CN104810234A - Mass spectrometer and ionization device thereof - Google Patents
Mass spectrometer and ionization device thereof Download PDFInfo
- Publication number
- CN104810234A CN104810234A CN201410042449.4A CN201410042449A CN104810234A CN 104810234 A CN104810234 A CN 104810234A CN 201410042449 A CN201410042449 A CN 201410042449A CN 104810234 A CN104810234 A CN 104810234A
- Authority
- CN
- China
- Prior art keywords
- microwave plasma
- sample
- ionization
- atomizer
- ionization apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000889 atomisation Methods 0.000 claims abstract description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 229910002804 graphite Inorganic materials 0.000 claims description 17
- 239000010439 graphite Substances 0.000 claims description 17
- 229910052786 argon Inorganic materials 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 150000002500 ions Chemical class 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 5
- 239000003595 mist Substances 0.000 claims description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 5
- 230000007547 defect Effects 0.000 abstract description 3
- 230000005283 ground state Effects 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 17
- 239000000443 aerosol Substances 0.000 description 6
- 239000000567 combustion gas Substances 0.000 description 6
- 238000005070 sampling Methods 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- -1 argon ions Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 238000000918 plasma mass spectrometry Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012929 ultra trace analysis Methods 0.000 description 1
Landscapes
- Electron Tubes For Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
技术领域technical field
本发明涉及光谱仪器技术领域,尤其涉及一种质谱仪及其离子化装置。The invention relates to the technical field of spectrometers, in particular to a mass spectrometer and an ionization device thereof.
背景技术Background technique
原子光谱法一直是人们进行元素成份分析的最主要手段。特别是具有优良原子化和激发性能的ICP光源(功率在500瓦到5000瓦之间)出现之后。ICP光谱法成为发射光谱分析的主导方法。对于超痕量分析,ICP质谱法占有明显的优势。Atomic spectroscopy has always been the most important means for people to analyze the elemental composition. Especially after the emergence of ICP light sources (power between 500 watts and 5000 watts) with excellent atomization and excitation properties. ICP spectroscopy has become the dominant method for emission spectroscopic analysis. For ultratrace analysis, ICP mass spectrometry has a clear advantage.
另外一种与ICP同时发展起来的微波等离子体(MWP)光源也得到了较为广泛的应用。但该种方法所使用的微波能量较弱。在进样的时候,样品一般是通过雾化器形成气溶胶送进微波等离子体源中,这种进样方式与火焰原子吸收的进样方式是非常相似的。所不同的是,因为微波无法提供足够的能量与功率,所以大部分微波的功率都会被样品溶剂所吸收,真正起到电离效果的微波能量是很小的一部分,导致对样品的电离能力减弱,引起质谱分析的离子流强度减弱,影响整机的灵敏度。Another microwave plasma (MWP) light source developed at the same time as ICP has also been widely used. However, the microwave energy used in this method is relatively weak. During sample injection, the sample is generally sent into the microwave plasma source through an atomizer to form an aerosol. This sample injection method is very similar to the flame atomic absorption sample injection method. The difference is that because microwaves cannot provide enough energy and power, most of the microwave power will be absorbed by the sample solvent, and the microwave energy that actually plays an ionizing effect is a very small part, resulting in weakened ionization of the sample. The intensity of the ion current caused by mass spectrometry is weakened, which affects the sensitivity of the whole machine.
因此,提供一种具有较高微波能量的微波等离子体质谱方法或微波等离子体光源,以克服微波等离子体光源能量(大概是150瓦左右)偏弱的缺点,已成为本行业内亟待解决的一大技术问题。Therefore, providing a microwave plasma mass spectrometry method or a microwave plasma light source with higher microwave energy to overcome the shortcomings of the weak microwave plasma light source energy (about 150 watts) has become an urgent problem in this industry. Big technical problem.
发明内容Contents of the invention
本发明要解决现有技术中微波等离子体质谱方法的微波能量较弱的技术问题。The invention aims to solve the technical problem that the microwave energy of the microwave plasma mass spectrometry method in the prior art is relatively weak.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
本发明提出一种离子化装置,用于离子化样品分子,其中,所述离子化装置包括原子化器及微波等离子体发射器,所述原子化器接收所述样品分子并使其原子化,所述微波等离子体发射器用于射出微波等离子体,并通过所述微波等离子体使原子化的样品分子离子化。The present invention proposes an ionization device for ionizing sample molecules, wherein the ionization device includes an atomizer and a microwave plasma emitter, and the atomizer receives and atomizes the sample molecules, The microwave plasma launcher is used to emit microwave plasma, and the atomized sample molecules are ionized by the microwave plasma.
根据本发明的一实施方式,所述原子化器为火焰原子化器,所述火焰原子化器通过燃烧气体的燃烧产生扁平状的火焰区域并使所述样品分子原子化。According to an embodiment of the present invention, the atomizer is a flame atomizer, and the flame atomizer generates a flat flame region through combustion of combustion gas and atomizes the sample molecules.
根据另一实施方式,所述微波等离子体的射出方向垂直于所述火焰区域的平面。According to another embodiment, the emission direction of the microwave plasma is perpendicular to the plane of the flame region.
根据另一实施方式,所述燃烧气体为空气-乙炔混合气体。According to another embodiment, the combustion gas is an air-acetylene mixed gas.
根据另一实施方式,所述原子化器为石墨炉原子化器,包括炉体、设于所述炉体内部可穿过光线的石墨管、设于所述炉体上端的进样窗及开设于所述炉体两侧端部的开孔,所述样品分子通过进样窗进入石墨管,所述石墨管高温原子化所述样品分子,所述微波等离子体穿过所述开孔射入所述石墨管以离子化所述样品分子。According to another embodiment, the atomizer is a graphite furnace atomizer, comprising a furnace body, a graphite tube disposed inside the furnace body through which light can pass, a sample injection window arranged at the upper end of the furnace body, and an opening. The openings at the ends of both sides of the furnace body, the sample molecules enter the graphite tube through the sampling window, the graphite tube atomizes the sample molecules at high temperature, and the microwave plasma is injected through the openings The graphite tube is used to ionize the sample molecules.
根据另一实施方式,所述微波等离子体的射出方向垂直于所述石墨管中的光线射入方向。According to another embodiment, the emitting direction of the microwave plasma is perpendicular to the incident direction of light in the graphite tube.
根据另一实施方式,所述微波等离子体发射器发出的微波等离子体为氩等离子体。According to another embodiment, the microwave plasma emitted by the microwave plasma emitter is argon plasma.
为了解决上述技术问题,本发明提出的技术方案还包括:提出一种质谱仪,包括样品源、离子化装置、质量分析器及检测器,其中,所述离子化装置为所述的离子化装置,所述样品源放出样品分子,所述离子化装置对所述样品分子原子化和离子化,离子化的样品离子进入所述质量分析器按质荷比分开后进入所述检测器。In order to solve the above technical problems, the technical solution proposed by the present invention also includes: proposing a mass spectrometer, including a sample source, an ionization device, a mass analyzer and a detector, wherein the ionization device is the ionization device , the sample source emits sample molecules, the ionization device atomizes and ionizes the sample molecules, and the ionized sample ions enter the mass analyzer and enter the detector after being separated according to the mass-to-charge ratio.
由上述技术方案可知,本发明提出的质谱仪及其离子化装置在微波等离子体技术的基础上引进了原子化的方法,将高温原子化方式与微波等离子体方式结合起来,实现了样品的原子化及离子化,巧妙弥补了原有微波等离子光源能量不足的缺陷,提高了质谱仪的灵敏度。其中,原子化器产生的高温具有较大的能量,可使大部分样品被原子化,并得到样品的金属基态原子。有效弥补了微波等离子体光源能量较弱,电离度较低的缺点。微波等离子体发射器发出的微波等离子体可以使样品被离子化进而由质量分析器对被离子化的样品进行质量分析。It can be seen from the above technical scheme that the mass spectrometer and its ionization device proposed by the present invention introduce an atomization method on the basis of microwave plasma technology, and combine the high-temperature atomization method with the microwave plasma method to realize the atomization of the sample. It cleverly makes up for the defect of insufficient energy of the original microwave plasma light source, and improves the sensitivity of the mass spectrometer. Among them, the high temperature generated by the atomizer has greater energy, which can atomize most of the samples and obtain the metal ground state atoms of the samples. It effectively makes up for the disadvantages of weak microwave plasma light source energy and low ionization degree. The microwave plasma emitted by the microwave plasma emitter can ionize the sample and then perform mass analysis on the ionized sample by the mass analyzer.
附图说明Description of drawings
图1是本发明提出的离子化装置的第一实施方式的结构示意图;FIG. 1 is a schematic structural view of the first embodiment of the ionization device proposed by the present invention;
图2是本发明提出的离子化装置的第一实施方式的工作流程框图;2 is a block diagram of the workflow of the first embodiment of the ionization device proposed by the present invention;
图3是本发明提出的离子化装置的第二实施方式的结构示意图;3 is a schematic structural view of a second embodiment of the ionization device proposed by the present invention;
图4是本发明提出的质谱仪的工作流程框图。Fig. 4 is a block diagram of the workflow of the mass spectrometer proposed by the present invention.
其中,附图标记说明如下:Wherein, the reference signs are explained as follows:
1.原子化器;2.微波等离子体发射器;3.火焰原子化器;30.燃烧器;31.火焰区域;32.雾化器;33.雾化室;4.石墨炉原子化器;40.炉体;41.进样窗;42.开孔;5.样品源;6.质量分析器;7.检测器。1. Atomizer; 2. Microwave plasma emitter; 3. Flame atomizer; 30. Burner; 31. Flame area; 32. Atomizer; 33. Spray chamber; 4. Graphite furnace atomizer ; 40. furnace body; 41. sampling window; 42. opening; 5. sample source; 6. mass analyzer; 7. detector.
具体实施方式Detailed ways
体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施例上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是作说明之用,而非用以限制本发明。Typical embodiments embodying the features and advantages of the present invention will be described in detail in the following description. It should be understood that the present invention can have various changes in different embodiments without departing from the scope of the present invention, and that the descriptions and illustrations therein are illustrative in nature and not intended to limit the present invention. invention.
本发明提出一种质谱仪以及组成该质谱仪的离子化装置,即一种结合原子化器与微波等离子体技术的质谱仪器。The invention proposes a mass spectrometer and an ionization device constituting the mass spectrometer, that is, a mass spectrometer combining atomizer and microwave plasma technology.
由于微波等离子体的电离度(离子个数占全部原子离子总数的比值)较低,无法达到ICP方法的电离效果。ICP方法可以通过saha方程进行估算,其可产生接近1%的电离度,使离子浓度达到较高水平,可以被认为是热等离子体。而微波等离子体的电离度较低,例如,微波所产生的氩气火焰的温度在2000℃左右,根据原子物理学中的玻尔兹曼统计分布公式,得出在这个温度下电离电离能在11ev的氩气的概率较低。因此现有的微波等离子体光源对一般的金属原子的电离度在万分之一以下,无法满足使用要求。Due to the low degree of ionization (the ratio of the number of ions to the total number of atomic ions) of microwave plasma, the ionization effect of the ICP method cannot be achieved. The ICP method can be estimated by the saha equation, which can generate an ionization degree close to 1%, so that the ion concentration reaches a high level, which can be considered as a thermal plasma. The ionization degree of microwave plasma is relatively low. For example, the temperature of argon flame produced by microwave is about 2000°C. According to the Boltzmann statistical distribution formula in atomic physics, the ionization energy at this temperature is Argon at 11ev has a lower probability. Therefore, the ionization degree of the existing microwave plasma light source to general metal atoms is below one ten-thousandth, which cannot meet the requirements for use.
为了解决微波等离子体光源能量较低的问题,并提高其电离度,本发明提供以下的实施方式,主要可概括为将原子化方式特别是高温原子化方式与微波等离子体方式结合起来,以实现“样品→原子化→离子化”的方式。In order to solve the problem of low energy of the microwave plasma light source and increase its degree of ionization, the present invention provides the following embodiments, which can be summarized as combining the atomization method, especially the high-temperature atomization method, with the microwave plasma method to achieve The method of "sample → atomization → ionization".
离子化装置实施方式1Ionization device embodiment 1
如图1所示,本发明提出一种离子化装置,用于将样品分子离子化。其主要包括原子化器1及微波等离子体发射器2。原子化器1主要用于接收样品分子并使其原子化。微波等离子体发射器2主要用于射出微波等离子体,并通过微波等离子体使原子化的样品分子离子化。As shown in Figure 1, the present invention proposes an ionization device for ionizing sample molecules. It mainly includes an atomizer 1 and a microwave plasma emitter 2 . Atomizer 1 is mainly used to receive sample molecules and atomize them. The microwave plasma emitter 2 is mainly used to emit microwave plasma, and ionize the atomized sample molecules through the microwave plasma.
如图1和图2所示,在本实施方式中,该原子化器1为火焰原子化器3并可选用传统结构。该火焰原子化器3通过燃烧气体产生平面状的高温火焰并使样品分子原子化。其主要包括依次连接的雾化器32、雾化室33及燃烧器30。As shown in FIG. 1 and FIG. 2 , in this embodiment, the atomizer 1 is a flame atomizer 3 and a conventional structure can be selected. The flame atomizer 3 generates a planar high-temperature flame by burning gas to atomize sample molecules. It mainly includes an atomizer 32 , an atomization chamber 33 and a burner 30 connected in sequence.
此外,如图1所示,微波等离子体的射出方向垂直于高温火焰的近似平面。In addition, as shown in Figure 1, the emission direction of the microwave plasma is perpendicular to the approximate plane of the high-temperature flame.
如图1所示,在本实施方式中,该微波等离子体发射器2可选用传统结构,其发射出的微波等离子体可选用氩等离子体。由于氩等离子体中含有氩离子,其电子亲和势为15.76V,可以较容易地从金属原子中抢走一个核外电子,使整个金属原子被离子化。As shown in FIG. 1 , in this embodiment, the microwave plasma launcher 2 can be of a conventional structure, and the microwave plasma emitted by it can be of argon plasma. Since the argon plasma contains argon ions, its electron affinity is 15.76V, which can easily snatch an extranuclear electron from the metal atom, so that the entire metal atom is ionized.
如图2所示,在工作过程中,样品分子进入雾化器32并由该雾化器32进行雾化,进而成为气溶胶状态。气溶胶状态下的样品分子进入雾化室33被进一步细化并与燃烧气体充分均匀混合,以使火焰原子化器3发出的高温火焰达到更加稳定的层流状态。其中燃烧气体可选用空气-乙炔混合气体,但并不以此为限,该种燃烧气体的火焰温度可达2300℃以上,能够提供较高的总能量,可蒸发出气溶胶中的水分,并在燃烧过程中原子化大部分样品分子。与燃烧气体充分均匀混合后的样品分子进入燃烧器30并在高温火焰中蒸发、干燥形成干气溶胶雾粒,再经高温火焰融熔化并受热解离成为基态自由原子蒸汽,实现原子化的功能。微波等离子体发射器2以垂直角度向呈近似平面状的高温火焰区域31发射氩等离子体,其中含有的氩离子抢走已原子化的样品分子中的一个核外电子,样品原子实现离子化并放出,进入其他分析设备,如质量分析器等。As shown in FIG. 2 , during the working process, the sample molecules enter the nebulizer 32 and are atomized by the nebulizer 32 , and then become an aerosol state. The sample molecules in the aerosol state enter the atomization chamber 33 to be further refined and fully and evenly mixed with the combustion gas, so that the high-temperature flame emitted by the flame atomizer 3 can achieve a more stable laminar flow state. The combustion gas can be air-acetylene mixed gas, but it is not limited to this. The flame temperature of this combustion gas can reach above 2300°C, which can provide higher total energy and evaporate the moisture in the aerosol. Most of the sample molecules are atomized during combustion. The sample molecules fully and evenly mixed with the combustion gas enter the burner 30, evaporate and dry in the high-temperature flame to form dry aerosol mist particles, and then melt and dissociate into the ground state free atom vapor after being heated by the high-temperature flame to realize the atomization. Function. The microwave plasma launcher 2 emits argon plasma to the approximately planar high-temperature flame region 31 at a vertical angle, and the argon ions contained therein snatch an extranuclear electron from the atomized sample molecule, and the sample atom is ionized and Released into other analytical equipment, such as mass analyzers.
此外,本实施方式中的样品分子的进样方式不一定局限于气溶胶等喷雾形式,也可采用固态或者气态直接进样。In addition, the injection method of the sample molecules in this embodiment is not necessarily limited to spray forms such as aerosol, and direct injection in solid or gaseous state can also be used.
离子化装置实施方式2Ionization device embodiment 2
本发明提出的离子化装置的第二实施方式,其与上述第一实施方式的区别在于:The second embodiment of the ionization device proposed by the present invention differs from the above-mentioned first embodiment in that:
如图3所示,在本实施方式中,该离子化装置的原子化器1为石墨炉原子化器4,其利用较大电流通过较高阻值的石墨管,以产生高温使样品分子原子化。该石墨炉原子化器4还包括炉体40,该炉体40内部设有可穿过原本用于原子吸收光谱分析的光线的石墨管,该炉体40上端开设有进样窗41,该炉体40两侧端部开设有开孔42。As shown in Figure 3, in this embodiment, the atomizer 1 of the ionization device is a graphite furnace atomizer 4, which utilizes a larger current to pass through a graphite tube with a higher resistance value to generate high temperature to make the sample molecule atoms change. The graphite furnace atomizer 4 also includes a furnace body 40, the interior of the furnace body 40 is provided with a graphite tube that can pass through the light originally used for atomic absorption spectroscopic analysis, and the upper end of the furnace body 40 is provided with a sampling window 41. Holes 42 are opened at both ends of the body 40 .
工作过程中,样品分子由进样窗41进入设于炉体40内部的石墨管,在石墨管中通过较大电流使石墨管产生高温,该温度可达2000~3000℃,以使样品分子原子化。微波等离子体发射器2以垂直于石墨管内穿过光线的角度射出氩等离子体,通过开孔42射入炉体40并进入石墨管,氩等离子体中含有的氩离子抢走已原子化的样品分子中的一个核外电子,样品原子实现离子化并放出,进入其他分析设备。During the working process, the sample molecules enter the graphite tube provided inside the furnace body 40 through the sampling window 41, and a relatively large current is passed through the graphite tube to generate a high temperature in the graphite tube, which can reach 2000-3000 °C, so that the sample molecule atoms change. The microwave plasma launcher 2 emits argon plasma at an angle perpendicular to the light passing through the graphite tube, injects into the furnace body 40 through the opening 42 and enters the graphite tube, and the argon ions contained in the argon plasma snatch the atomized sample An extranuclear electron in the molecule, the sample atom is ionized and released, and enters other analytical equipment.
质谱仪实施方式Mass spectrometer implementation
如图4所示,本发明提出的质谱仪,包括放出样品分子的样品源5、对样品分子进行离子化的离子化装置、接收离子化装置放出的被离子化的样品分子并对其根据质荷比分离的质量分析器6及检测器7。其中离子化装置为本发明提出的离子化装置。As shown in Figure 4, the mass spectrometer proposed by the present invention includes a sample source 5 that emits sample molecules, an ionization device that ionizes the sample molecules, receives the ionized sample molecules emitted by the ionization device, and analyzes the ionized sample molecules according to the mass Mass analyzer 6 and detector 7 for charge ratio separation. Wherein the ionization device is the ionization device proposed by the present invention.
工作过程中,样品源5放出样品分子,离子化装置对样品分子原子化和离子化,离子化的样品分子进入质量分析器6,质量分析器6按质荷比将样品分子分开后,样品分子进入检测器7,分离后的样品离子依次进入检测器7,采集放大离子信号,经计算机处理,绘制成质谱图。During the working process, the sample source 5 releases the sample molecules, the ionization device atomizes and ionizes the sample molecules, and the ionized sample molecules enter the mass analyzer 6, and after the mass analyzer 6 separates the sample molecules according to the mass-to-charge ratio, the sample molecules After entering the detector 7, the separated sample ions enter the detector 7 one by one, collect and amplify the ion signal, process it with a computer, and draw it into a mass spectrum.
此外,在本实施方式中,当离子化装置中的原子化器1为火焰原子化器3时,可在其高温火焰区域31通过光线,以进行原子吸收光谱分析,即本发明提出的质谱仪亦可作为一台光谱-质谱两用设备。In addition, in this embodiment, when the atomizer 1 in the ionization device is a flame atomizer 3, light can pass through its high-temperature flame region 31 to perform atomic absorption spectroscopic analysis, that is, the mass spectrometer proposed by the present invention It can also be used as a spectrometer-mass spectrometer dual-purpose device.
虽已参照几个典型实施例描述了本发明的质谱仪及其离子化装置,但应理解,所用的术语是说明和示例性的,而非限制性的。由于本发明能够以多种形式具体实施而不脱离其构思或实质,因此,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的构思和范围内广泛地解释,故落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。While the mass spectrometer and ionization apparatus thereof of the present invention have been described with reference to several exemplary embodiments, it is to be understood that the terms which have been used are descriptive and exemplary, and not restrictive. Since the invention can be embodied in various forms without departing from its concept or essence, the above-described embodiments are not limited to any of the foregoing details, but should be construed broadly within the spirit and scope of the appended claims. All changes and modifications within the scope of the claims or their equivalents should be covered by the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410042449.4A CN104810234A (en) | 2014-01-28 | 2014-01-28 | Mass spectrometer and ionization device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410042449.4A CN104810234A (en) | 2014-01-28 | 2014-01-28 | Mass spectrometer and ionization device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104810234A true CN104810234A (en) | 2015-07-29 |
Family
ID=53694975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410042449.4A Pending CN104810234A (en) | 2014-01-28 | 2014-01-28 | Mass spectrometer and ionization device thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104810234A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI603372B (en) * | 2016-04-15 | 2017-10-21 | 國立中山大學 | A chromatographic mass spectromery apparatus using combustion reaction as ionization source |
TWI625759B (en) * | 2015-08-21 | 2018-06-01 | 日商埃耶士股份有限公司 | Analysis system and analysis method for online-transferred analysis sample |
CN109427536A (en) * | 2017-08-31 | 2019-03-05 | 天源华威集团有限公司 | Plasma mass spectrograph and its ionization apparatus |
CN110100300A (en) * | 2016-10-26 | 2019-08-06 | 诺韦恩斯有限责任公司 | Method for measuring spectrum |
CN114774838A (en) * | 2022-06-21 | 2022-07-22 | 盐城市大丰华瑞精工机械有限公司 | Processing device for valve rod |
-
2014
- 2014-01-28 CN CN201410042449.4A patent/CN104810234A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI625759B (en) * | 2015-08-21 | 2018-06-01 | 日商埃耶士股份有限公司 | Analysis system and analysis method for online-transferred analysis sample |
TWI603372B (en) * | 2016-04-15 | 2017-10-21 | 國立中山大學 | A chromatographic mass spectromery apparatus using combustion reaction as ionization source |
CN110100300A (en) * | 2016-10-26 | 2019-08-06 | 诺韦恩斯有限责任公司 | Method for measuring spectrum |
US11133168B2 (en) | 2016-10-26 | 2021-09-28 | University Of Basel | Method for spectrometry |
CN109427536A (en) * | 2017-08-31 | 2019-03-05 | 天源华威集团有限公司 | Plasma mass spectrograph and its ionization apparatus |
CN114774838A (en) * | 2022-06-21 | 2022-07-22 | 盐城市大丰华瑞精工机械有限公司 | Processing device for valve rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105845540A (en) | Desolvation and ionizationoun method through heating and apparatus | |
Corbin et al. | Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions | |
CN105957793B (en) | A kind of ionization mass spectrometry method using microwave plasma torch ionization source | |
CN101789355B (en) | Time-of-flight mass spectrometer with wide dynamic range, implementation method and application thereof | |
US9607818B2 (en) | Multimode ionization device | |
Northway et al. | Demonstration of a VUV lamp photoionization source for improved organic speciation in an aerosol mass spectrometer | |
CN104810234A (en) | Mass spectrometer and ionization device thereof | |
JPH05251038A (en) | Plasma ion mass spectrometry device | |
CN105588872B (en) | A kind of quick online atmospheric pressure photoionization mass spectrometric apparatus for active ingredient in complex matrices | |
Zimmermann et al. | Application of single‐particle laser desorption/ionization time‐of‐flight mass spectrometry for detection of polycyclic aromatic hydrocarbons from soot particles originating from an industrial combustion process | |
CN109073618A (en) | The method for analyzing electronic cigarette smog | |
Kratzer et al. | Comparison of dielectric barrier discharge, atmospheric pressure radiofrequency-driven glow discharge and direct analysis in real time sources for ambient mass spectrometry of acetaminophen | |
CN104716008A (en) | Radio-frequency discharge VUV composite ionization source used for mass spectrometry | |
CN105304452B (en) | Laser electric spray ion source | |
US12340998B2 (en) | Condensed liquid aerosol particle spray (CLAPS)—a novel on-line liquid aerosol sampling and ionization technique | |
CN102854240A (en) | Ion trap mass spectrometer for organic aerosol ionized by vacuum ultraviolet light | |
Hartonen et al. | Current instrumentation for aerosol mass spectrometry | |
CN104867806B (en) | Sample injection method and device for desorption sample | |
CN203882953U (en) | Mass spectrometer and ionization device thereof | |
Zhao et al. | Development of microwave plasma proton transfer reaction mass spectrometry (MWP-PTR-MS) for on-line monitoring of volatile organic compounds: Design, characterization and performance evaluation | |
US20080067356A1 (en) | Ionization of neutral gas-phase molecules and mass calibrants | |
CN106206239B (en) | A high-efficiency combined atmospheric pressure ionization source | |
CN114199981A (en) | Mass spectrometry device and method for online detection of nicotine content in cigarette smoke and puff-by-puff analysis | |
CN108074793B (en) | A multi-mode mass spectrometry ionization source for multi-component sample analysis | |
JP2010014539A (en) | Liquid sample ionization method, mass spectrometry, and devices thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150729 |