CN104809276A - Multi-finger robot dynamic analytical model and modeling method thereof - Google Patents

Multi-finger robot dynamic analytical model and modeling method thereof Download PDF

Info

Publication number
CN104809276A
CN104809276A CN201510175658.0A CN201510175658A CN104809276A CN 104809276 A CN104809276 A CN 104809276A CN 201510175658 A CN201510175658 A CN 201510175658A CN 104809276 A CN104809276 A CN 104809276A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510175658.0A
Other languages
Chinese (zh)
Other versions
CN104809276B (en
Inventor
焦生杰
赵睿英
王欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201510175658.0A priority Critical patent/CN104809276B/en
Publication of CN104809276A publication Critical patent/CN104809276A/en
Application granted granted Critical
Publication of CN104809276B publication Critical patent/CN104809276B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Numerical Control (AREA)

Abstract

The invention provides a multi-finger robot dynamic analytical model and a modeling method thereof. According to the method, a system restriction expression is built, and the relationship between the system virtual displacement and the restriction conditions is obtained; then, the virtual displacement vector general solution is solved, and is substituted into a virtual work principle expression to obtain a relational expression capable of simplifying the restriction force in a dynamic model; then, the simplification relational expression is adopted for processing the moving equation at the system non-restriction time, the processing result and the restriction expression are combined for replacing a mass supplementing matrix of a special mass matrix; finally, the mass supplementing matrix is used for solving the finger robot dynamic analytical model at the system mass matrix special time, and the model still having the solution at the mass matrix special time is obtained.

Description

Multi-finger robot dynamics analysis model and modeling method thereof
Technical Field
The invention belongs to the field of robots, relates to a multi-finger robot, and particularly relates to a multi-finger robot dynamics analysis model and a modeling method thereof.
Background
The multi-finger robot has a bionic finger design, and the multi-joint fingers can realize various clamping modes and can accurately complete various tasks in a complex environment. The mathematical model of the multi-finger robot is the basis for control and application research, and as the theories of multi-body modeling, contact kinematics and the like are involved, dynamic modeling is one of the difficulties of the control problem of the multi-finger robot and is also a hot research problem in the field in recent years.
At present, a modeling method commonly adopted by a multi-finger robot is mainly based on a Lagrange multiplier method, and the Lagrange multiplier is utilized to introduce the constraint of fingers and a grabbed object into a system and establish a dynamic model under the constraint condition. When the modeling method is adopted, the system needs to meet the following assumed conditions: (1) the grabbing force is closed; (2) the jacobian matrix of the finger is reversible; (3) the contact force is within the friction cone. In addition, when the contact between a finger and a grabbed object is researched, the position of a contact point needs to be described by using local coordinate parameters (for example, the spherical parameters can be used for expressing the position of any point on a finger curved surface).
Disclosure of Invention
Aiming at the problems in the prior art, the invention aims to provide a multi-finger robot dynamics analysis model, which solves the dynamics problem of pure rolling between a multi-finger robot and a captured object.
The invention also aims to provide a modeling method of the multi-finger robot dynamics analytic model, which solves the problem that the motion equation is not solved when the mass matrix is singular in the multi-finger robot modeling process.
In order to realize the technical task, the invention adopts the following technical scheme to realize:
a multi-finger robot dynamics analysis model is a dynamics model under the condition of pure rolling constraint between fingers and a captured object, and comprises the following specific models:
q . . = ( I - A + ( q . , q ) A ( q . , q ) M ( q ) ) A ( q . , q ) + Q ^ ( q . , q ) b ( q . , q )
in the formula: i is an identity matrix;
q=[qf1 qf2 … qfl qo]Tis a system generalized coordinate vector;
<math> <mrow> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>fl</mi> </msub> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>o</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> is a system generalized velocity vector;
<math> <mrow> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mrow> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mi>fl</mi> </msub> </mtd> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mi>o</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> is a system generalized acceleration vector;
M(q):=diag[Mf1,Mf2,…,Mfl,Mo]is a system quality matrix;
constraining a second order expression coefficient matrix for the system;
a second order expression constant term matrix is constrained for the system;
A ( q . , q ) q . . = b ( q . , q ) is a constraint expression of the system;
<math> <mrow> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>Q</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>Q</mi> <mrow> <mi>f</mi> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>Q</mi> <mi>fl</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msub> <mi>Q</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math> is the system external force vector;
qficoordinate parameter vector of ith finger subsystem, (i ═ 1, 2, …, l);
Mfian ith finger subsystem quality matrix, (i ═ 1, 2, …, l);
Qfiis the ith finger subsystem external force vector, (i ═ 1, 2, …, l);
qois a coordinate parameter of a grabber system;
Mois a grabber system quality matrix;
Qothe external force vector of the grabber system is obtained;
[·]+is a matrix [. C]The generalized inverse matrix of (2);
f denotes a finger subsystem, o denotes a grasping object subsystem, l is 2, 3, …, n, l denotes the number of fingers of the robot.
A modeling method of the multi-finger robot dynamics analytic model as described above, the method comprising the steps of:
the method comprises the following steps that firstly, a multi-finger robot and an object grabbing system are decomposed, and modeling setting conditions are provided;
defining a modeling basic coordinate system and a reference coordinate system of each subsystem;
step three, establishing an ith finger subsystem dynamic model according to a Lagrange equation;
fourthly, establishing a dynamic model of the captured object subsystem according to a Lagrange equation;
step five, establishing a dynamic model of the finger and the captured object non-constraint system according to a Lagrange equation;
step six, establishing a constraint equation under the pure rolling constraint condition between the fingers and the grabbed object;
step seven, firstly, establishing a system constraint expression to obtain the relationship between the system virtual displacement and the constraint condition; secondly, solving a common solution of the virtual displacement vector, and substituting the common solution into a virtual work principle expression to obtain a relational expression capable of simplifying the constraint force in the dynamic model; then, a motion equation of the simplified relational processing system without constraint is adopted, and a quality supplementary matrix replacing a singular quality matrix is constructed by combining a processing result and a constraint expression; and finally, solving the finger robot dynamics analysis model when the system quality matrix is different by using the quality supplement matrix, and obtaining the model which still has a solution when the quality matrix is different as shown above.
Due to the adoption of the technical scheme, the invention has the following advantages:
the problem that the motion equation is not solved when the mass matrix is singular in the multi-finger robot modeling process is solved, and a multi-finger robot dynamics analytic model is obtained. Compared with a numerical model obtained by a Lagrange multiplier method, the model is in an analytic form and is easier to be applied by a control system. Compared with a Gibbs-Appell method and a Kane (Kane) method, the modeling method does not need to help auxiliary variables, so that the modeling process is simpler and more efficient.
Pure roll constraint is a form of constraint that is difficult to achieve, requiring contact between the fingertip and the grasped object without relative slippage. Compared with sliding constraint and clamping constraint, the mathematical expression of pure rolling constraint has more numbers and relatively complex form. The finger robot model established under the pure rolling constraint condition can provide reference value for the modeling process under other form constraints.
At present, in the force and position hybrid control of a robot, a force sensor needs to be installed on the robot to sample the interaction force of the end effector contacting with the outside in real time. The dynamics analytic model that this patent provided can obtain each joint moment of robot and the analytic formula of grabbing power for robot force control can only rely on system state feedback to accomplish, need not to install additional force sense sensor.
Note: the analysis model is a mathematical expression model obtained under a certain condition, the solution of the model can be obtained by giving any independent variable, and the analysis model does not depend on the initial value of the independent variable. The numerical model is an approximate model obtained by adopting a numerical method, the model precision depends on the numerical calculation result, the solution of any independent variable cannot be given at will, and the numerical model result depends on the setting of the initial value of the independent variable. Compared with a numerical model, the analytical model is more accurate and is more convenient to realize automatic control.
The system is a system formed by a multi-finger robot and a captured object, and the system is divided into a finger subsystem and a captured object subsystem.
Drawings
Fig. 1 is a schematic diagram of the kinematic relationship between a three-finger robot and a grabbed object.
Fig. 2 is a schematic diagram of the pure rolling contact of the ith finger with the grabbed object.
FIG. 3 is a diagram showing the results of numerical simulation of the three joint moments of the 1 st finger.
Fig. 4 is a diagram showing the result of numerical simulation of the 2 nd finger three-joint moment.
Fig. 5 is a diagram showing the result of numerical simulation of the 3 rd finger three-joint moment.
FIG. 6 is a simulation diagram showing the results of numerical simulation of the 1 st finger tip gripping force.
FIG. 7 is a simulation diagram showing the result of numerical simulation of the 2 nd fingertip gripping force.
Fig. 8 is a simulation diagram of the result of numerical simulation of the 3 rd fingertip gripping force.
The details of the present invention will be described in further detail below with reference to the drawings and examples.
Detailed Description
The invention provides a multi-finger robot dynamics analytic model and a modeling method thereof, which comprises the following specific implementation steps:
step one, decomposing a multi-finger robot and object grabbing system and providing modeling setting conditions:
in the modeling process, the robot and the grabbing object are regarded as a complex multi-rigid-body system, and the complex multi-body system is divided into (l +1) subsystems: the robot comprises l finger subsystems and a grabbed object subsystem, wherein l is 2, 3, …, n and l represent the number of fingers of the robot, such as a three-finger robot, and l is 3.
The modeling method is based on the following settings:
the number of finger subsystems of the multi-finger robot is not less than 2, namely l is not less than 2;
the number of finger joints of the multi-finger robot is 3;
(3) the finger subsystem model can be simplified as a linkage: the knuckles are regarded as a single rod, and the joints between the knuckles are regarded as rotary hinges;
(4) in the finger subsystem model, setting the position coordinates of a finger root to be fixed relative to a base coordinate system;
(5) the finger tip and the grabbing object are in point contact, and the finger tip and the grabbing object at the contact point are not deformed relatively.
Step two, defining a modeling basic coordinate system and a reference coordinate system of each subsystem:
(1) defining a modeling basic coordinate system { B }, namely a ground coordinate system, and selecting any point in space as an origin OBTransverse axis XBParallel to the ground, longitudinal axis YBIs vertical to the ground;
(2) define the reference coordinate system { B of the ith fingeri1, 2, …, l, selecting the root junction as the originTransverse axisWith the transverse axis XBParallel, longitudinal axisAnd the longitudinal axis YBParallel connection;
(3) define the fingertip coordinate system { f) of the ith fingeri1, 2, …, l, the coordinate system is fixed on the finger end, and any point on the axis of the knuckle at the end of the finger except the surface of the finger tip is selected as the originTransverse axisCoincident with the central axis, the longitudinal axisTo the cross axisAnd is vertical.
(4) Defining a reference coordinate system { O } of the grabbed object, fixing the coordinate system on the grabbed object, and selecting the centroid of the grabbed object as an origin OOWith any direction being transverse axisTo the cross axisThe vertical direction being the longitudinal axis
Step three, establishing an ith finger subsystem dynamic model:
selecting qfi=[qi1,qi2,qi3,vi]TCoordinate parameter vector for the ith finger subsystem, as shown in FIG. 1, qijIs the rotational displacement of the j-th joint of the ith finger, j is 1, 2, 3, i.e. qi1,qi2,qi3,viWhen the ith finger is in contact with the grasped object, the fingertip coordinate system { f of the ith fingeriThe local coordinates below.
The ith finger subsystem dynamics model obtained according to the Lagrange equation is as follows:
M fi ( q fi ) q . . fi = Q fi ( q . fi , q fi ) - - - ( 1 )
M fi ( q fi ) : = M fi 11 M fi 12 M fi 13 M fi 14 M fi 21 M fi 22 M fi 23 M fi 24 M fi 31 M fi 32 M fi 33 M fi 34 M fi 41 M fi 42 M fi 43 M fi 44 - - - ( 2 )
Q fi ( q . fi , q fi ) : = Q fi 1 Q fi 2 Q fi 3 Q fi 4 T - - - ( 3 )
Mfi(qfi) Is the inertia matrix of the ith finger subsystem,is the external force matrix of the ith finger subsystem.
Wherein,
M fi 11 = I I 1 + 1 2 l i 1 2 m i 1 + m i 2 + m i 3 ( l i 1 2 + l i 2 2 + 2 l i 1 l i 2 cos q i 2 ) - - - ( 4 )
M fi 12 = m i 3 l i 2 2 + m i 3 l i 1 l i 2 cos q i 2 M fi 22 = I i 2 + m i 3 l i 1 2 M fi 33 = I i 3 - - - ( 5 )
MFi13=Mfi14=Mfi23=Mfi24=Mfi31=Mfi32=Mfi34=0 (6)
Mfi41=Mfi42=Mfi43=Mfi44=0 (7)
Q fi 1 = 2 m i 3 l i 1 l i 2 ( 2 q . i 1 q . i 2 + q . i 2 2 ) cos q i 1 - ( 1 2 m i 2 l i 2 g + m i 3 l i 2 g ) cos q i 2 - 1 2 m i 3 l i 3 g cos ( q i 1 + q i 2 + q i 3 ) - - - ( 8 )
Q fi 2 = - m i 3 l i 2 2 + m i 3 l i 1 l i 2 cos q i 2 - ( 1 2 m i 2 l i 2 g + m i 3 l i 2 g ) cos ( q i 1 + q i 2 ) - 1 2 m i 3 l i 3 cos ( q i 1 + q i 2 + q i 3 ) - - - ( 9 )
Q fi 3 = - 1 2 m i 3 l i 3 cos ( q i 1 + q i 2 + q i 3 ) , q fi 4 = 0 - - - ( 10 )
the parameters referred to in the above formula are as follows:
mijrepresenting the mass of the jth joint of the ith finger;
lijrepresents the length of the jth knuckle of the ith finger;
Iijrepresenting the moment of inertia of the jth knuckle of the ith finger with respect to the knuckle's centroid;
g represents the gravitational acceleration.
Step four, establishing a subsystem dynamic model of the captured object:
selecting a coordinate parameter vector of a subsystem for grabbing the object as qo=[xo,yo,φ,u1,u2,…,ul]TWherein (x)o,yo) Is the position parameter of the barycenter of the object in the base coordinate system { B }, phi is the rotational displacement of the coordinate system { O } of the object to be grabbed relative to the base coordinate system { B }, uiAnd the local coordinate parameter of the contact point of the ith finger and the grabbed object is within { O }.
The dynamic model of the subsystem for capturing the object is obtained according to the Lagrange equation and is as follows:
M O ( q o ) q . . o = Q o ( q . o , q o ) - - - ( 11 )
<math> <mrow> <msub> <mi>M</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mi>o</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>m</mi> <mi>o</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>I</mi> <mi>o</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>o</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>:</mo> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> <mi>g</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein M iso(qo) Is the inertia matrix of the ith finger subsystem,is the external force matrix of the ith finger subsystem. m isoFor grasping object mass, IoTo capture the moment of inertia of an object about its center of mass, <math> <mrow> <msub> <mi>M</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mrow> <mo>(</mo> <mi>l</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>&times;</mo> <mrow> <mo>(</mo> <mi>l</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <msub> <mi>Q</mi> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>o</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mo>(</mo> <mi>l</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </msup> <mo>.</mo> </mrow> </math>
step five, establishing a dynamic model of the finger and the capture object 'unconstrained' system:
the finger subsystem and the grabbed object subsystem are used as 'unconstrained' systems, and a system model is established according to a Lagrange equation as follows:
M ( q ) q . . = Q ^ ( q . , q ) - - - ( 14 )
q=[qf1 qf2 … qf1 qo]T (15)
M(q):=diag[Mf1,Mf2,…,Mfl,Mo] (16)
<math> <mrow> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>Q</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Q</mi> <mrow> <mi>f</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msub> <mi>Q</mi> <mi>fl</mi> </msub> </mtd> <mtd> <msub> <mi>Q</mi> <mi>o</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein M (q) is an inertia matrix of an 'unconstrained' system of fingers and a grabbed object,the method comprises the steps of taking an external force matrix of an 'unconstrained' system of fingers and a grabbed object, taking q as a coordinate parameter vector of the 'unconstrained' system of the fingers and the grabbed object, and taking a diag function as a new matrix constructed by taking independent variables as diagonal elements.
Qf1And when i is 1Equal, Mf1And M when i is 1fi(qfi) Equal, are abbreviated as such for convenienceThe other parameters are expressed in the same manner.
Step six, establishing a constraint equation under the pure rolling constraint condition between the fingers and the grabbed object:
when pure rolling motion is maintained between the finger robot and the grabbed object, the fingers and the grabbed object need to meet three constraint conditions, namely the position, the speed and the normal vector constraint of the fingers and the grabbed object at a contact point.
When the fingers keep in contact with the grabbed object, the ith finger and the grabbed object meet the position constraint, and the constraint equation can be expressed as:
<math> <mrow> <mfenced open='' close='-' separators=''> <mtable> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>o</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>o</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mtd> <mtd> <mo>-</mo> <mi>cos</mi> <mi>&phi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&phi;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>sin</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>bi</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mi>bi</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>cos</mi> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&rho;</mi> <mi>cos</mi> <msub> <mi>v</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&rho;</mi> <mi>sin</mi> <msub> <mi>v</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> <mo>+</mo> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein (x)bi,ybi) Is the base B of the ith fingeriThe position parameter in the base coordinate system { B }, r is the radius of the curved surface of the object to be grasped, and ρ is the radius of the sharp curved surface.
The finger and the grabber do not slide relatively at the contact point, namely the finger and the contact point meet the speed constraint, and the speed constraint of the ith finger and the grabber can be expressed as follows:
<math> <mrow> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>.</mo> </mover> <mi>o</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>.</mo> </mover> <mi>o</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mtd> <mtd> <mo>-</mo> <mi>cos</mi> <mi>&phi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <mi>&phi;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>r</mi> <mi>cos</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <mi>sin</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>.</mo> </mover> <mi>fi</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>.</mo> </mover> <mi>fi</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>11</mn> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>12</mn> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>13</mn> </msub> <mo>)</mo> </mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&rho;</mi> <mi>cos</mi> <msub> <mi>v</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&rho;</mi> <mi>sin</mi> <msub> <mi>v</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
x . fi = l i 1 q . i 1 cos q i 1 + l i 2 ( q . i 1 + q . i 2 ) cos ( q i 1 + q i 2 ) + l i 3 ( q . i 1 + q . i 2 + q . i 3 ) cos ( q i 1 + q i 2 + q i 3 ) - - - ( 20 )
y . fi = l i 1 q . i 1 cos q i 1 + l i 2 ( q . i 1 + q . i 2 ) sin ( q i 1 + q i 2 ) + l i 3 ( q . i 1 + q . i 2 + q . i 3 ) sin ( q i 1 + q i 2 + q i 3 ) - - - ( 21 )
the unit normal vectors of the fingertip plane and the grabber plane at the contact point are equal in size and are positioned in the opposite direction of the common tangent plane. The normal vector constraint of the ith finger and the grabbed object at the contact point can be expressed as:
<math> <mrow> <mo>-</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&phi;</mi> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&phi;</mi> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&phi;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&phi;</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>q</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <msub> <mi>&upsi;</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <msub> <mi>&upsi;</mi> <mi>i</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
the second order form of the constraint is obtained by taking the derivative with respect to time t by the above equations (18), (19), (22), and the second order constraint is expressed in the form of a matrix as:
<math> <mrow> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>q</mi> <mi>fi</mi> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>q</mi> <mi>oi</mi> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>q</mi> <mi>oi</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>x</mi> <mi>o</mi> </msub> <mo>,</mo> <msub> <mi>y</mi> <mi>o</mi> </msub> <mo>,</mo> <mi>&phi;</mi> <mo>,</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>l</mi> <mo>.</mo> </mrow> </math>
equation (23) can be decomposed into:
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>fi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>fi</mi> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>oi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>oi</mi> </msub> <mo>)</mo> </mrow> </mtd> <mtd> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>oi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>oi</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mi>fi</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mi>oi</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>&CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
in formula (24):
<math> <mrow> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mi>fi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>fi</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>13</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>14</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>23</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>24</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>34</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>41</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>42</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>43</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>44</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>51</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>52</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>53</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>54</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mn>61</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>62</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>63</mn> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mn>64</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>oi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>oi</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>r</mi> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>r</mi> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>r</mi> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mi>r</mi> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow> </math> <math> <mrow> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mi>oi</mi> </msub> <mo>,</mo> <msub> <mi>q</mi> <mi>oi</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>rs</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>5</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>n</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>q</mi> <mo>&OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above formulas (25), (26), (27) and (28), for the convenience of writing into a canonical matrix, some intermediate variables are used for writing, and the meaning of the specific intermediate variables is as follows:
<math> <mrow> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>21</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>a</mi> <mn>31</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>41</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>51</mn> </msub> <mo>=</mo> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>61</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>12</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>22</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <mo>-</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>32</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <mo>+</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mn>123</mn> </msub> <msub> <mi>v</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>42</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mrow> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mrow> <msub> <mi>a</mi> <mn>52</mn> </msub> <mo>=</mo> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>62</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>13</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>23</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>a</mi> <mn>33</mn> </msub> <mo>=</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <mo>+</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>43</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>53</mn> </msub> <mo>=</mo> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>63</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>a</mi> <mn>14</mn> </msub> <mo>=</mo> <msub> <mi>&rho;s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>24</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&rho;c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>34</mn> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>44</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>a</mi> <mn>54</mn> </msub> <mo>=</mo> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>64</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>.</mo> </mrow> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <mi>r</mi> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mi>r</mi> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mi>r</mi> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>12</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>c</mi> <mn>123</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>c</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>12</mn> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>13</mn> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mn>4</mn> </msub> <mo>=</mo> <mi>r</mi> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mrow> <mo>(</mo> <mover> <mi>&phi;</mi> <mo>.</mo> </mover> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <msubsup> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>12</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>l</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <msub> <mi>s</mi> <mn>123</mn> </msub> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&rho;</mi> <msub> <mi>s</mi> <mrow> <mn>123</mn> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>12</mn> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mn>13</mn> </msub> <mo>+</mo> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>q</mi> <mo>.</mo> </mover> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </math>
in the formula s1=sinqi1,s12=sin(qi1+qi2),s123=sin(qi1+qi2+qi3),
s 123 v i = sin ( q i 1 + q i 2 + q i 3 + v i ) , c i = cos q i 1 , c 12 = cos ( q i 1 + q i 2 ) ,
c 123 = cos ( q i 1 + q i 2 + q i 3 ) , c 123 v i = cos ( q i 1 + q i 2 + q i 3 + v i ) ,
<math> <mrow> <msub> <mi>s</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>+</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>c</mi> <mrow> <mi>&phi;</mi> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mi>&phi;</mi> <mo>+</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
Step seven, establishing a dynamic analysis model of a finger and captured object 'constraint' system:
establishing a motion equation of the finger and the object grabbing system, wherein the expression is as follows:
M ( q ) q . . = Q ^ ( q . , q ) + Q c ( q . , q ) - - - ( 29 )
wherein, <math> <mrow> <mi>q</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>q</mi> <mrow> <mi>f</mi> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>a</mi> <mrow> <mi>f</mi> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>q</mi> <mi>fl</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>q</mi> <mi>o</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> <msup> <mi>Q</mi> <mi>c</mi> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mrow> </math> is the system constraint.
From equation (24), the constraint expression of the system can be rewritten as:
A ( q . , q ) q . . = b ( q . , q ) - - - ( 30 ) , wherein,
<math> <mrow> <mi>b</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>b</mi> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>b</mi> <mn>2</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>b</mi> <mi>l</mi> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow> </math>
from the virtual displacement definition, the following holds:wherein:
q is the system virtual displacement.
According to the principle of imaginary work, the following holds: <math> <mrow> <mi>&delta;</mi> <msup> <mi>q</mi> <mi>T</mi> </msup> <msup> <mi>Q</mi> <mi>c</mi> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein,is the system constraint.
The solution of equation (33) is: q ═ I (I-A)+A) And gamma (35), wherein gamma is an arbitrary vector.
Substituting (34) with equation (33) to obtain: <math> <mrow> <msup> <mi>&gamma;</mi> <mi>T</mi> </msup> <msup> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mi>A</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mi>Q</mi> <mi>c</mi> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow> </math>
since γ is an arbitrary vector, then ( I - A + A ) T Q c ( q . , q ) = 0 - - - ( 37 )
Multiplying both sides of formula (29) by (I-A)+A) Obtaining:
( I - A + A ) M ( q ) q . . = ( I - A + A ) ( Q ^ ( q . , q ) + Q c ( q . , q ) ) - - - ( 38 )
due to equation (37), the above equation can be rewritten as:
( I - A + A ) M ( q ) q . . = ( I - A + A ) Q ^ ( q . , q ) - - - ( 39 )
combining formulas (24) and (38) to obtain:
( I - A + ( q . , q ) A ( q . , q ) M ( q ) ) A ( q . , q ) q . . = ( I - A + A ) Q ^ ( q . , q ) b ( q . , q ) - - - ( 40 )
defining: <math> <mrow> <mover> <mi>M</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>41</mn> <mo>)</mo> </mrow> </mrow> </math>
by solving (40), we get:
<math> <mrow> <mover> <mi>q</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> </msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mover> <mi>M</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> </msup> <mover> <mi>M</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>&eta;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>42</mn> <mo>)</mo> </mrow> </mrow> </math>
where η is an arbitrary vector. If it is notAnd if the system is full, the dynamic model of the system is as follows:
q . . = ( I - A + ( q . , q ) A ( q . , q ) ) M ( q ) A ( q . , q ) + Q ^ ( q . , q ) b ( q . , q ) - - - ( 43 )
formula (43) is that the multi-finger robot dynamics analysis model is a multi-finger robot dynamics analysis model under the pure rolling constraint condition between the fingers and the grabbed object, wherein:
q is a system generalized coordinate vector;is a system generalized velocity vector;
is a system generalized acceleration vector; i is an identity matrix;
m (q) is a system quality matrix;
constraining a second order expression coefficient matrix for the system;
a second order expression constant term matrix is constrained for the system;
is the system external force vector.
On the basis of the dynamic model, further, an analytic model for obtaining the constraint force of the system is as follows:
Q c ( q . , q ) = Q ( q . , q ) - Q ^ ( q . , q ) - - - ( 44 )
wherein,
Q ( q . , q ) = M ( q ) ( I - A + ( q . , q ) A ( q . , q ) ) M ( q ) A ( q . , q ) + Q ^ ( q . , q ) b ( q . , q ) - - - ( 45 )
the analytic model of the grasping force of the ith contact point is as follows:
F i c ( q . , q ) = ( J i ( q ) J i T ( q ) ) - 1 J i ( q ) Q c ( q . , q ) - - - ( 46 )
wherein, <math> <mrow> <msubsup> <mi>F</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>,</mo> <msubsup> <mi>F</mi> <mi>i</mi> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>.</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>F</mi> <mi>ix</mi> <mi>c</mi> </msubsup> <mo>,</mo> <msubsup> <mi>F</mi> <mi>iy</mi> <mi>c</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>J</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>&Element;</mo> <msup> <mi>R</mi> <mrow> <mn>2</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>5</mn> <mi>l</mi> <mo>+</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </math> and the jacobian matrix is the contact point of the ith finger and the grabbed object.
Simulation application example 1:
according to the multi-finger robot dynamics analytic model provided by the invention, the specific structure is shown in fig. 1 and fig. 2, a three-finger robot dynamics analytic model is established, numerical simulation is carried out on the mathematical model in Matlab software, and specific parameters used in the three-finger robot simulation are as follows:
table 1 simulation parameter settings
In table, mijIs the mass of the jth knuckle of the ith finger,/ijIs the length of the jth knuckle of the ith finger, IijFor the ith finger, the moment of inertia, ρ, of the jth knuckle about the centroidiFor the ith finger tip surface with respect to coordinate system { fiRadius of curvature of }, moTo capture the mass of the object, IoFor grasping moment of inertia of object about center of mass, roTo obtain the radius of curvature of the surface of the object with respect to the coordinate system { O }, i is 1, 2, 3, and j is 1, 2, 3.
In the simulation process, a set of initial states is given as:
1) the initial displacement vector q ═ pi/6, pi/3, — pi/6, pi/3, pi/6, 0, 0, 0, pi/5, 7 pi/10, 2 pi/5]T
2) Initial velocity vector q . = [ 0.1,0.1,0.1,0.1,0,0,0,0,0,0,0,0,0,0,0,0.1,0,0.1,0,0 ] T ;
3) Initial acceleration vector q . . = [ 0,0,0,0,0 , 0,0,0,0,0,0,0,0,0,0,0 ] T ;
4) The position parameters of the finger base in the base coordinate system { B } are: b is1=(0.75,-0.29),
B2=(-1.5,-0.3),B3=(0.75,-0.1)。
Fig. 3-8 are numerical simulation results of a three-finger robot dynamics analytic model. FIGS. 3-5 show the simulation results of the torque values of each joint of three fingers under the condition of satisfying the pure rolling constraintMoment of j knuckle of ith finger; FIGS. 6-8 show the results of numerical simulation of the grasping forces of three fingers under the constraint of pure scrolling, in whichThe fingertip removal force of the ith finger is XBComponent of direction, in the figureThe finger tip grasping force of the ith finger is YBThe component of the direction.
As can be seen from fig. 3 to 8, the three-finger robot dynamics analysis model proposed by the present invention has continuous and convergent numerical simulation results, and is effective and feasible.

Claims (2)

1. A multi-finger robot dynamics analysis model is characterized in that: the multi-finger robot dynamics analysis model is a dynamics model under the pure rolling constraint condition between fingers and a captured object, and the specific model is as follows:
<math> <mrow> <mover> <mi>q</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> </msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula:
q is a system generalized coordinate vector;is a system generalized velocity vector;
is a system generalized acceleration vector; i is an identity matrix;
m (q) is a system quality matrix;
constraining a second order expression coefficient matrix for the system;
a second order expression constant term matrix is constrained for the system;
is the system external force vector.
2. A modeling method of a multi-finger robot dynamics analysis model is characterized by comprising the following steps: the method comprises the following steps:
the method comprises the following steps that firstly, a multi-finger robot and an object grabbing system are decomposed, and modeling setting conditions are provided;
defining a modeling basic coordinate system and a reference coordinate system of each subsystem;
step three, establishing an ith finger subsystem dynamic model according to a Lagrange equation;
fourthly, establishing a dynamic model of the captured object subsystem according to a Lagrange equation;
step five, establishing a dynamic model of the finger and the captured object non-constraint system according to a Lagrange equation;
step six, establishing a constraint equation under the pure rolling constraint condition between the fingers and the grabbed object;
step seven, firstly, establishing a system constraint expression to obtain the relationship between the system virtual displacement and the constraint condition;
secondly, solving a common solution of the virtual displacement vector, and substituting the common solution into a virtual work principle expression to obtain a relational expression capable of simplifying the constraint force in the dynamic model;
then, a motion equation of the simplified relational processing system without constraint is adopted, and a quality supplementary matrix replacing a singular quality matrix is constructed by combining a processing result and a constraint expression;
finally, the finger robot dynamics analysis model when the quality matrix of the system is different is solved by using the quality supplement matrix, and the model with the solution when the quality matrix is different is obtained as follows:
<math> <mrow> <mover> <mi>q</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>I</mi> <mo>-</mo> <msup> <mi>A</mi> <mo>+</mo> </msup> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>M</mi> <mrow> <mo>(</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> </msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&CenterDot;</mo> </mover> <mo>,</mo> <mi>q</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
in the formula:
q is a system generalized coordinate vector;is a system generalized velocity vector;
is a system generalized acceleration vector; i is an identity matrix;
m (q) is a system quality matrix;
constraining a second order expression coefficient matrix for the system;
a second order expression constant term matrix is constrained for the system;
is the system external force vector.
CN201510175658.0A 2015-04-14 2015-04-14 A kind of many finger robot dynamics analytic modell analytical models and its modeling method Expired - Fee Related CN104809276B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510175658.0A CN104809276B (en) 2015-04-14 2015-04-14 A kind of many finger robot dynamics analytic modell analytical models and its modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510175658.0A CN104809276B (en) 2015-04-14 2015-04-14 A kind of many finger robot dynamics analytic modell analytical models and its modeling method

Publications (2)

Publication Number Publication Date
CN104809276A true CN104809276A (en) 2015-07-29
CN104809276B CN104809276B (en) 2017-09-12

Family

ID=53694093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510175658.0A Expired - Fee Related CN104809276B (en) 2015-04-14 2015-04-14 A kind of many finger robot dynamics analytic modell analytical models and its modeling method

Country Status (1)

Country Link
CN (1) CN104809276B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106529066A (en) * 2016-11-16 2017-03-22 南京航空航天大学 Dynamic modelling method for connection process of indexing mechanism capture connection device
CN106527129A (en) * 2016-10-18 2017-03-22 长安大学 Parallel robot indirect self-adaptive fuzzy control parameter determining method
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN108108560A (en) * 2017-12-21 2018-06-01 大连大华中天科技有限公司 A kind of finger position method for arranging of multi-finger clever hand
CN109153118A (en) * 2017-03-09 2019-01-04 深圳蓝胖子机器人有限公司 Grab the method and system of quality determining method and its application
CN112220559A (en) * 2020-10-16 2021-01-15 北京理工大学 Method and device for determining gravity and bias force of mechanical arm
CN112560262A (en) * 2020-12-14 2021-03-26 长安大学 Three-finger dexterous hand dynamics modeling method, system, equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562168U (en) * 2009-12-17 2010-08-25 长安大学 Robot location device based on sound guide
CN102207988A (en) * 2011-06-07 2011-10-05 北京邮电大学 Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm
CN202904925U (en) * 2012-11-22 2013-04-24 长安大学 Internet of Things vehicular access control teaching experimental platform
CN203133608U (en) * 2013-01-15 2013-08-14 长安大学 Movable monitor robot system with voice function
CN103399986A (en) * 2013-07-02 2013-11-20 哈尔滨工业大学 Space manipulator modeling method based on differential geometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201562168U (en) * 2009-12-17 2010-08-25 长安大学 Robot location device based on sound guide
CN102207988A (en) * 2011-06-07 2011-10-05 北京邮电大学 Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm
CN202904925U (en) * 2012-11-22 2013-04-24 长安大学 Internet of Things vehicular access control teaching experimental platform
CN203133608U (en) * 2013-01-15 2013-08-14 长安大学 Movable monitor robot system with voice function
CN103399986A (en) * 2013-07-02 2013-11-20 哈尔滨工业大学 Space manipulator modeling method based on differential geometry

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DA PENG YANG 等: "An Anthropomorphic Robot Hand Developed Based on Underactuated", 《SCIENCEDIRECT》 *
兰天: "多指仿人机器人灵巧手的同步控制研究", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132905A1 (en) * 2016-02-03 2017-08-10 华为技术有限公司 Method and apparatus for controlling motion system
CN106527129A (en) * 2016-10-18 2017-03-22 长安大学 Parallel robot indirect self-adaptive fuzzy control parameter determining method
CN106527129B (en) * 2016-10-18 2019-08-27 长安大学 A kind of parallel robot Fuzzy indirect adaptive control determination method for parameter
CN106529066A (en) * 2016-11-16 2017-03-22 南京航空航天大学 Dynamic modelling method for connection process of indexing mechanism capture connection device
CN109153118A (en) * 2017-03-09 2019-01-04 深圳蓝胖子机器人有限公司 Grab the method and system of quality determining method and its application
CN108108560A (en) * 2017-12-21 2018-06-01 大连大华中天科技有限公司 A kind of finger position method for arranging of multi-finger clever hand
CN108108560B (en) * 2017-12-21 2021-09-07 大连大华中天科技有限公司 Finger position arrangement method of multi-finger dexterous hand
CN112220559A (en) * 2020-10-16 2021-01-15 北京理工大学 Method and device for determining gravity and bias force of mechanical arm
CN112560262A (en) * 2020-12-14 2021-03-26 长安大学 Three-finger dexterous hand dynamics modeling method, system, equipment and storage medium
CN112560262B (en) * 2020-12-14 2024-03-15 长安大学 Three-finger smart manual mechanical modeling method, system, equipment and storage medium

Also Published As

Publication number Publication date
CN104809276B (en) 2017-09-12

Similar Documents

Publication Publication Date Title
CN104809276B (en) A kind of many finger robot dynamics analytic modell analytical models and its modeling method
Lai et al. Stabilization of underactuated planar acrobot based on motion-state constraints
Yamakawa et al. Motion planning for dynamic folding of a cloth with two high-speed robot hands and two high-speed sliders
Al-Gallaf Multi-fingered robot hand optimal task force distribution: Neural inverse kinematics approach
Daoud et al. A real-time strategy for dexterous manipulation: Fingertips motion planning, force sensing and grasp stability
CN107169196B (en) Dynamics modeling method for space robot from end effector to base
Boughdiri et al. Dynamic modeling and control of a multi-fingered robot hand for grasping task
Shao et al. Dynamic modeling of a two-DoF rotational parallel robot with changeable rotational axes
CN112894821A (en) Current method based collaborative robot dragging teaching control method, device and equipment
Guo et al. Tip-over stability analysis for a wheeled mobile manipulator
Neha et al. Grasp analysis of a four-fingered robotic hand based on matlab simmechanics
Fukusho et al. Control of a straight line motion for a two-link robot arm using coordinate transform of bi-articular simultaneous drive
Jabbar et al. A new multi-objective algorithm for underactuated robotic finger during grasping and pinching assignments
Chang et al. Research on manipulator tracking control algorithm based on RBF neural network
Li et al. Computation of grasping and manipulation for multi-fingered robotic hands
Chen et al. Impedance matching strategy for physical human robot interaction control
Zhang et al. Dynamics Modeling and Stability Analysis of Tilt Wing Unmanned Aerial Vehicle During Transition.
Kawamura et al. Robust visual servoing for object manipulation with large time-delays of visual information
Boughdiri et al. Dynamic modeling of a multi-fingered robot hand in free motion
Yu et al. Lagrangian dynamics and nonlinear control of a continuum manipulator
Li et al. Simulation results for manipulation of unknown objects in hand
Ueki et al. Adaptive coordinated control of multi-fingered robot hand
Ueki et al. Object manipulation based on robust and adaptive control by hemispherical soft fingertips
Dang et al. Tactile experience-based robotic grasping
Fasoulas et al. Active control of rolling manoeuvres of a robotic finger with hemispherical tip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhao Ruiying

Inventor after: Jiao Shengjie

Inventor after: Wang Xin

Inventor before: Jiao Shengjie

Inventor before: Zhao Ruiying

Inventor before: Wang Xin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170912

Termination date: 20200414

CF01 Termination of patent right due to non-payment of annual fee