CN104803476B - 膜生物反应器快速恢复方法 - Google Patents

膜生物反应器快速恢复方法 Download PDF

Info

Publication number
CN104803476B
CN104803476B CN201510136921.5A CN201510136921A CN104803476B CN 104803476 B CN104803476 B CN 104803476B CN 201510136921 A CN201510136921 A CN 201510136921A CN 104803476 B CN104803476 B CN 104803476B
Authority
CN
China
Prior art keywords
membrane bioreactor
calcium
base bentonite
reactor
bentonite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510136921.5A
Other languages
English (en)
Other versions
CN104803476A (zh
Inventor
张海丰
樊雪
王嘉雍
于海欢
王斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Feite Environmental Protection Co ltd
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN201510136921.5A priority Critical patent/CN104803476B/zh
Publication of CN104803476A publication Critical patent/CN104803476A/zh
Application granted granted Critical
Publication of CN104803476B publication Critical patent/CN104803476B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

本发明公开了一种膜生物反应器快速恢复方法,其方法通过以下四个步骤完成:(1)将钙基膨润土以50℃/min的升温速率升至350~450℃,焙烧、冷却、研磨;(2)调整曝气量,控制反应器内溶解氧值在4~5mg/L;(3)向膜生物反应器内1次性投加活化后的钙基膨润土;(4)计算投加的钙基膨润土与污泥浓度的质量浓度比,并每天补充钙基膨润土的质量。本发明利用投加焙烧活化后的钙基膨润土,以强化高盐度冲击后的膜生物反应器快速恢复。经本方法处理后,提高了受冲击后膜生物反应器对有机物、氨氮及总磷的去除率,降低了膜污染速率,显著缩短了冲击后反应器恢复的时间。并且具有操作简单、成本低、运行可靠、无二次污染等优点。

Description

膜生物反应器快速恢复方法
技术领域
本发明涉及一种废水处理技术,具体涉及一种膜生物反应器受高盐度废水冲击后快速恢复的方法。
背景技术
近年来,随着世界性水体污染的日趋严重和水资源的严重短缺,以膜生物反应器(MBR)为代表的新型水处理技术已成为污水处理及回用领域的必然选择。目前MBR实际工程主要分布在水资源短缺的内陆及沿海地区,对于内陆地区选择MBR工艺,主要因为该工艺处理污水可实现中水回用,以缓解水资源短缺的现状;对于沿海地区,选择MBR工艺主要源于其出水可满足目前最严格的排放要求。与传统生化处理相比,MBR工艺具有许多优点,然而膜过滤过程中发生的膜污染问题,严重影响了该工艺的稳定性与经济性,尤其是随着MBR应用领域的不断扩大,进水水质的波动从而引起的对该工艺的冲击,对膜分离过程产生十分重要的影响,也直接改变了MBR对污染物的处理效果。
废水中含盐量的波动一直是生化处理工艺面临的主要问题之一,而且近些年来高盐废水对生化处理工艺的冲击日趋频繁,某些污水处理厂的进水中往往混入高盐废水,如香港地区利用海水冲厕、北方冬季利用盐类抑制结冰等。在高盐度冲击下,MBR内由于高盐废水形成的渗透压一方面导致细胞水解,改变微生物代谢机制;另一方面高盐度可影响微生物的物理及生化特性,导致絮体荷电性、疏水性、可滤性及生物絮凝性的改变。高盐度废水冲击不仅对MBR除污能力、生物活性及微生物种群结构产生影响,而且会恶化污泥混合液可滤性,造成严重的膜污染。因而开发有效的控制措施,以应对MBR受到高盐度废水冲击是十分必要的。
膨润土是一种性能优良、用途广泛的天然矿物材料,其主要矿物成分为蒙脱石。蒙脱石是由两层硅氧四面体和一层铝(镁)氧(氢氧)八面体组成的2:1型的三层结构的硅酸盐,因其晶粒细小,具有较大的比表面积,使得有机物、水和盐类物质都能出入蒙脱石层间结构,形成复杂的蒙脱石有机或无机复合体,蒙脱石具有的晶格置换、电负性及离子交换特性决定了膨润土具有较高的离子交换容量及吸附能力,广泛应用于水处理领域。针对MBR受高盐冲击后的恢复技术,国内文献报道了MBR在20mg/L盐度冲击后的恢复研究(化工学报,2014,65(8):3212-3220)。存在问题是投加的硅藻土不具有离子交换能力,更为重要的是对于超过此盐度废水冲击的有效性未得到验证。
本发明提出了一种MBR受高盐度废水冲击后快速恢复的方法,结合MBR盐度冲击后污泥混合液特性及膜污染特点,提出了向MBR投加改性后的钙基膨润土,以最大限度减小盐度对混合液的冲击,以期以较低的成本,实现MBR运行效能的快速恢复。
发明内容
本发明的目的是,提出一种膜生物反应器受高盐度废水冲击后快速恢复的方法,以弥补现有技术的不足。
本发明通过以下技术方案予以实现:对膜生物反应器受高盐度废水冲击后进行快速恢复的方法,通过以下步骤完成:
(1)将钙基膨润土于马弗炉内以50℃/min的升温速率升至350~450℃,焙烧3h,冷却后研磨,经50目筛筛分备用;
(2)调整膜生物反应器的曝气量,控制反应器内溶解氧(DO)值在4~5mg/L,维持4h后测定膜生物反应器上清液中溶解性微生物代谢产物(SMP)浓度;
(3)向膜生物反应器内1次性投加活化后的钙基膨润土,投加量与上清液SMP质量浓度比为1-3/1;
(4)计算投加的钙基膨润土与污泥浓度(MLSS)的质量浓度比,依据此质量浓度比每天补充由于膜生物反应器排泥所损失的钙基膨润土的质量,当膜生物反应器对化学需氧量(CODcr)及氨氮(NH3-N)去除率均超过85%以上,认为MBR恢复正常,停止投加膨润土。
本发明的原理为:利用活化后钙基膨润土的离子交换容量,降低盐类物质对微生物的影响,通过钙基膨润土释放的钙离子来强化生物絮凝能力,提高混合液的可滤性。因为膨润土优良的吸附性能,可降低MBR内SMP浓度,减小膜过滤阻力。通过投加改性膨润土增加了MBR污泥颗粒粒径,也可增加膜表面泥饼层的孔隙率。所以经该方法处理后,提高了受冲击后MBR对有机物、氨氮及总磷的去除率,降低了膜污染速率,显著缩短了MBR恢复的时间。
本发明的优点以及产生的有益效果是:
(1)经该方法处理后,提高了MBR对有机物、氨氮及总磷的去除率,降低了膜污染速率,缩短了冲击后MBR恢复的时间。
(2)焙烧活化后的钙基膨润土投加至高盐度冲击后的MBR,一方面由于钙基膨润土通过离子交换作用,降低了盐类物质对微生物的影响,同时释放的钙离子可强化生物絮凝能力,提高混合液的可滤性;另一方面膨润土优良的吸附性能,降低了MBR内溶解性微生物代谢产物(SMP)浓度,减小了膜过滤阻力。
(3)投加改性膨润土增加了MBR污泥颗粒粒径,增加了膜表面泥饼层的孔隙率。
(4)本发明方法具有操作简单、成本低、运行可靠、无二次污染等优点。
附图说明
所示附图为不同盐度冲击下MBR恢复情况的对照图。
实施具体方式
下面结合附图并具体实施例,对本发明提出的方法作进一步的说明。需要说明的是下述实施例是叙述性的,而不是限定性的,不以此实施例限定本发明所要求的保护范围。
对膜生物反应器受高盐度废水冲击后进行快速恢复的方法,通过以下四个步骤完成:
(1)将钙基膨润土于马弗炉内以50℃/min的升温速率升至350~450℃,焙烧3h,冷却后研磨,经50目筛筛分备用;
(2)调整膜生物反应器的曝气量,控制反应器内DO值在4~5mg/L,维持4h后测定膜生物反应器上清液中SMP浓度;
(3)向膜生物反应器内1次性投加活化后的钙基膨润土,投加量与上清液SMP质量浓度比为1-3/1;
(4)计算投加的钙基膨润土与MLSS的质量浓度比,依据此比例每天补充由于膜生物反应器排泥所损失的钙基膨润土的质量,当膜生物反应器对CODcr及NH3-N去除率均超过85%以上,认为MBR恢复正常,停止投加膨润土。
本发明所述的高盐度废水是指水中的盐分含量范围在20~60g/L。
实施例1:
对照组所用的反应器(表中用CMBR)与投加改性膨润土用的反应器(表中用HMBR)其结构完全相同,反应器有效体积20L,污泥浓度波动范围为6750mg/L~7914mg/L。2套反应器的水力停留时间(HRT)及污泥停留时间(SRT)分别为6h及20d。生活污水进水CODcr为340~420mg/L,调整进水盐度为20g/L,维持此冲击负荷24h后恢复原来的进水水质。
(1)首先制备钙基膨润土:将钙基膨润土于马弗炉内以50℃/min升温至350℃焙烧3h,冷却后研磨经50目筛筛分备用;
(2)冲击后HMBR中DO值为2.3~2.8mg/L,调节HMBR曝气量,控制反应器内DO值在4mg/L,保持4h后测定MBR上清液中SMP浓度为137mg/L;
(3)按照改性钙基膨润土与SMP质量浓度为1:1投加,一次性投加膨润土的量为2.74g;
(4)依据反应器的SRT为20d,计算每天补充钙基膨润土的量为137mg。本实施例中由于HMBR对CODcr的去除率稳定在90%以上,因而以氨氮(NH3-N)去除率超过85%为标准,钙基膨润土连续补充投加3d。
由表1可见,本实施例显著缩短了高盐度冲击后MBR恢复时间,强化了出水水质,有效降低了膜污染速率。
表1 盐度为20g/L冲击24后2套反应器运行指标比较
实施例2:
本实施例中,所用2套反应器结构与实施例1相同。污泥浓度波动范围为7435~8329mg/L,稳定阶段运行参数:HRT为8h、SRT为20d,生活污水进水CODcr为376mg/L~428mg/L,调整进水盐度为40g/L,维持此冲击负荷24h后恢复原来的进水水质。
(1)钙基膨润土制备,将钙基膨润土于马弗炉内以50℃/min升温至400℃焙烧3h,冷却后研磨经50目筛筛分备用;
(2)冲击后HMBR中DO值为1.6~2.1mg/L,调节HMBR曝气量,控制反应器内DO值为4mg/L,保持4h后测定MBR上清液中SMP浓度为235mg/L;
(3)按改性钙基膨润土与SMP质量浓度为2:1投加,一次性投加膨润土的量为9.4g/L;
(4)依据反应器的SRT为20d,计算每天补充钙基膨润土的量为470mg。本实施例中由于HMBR对CODcr的去除率稳定在85%以上,因而以NH3-N去除率超过85%为标准,钙基膨润土连续补充投加5d。
由表2可见,与对照组反应器相比,本实施例的效果显著。
表2 盐度为40g/L冲击24后2套反应器运行指标比较
实施例3:
本实施例中,所用2套反应器结构及生活污水水质与实施例2相同。污泥浓度波动范围为6428~7436mg/L,运行参数:HRT为8h、SRT为20d,稳定运行30d后,调整进水盐度为60g/L,维持此冲击负荷24h后恢复原来的进水水质。
与实施例2不同之处是,钙基膨润土制备是在马弗炉内450℃焙烧3h,其他操作同实施例2。冲击后HMBR中DO值为1.2~1.6mg/L,调节HMBR曝气量,控制反应器内DO值为5mg/L,保持4h后测定MBR上清液中SMP浓度为315mg/L。按改性钙基膨润土与SMP质量浓度为3:1投加,一次性投加膨润土的量为18.9g;每天补充改性膨润土的量为945mg。当HMBR对CODcr及NH3-N去除率均超过85%以上,认为反应器恢复正常,停止投加膨润土,连续补充投加了9d。
由表3可见,与对照组反应器相比,本实施例的效果也很显著。
表3 盐度为60g/L冲击24后2套反应器运行指标比较

Claims (2)

1.膜生物反应器快速恢复方法,其特征在于:对膜生物反应器受高盐度废水冲击后进行快速恢复的方法通过以下步骤完成:
(1)将钙基膨润土于马弗炉内以50℃/min的升温速率升至350~450℃,焙烧3h,冷却后研磨,经50目筛筛分备用;
(2)调整膜生物反应器的曝气量,控制反应器内溶解氧值在4~5mg/L,维持4h后测定膜生物反应器上清液中溶解性微生物代谢产物浓度;
(3)向膜生物反应器内1次性投加活化后的钙基膨润土,投加量与上清液SMP质量浓度比为1-3/1;
(4)计算投加的钙基膨润土与污泥浓度的质量浓度比,依据此比例每天补充由于膜生物反应器排泥所损失的钙基膨润土的质量,当膜生物反应器对化学需氧量及氨氮去除率均超过85%以上,认为膜生物反应器恢复正常,停止投加膨润土。
2.按照权利要求1所述的膜生物反应器快速恢复方法,其特征是:所述的高盐度废水是指水中的盐分含量范围在20~60g/L。
CN201510136921.5A 2015-03-26 2015-03-26 膜生物反应器快速恢复方法 Active CN104803476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510136921.5A CN104803476B (zh) 2015-03-26 2015-03-26 膜生物反应器快速恢复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510136921.5A CN104803476B (zh) 2015-03-26 2015-03-26 膜生物反应器快速恢复方法

Publications (2)

Publication Number Publication Date
CN104803476A CN104803476A (zh) 2015-07-29
CN104803476B true CN104803476B (zh) 2016-08-10

Family

ID=53688745

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510136921.5A Active CN104803476B (zh) 2015-03-26 2015-03-26 膜生物反应器快速恢复方法

Country Status (1)

Country Link
CN (1) CN104803476B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014931A (en) * 1971-06-16 1977-08-02 Universal Oil Products Company Precoat for permeability separation systems
JP3260558B2 (ja) * 1994-07-21 2002-02-25 富士電機株式会社 間欠曝気式活性汚泥法の制御方法
CN103316592A (zh) * 2012-03-20 2013-09-25 天津工业大学 一种分离膜污染控制与清洗方法

Also Published As

Publication number Publication date
CN104803476A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Wang et al. Clogging mechanisms of constructed wetlands: A critical review
Aiyuk et al. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept
Sengar et al. Aerobic granulation technology: Laboratory studies to full scale practices
Zhang et al. Effects of coexisting Na+, Mg2+ and Fe3+ on nitrogen and phosphorus removal and sludge properties using A2O process
Zhao et al. Use of dewatered alum sludge as main substrate in treatment reed bed receiving agricultural wastewater: long-term trial
Johir et al. Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent
Zhou et al. Mainstream nitrogen separation and side-stream removal to reduce discharge and footprint of wastewater treatment plants
Kamilya et al. Nutrient pollution and its remediation using constructed wetlands: Insights into removal and recovery mechanisms, modifications and sustainable aspects
Yang et al. Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor
CN104787882B (zh) 一种低碳氮比污水反硝化深度脱氮的方法
Wu et al. Improvement of anaerobic biological treatment effect by catalytic micro-electrolysis for monensin production wastewater
CN102399045A (zh) 一种固定河湖底泥氮磷的复合药剂及其制备与使用方法
CN103755108B (zh) 一种城市生活污水的净化处理方法
PSG da Silva et al. Landfill leachate biological treatment: perspective for the aerobic granular sludge technology
Moges et al. Performance of biochar and filtralite as polishing step for on-site greywater treatment plant
Zhong et al. Performance evaluation of wastewater treatment using horizontal subsurface flow constructed wetlands optimized by micro-aeration and substrate selection
CN111995053B (zh) 一种基于粉末状镧基吸附剂同步强化生物化学除磷的a/a/o系统
CN117263388A (zh) 一种低成本折流式高效脱氮除磷湿地组合基质系统
CN104803476B (zh) 膜生物反应器快速恢复方法
Zhong et al. The use of vertical flow constructed wetlands for the treatment of hyper-eutrophic water bodies with dense cyanobacterial blooms
Zhao et al. Integrated coagulation-trickling filter–ultrafiltration processes for domestic wastewater treatment and reclamation
CN109824204B (zh) 快速高效启动并强化处理垃圾渗滤液的方法及系统
Pang et al. A novel subsurface flow constructed wetland system used in anvanced wastewater treatment for nutrient removal in a cold area
Xiang et al. The future prospect of China’s independent R&D technology (ITK) in water resources utilization and wastewater treatment
CN110182941A (zh) 一种高效除磷水滑石前驱体生物膜及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170926

Address after: 132000 No. 3, Shanghai Road, Yongji Economic Development Zone, Jilin, Jilin

Patentee after: JILIN FEITE ENVIRONMENTAL PROTECTION CO.,LTD.

Address before: Jilin City, Jilin province Changchun ship 132012 Camp Road No. 169

Patentee before: Northeast Dianli University

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Rapid recovery method of membrane bioreactor

Effective date of registration: 20220728

Granted publication date: 20160810

Pledgee: Jilin Yongji Rural Commercial Bank Co.,Ltd.

Pledgor: JILIN FEITE ENVIRONMENTAL PROTECTION CO.,LTD.

Registration number: Y2022220000048

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20160810

Pledgee: Jilin Yongji Rural Commercial Bank Co.,Ltd.

Pledgor: JILIN FEITE ENVIRONMENTAL PROTECTION CO.,LTD.

Registration number: Y2022220000048

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Rapid recovery method for membrane bioreactors

Granted publication date: 20160810

Pledgee: Jilin Bank Co.,Ltd. Yongji Branch

Pledgor: JILIN FEITE ENVIRONMENTAL PROTECTION CO.,LTD.

Registration number: Y2024220000003