D3组成;滑动变阻器RP1的滑动触点与三极管VT2的集电极以及电容C2的负极相连,同时该滑动触电接地;三极管VT2的发射极与电容C8的正极相连接,电容C3的负极与电容C8的负极相连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510246304.0A CN104819649A (zh) | 2015-05-14 | 2015-05-14 | 基于稳压电源电路的消除型焦炉余热发电系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510246304.0A CN104819649A (zh) | 2015-05-14 | 2015-05-14 | 基于稳压电源电路的消除型焦炉余热发电系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104819649A true CN104819649A (zh) | 2015-08-05 |
Family
ID=53730026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510246304.0A Pending CN104819649A (zh) | 2015-05-14 | 2015-05-14 | 基于稳压电源电路的消除型焦炉余热发电系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104819649A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2836397Y (zh) * | 2005-11-14 | 2006-11-08 | 乐金电子(天津)电器有限公司 | 微波炉控制板过电压保护电路 |
WO2008034493A1 (de) * | 2006-09-21 | 2008-03-27 | Uhde Gmbh | Koksofen mit verbesserten heizeigenschaften |
CN101240909A (zh) * | 2008-03-19 | 2008-08-13 | 清华大学 | 一种回收热电厂凝汽余热的蒸汽喷射式热泵供热系统 |
CN102322623A (zh) * | 2011-08-24 | 2012-01-18 | 成都中冶节能环保工程有限公司 | 焦炉炉顶余热回收系统 |
CN103298230A (zh) * | 2012-02-23 | 2013-09-11 | 韶阳科技股份有限公司 | 静电消除装置及控制电路 |
US20130337392A1 (en) * | 2012-06-15 | 2013-12-19 | Mike McGee | Carbon baking oxygen preheat and heat recovery firing system |
-
2015
- 2015-05-14 CN CN201510246304.0A patent/CN104819649A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2836397Y (zh) * | 2005-11-14 | 2006-11-08 | 乐金电子(天津)电器有限公司 | 微波炉控制板过电压保护电路 |
WO2008034493A1 (de) * | 2006-09-21 | 2008-03-27 | Uhde Gmbh | Koksofen mit verbesserten heizeigenschaften |
CN101240909A (zh) * | 2008-03-19 | 2008-08-13 | 清华大学 | 一种回收热电厂凝汽余热的蒸汽喷射式热泵供热系统 |
CN102322623A (zh) * | 2011-08-24 | 2012-01-18 | 成都中冶节能环保工程有限公司 | 焦炉炉顶余热回收系统 |
CN103298230A (zh) * | 2012-02-23 | 2013-09-11 | 韶阳科技股份有限公司 | 静电消除装置及控制电路 |
US20130337392A1 (en) * | 2012-06-15 | 2013-12-19 | Mike McGee | Carbon baking oxygen preheat and heat recovery firing system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104810975A (zh) | 基于稳压电源电路的消除型焦炉余热回收发电系统 | |
CN104810974A (zh) | 基于升压电源电路的消除型焦炉余热发电系统 | |
CN104819649A (zh) | 基于稳压电源电路的消除型焦炉余热发电系统 | |
CN104910925A (zh) | 基于电源调整电路的焦炉炉顶余热回收发电系统 | |
CN104819648A (zh) | 基于升压电源电路的消除型焦炉余热回收发电系统 | |
CN104930859A (zh) | 基于电源整压电路的消除型焦炉余热发电系统 | |
CN104819647A (zh) | 基于高效驱动电源电路的消除型焦炉余热发电系统 | |
CN104848701A (zh) | 基于电源整压电路的报警型焦炉余热发电系统 | |
CN104930858A (zh) | 基于电源调整电路的消除型焦炉余热发电系统 | |
CN104848697A (zh) | 基于电源调整电路的消除型焦炉余热回收发电系统 | |
CN104833220A (zh) | 基于高效驱动电源电路的消除型焦炉余热回收发电系统 | |
CN104821688A (zh) | 基于电源整压电路的消除型焦炉余热回收发电系统 | |
CN104810978A (zh) | 基于稳压电源电路的焦炉炉顶余热回收发电系统 | |
CN104810977A (zh) | 基于稳压电源电路的保护型焦炉余热回收发电系统 | |
CN104880081A (zh) | 基于稳压电源电路的湿保护型焦炉余热发电系统 | |
CN104833219A (zh) | 基于电源调整电路的保护型焦炉余热回收发电系统 | |
CN104836375A (zh) | 基于稳压电源电路的报警型焦炉余热发电系统 | |
CN104833227A (zh) | 基于稳压电源电路的热保护型焦炉余热发电系统 | |
CN104821689A (zh) | 基于电源整压电路的保护型焦炉余热回收发电系统 | |
CN104917337A (zh) | 基于电源调整电路的湿保护型焦炉余热发电系统 | |
CN104880082A (zh) | 基于稳压电源电路的湿保护型焦炉余热回收发电系统 | |
CN104810976A (zh) | 基于电源整压电路的焦炉炉顶余热回收发电系统 | |
CN104833232A (zh) | 基于电源调整电路的热保护型焦炉余热发电系统 | |
CN104833221A (zh) | 基于升压电源电路的保护型焦炉余热回收发电系统 | |
CN104807340A (zh) | 基于高效驱动电源电路的保护型焦炉余热回收发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150805 |