CN104795112A - CaO2 doped UO2-10wt%Gd2O3 burnable poison and preparation method thereof - Google Patents

CaO2 doped UO2-10wt%Gd2O3 burnable poison and preparation method thereof Download PDF

Info

Publication number
CN104795112A
CN104795112A CN201510106346.4A CN201510106346A CN104795112A CN 104795112 A CN104795112 A CN 104795112A CN 201510106346 A CN201510106346 A CN 201510106346A CN 104795112 A CN104795112 A CN 104795112A
Authority
CN
China
Prior art keywords
cao
doping
mixed solution
preparation
burnable poison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510106346.4A
Other languages
Chinese (zh)
Other versions
CN104795112B (en
Inventor
王辉
潘小强
黄华伟
解怀英
尹昌耕
邱绍宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN201510106346.4A priority Critical patent/CN104795112B/en
Publication of CN104795112A publication Critical patent/CN104795112A/en
Application granted granted Critical
Publication of CN104795112B publication Critical patent/CN104795112B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/02Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect
    • G21C7/04Control of nuclear reaction by using self-regulating properties of reactor materials, e.g. Doppler effect of burnable poisons
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/18Manufacture of control elements covered by group G21C7/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

The invention discloses a CaO2 doped UO2-10wt%Gd2O3 burnable poison and a preparation method thereof. The CaO2 doped UO2-10wt%Gd2O3 is composed of the following components by weight: 0-0.5wt% of CaO2; 10wt% of Gd2O3; and the balance UO2. The invention also provides a method for preparation of the burnable poison. The method is simple in process and low in cost, and the prepared burnable poison has excellent grain size, sintering density and thermal conductivity. According to the invention, by doping CaO2 in UO2-10wt%Gd2O3 burnable poison, the gadolinium oxide concentration increased burnable poison still has excellent sintering density, grain size and thermal conductivity.

Description

A kind of CaO 2doping UO 2-10wt%Gd 2o 3burnable poison and preparation method thereof
Technical field
The invention belongs to nuclear industry fuel area, particularly, relate to a kind of CaO 2doping UO 2-10wt%Gd 2o 3burnable poison and preparation method thereof.
Background technology
In domestic and international nuclear power reactor, particularly extensively adopt UO in pressurized-water reactor nuclear power plant reactor core 2-Gd 2o 3burnable poison fuel controls reactor initial reactivity, realizes flattening core power distribution, improves burnup, extends the refulling cycle, thus reduce nuclear power operating cost, improve the safety and reliability run.The UO of current nuclear power plant 2-Gd 2o 3although the preparation method of burnable poison and commercial UO 2the manufacturing process of pellet is similar, but UO 2-Gd 2o 3burnable poison prepares difficulty but far above UO 2pellet.Under identical sintering process conditions, gadolinium oxide (Gd 2o 3) add and not only reduce UO 2the crystallite dimension of pellet, reduce UO 2the density of pellet, also exists simultaneously and reduces UO 2the problem of thermal conductivity, causing it to discharge more fission gas generation void swelling etc. at nuclear reactor run duration is topic, thus will affect security and the economy of nuclear reactor operation.
UO 2-Gd 2o 3in burnable poison, the concentration range of gadolinium oxide is generally 2-6wt%, and main cause has: 1, because the fuel recycle length of current nuclear power station and the restriction of design burn-up, calculated, draw Gd by reactor physics 2o 3content between 2-6wt%; 2, UO 2-Gd 2o 3the preparation of fuel has technical difficulty, is generally Gd 2o 3content is higher, and it is larger that difficulty prepared by fuel pellet, on commercial combustible poison core block manufactures, also requires Gd 2o 3content be no more than 6wt%.
But along with the increase of fuel recycle length, UO 2-Gd 2o 3the gadolinium oxide of higher concentration is just needed in burnable poison.But, along with the raising of gadolinium oxide concentration will reduce UO further 2-Gd 2o 3the sintered density of burnable poison, crystallite dimension and thermal conductivity.
Also have in prior art and use the good burnable poison of sol-gel technology processability, but use complex procedures prepared by sol-gel technology, require very strict to material degree of purity and environment temperature, to the technological parameter such as composition and ratio, temperature, pressure of raw material, all there is strict requirement and could form sol-gel, moreover, the cost of sol-gel process preparing product is very high, and the distance from laboratory study to commodity production is very large, and economy exists very large inferior position.
Therefore, the invention provides a kind of CaO that effectively can overcome above-mentioned shortcoming 2doping UO 2-10wt%Gd 2o 3the preparation method of burnable poison, the method preparation section is simple, and the technological parameter in preparation process limits few, and have better compatibility to environment temperature, and cost is low, easily expands preparation technology, economical, it mainly comprises the following steps:
1) UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4the preparation of mixed solution:
By U 3o 8, Gd 2o 3carry out prebake after,
Take the U after described prebake in proportion 3o 8and Gd 2o 3, the filtrate obtained after mixing, dissolving, filtration is UO 2(NO 3) 2with Gd (NO 3) 3mixed solution,
By CaO 2shared ratio takes appropriate calcium hydroxide, and add water stirring, dissolves obtain stable calcium nitrate (Ca (NO with appropriate red fuming nitric acid (RFNA) 3) 4) solution,
Obtained calcium nitrate solution is dissolved in above-mentioned UO 2(NO 3) 2with Gd (NO 3) 3mixed solution in form UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution;
2) saturated (NH 4) 2cO 3the preparation of solution:
Take appropriate hartshorn salt, add water stirring, is mixed with saturated (NH 4) 2cO 3solution;
3) precipitation reaction:
Get UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution, stir, be heated to temperature of reaction 40-45 DEG C, then limit adds saturated (NH 4) 2cO 3solution limit is stirred, and regulates the pH value of solution to remain on 6.5-7.5, reinforced terminate after to add absolute ethyl alcohol more complete to mixed solution precipitation reaction;
4) drying and calcining:
The sediment obtained after above-mentioned precipitation reaction is carried out filtration and obtains filter cake, dry 12-15h and obtain precursor powder after Washing of Filter Cake at 65-70 DEG C, by precursor powder in 550-600 DEG C of insulation 2.5-3.5h, cooling, grinding obtain UO 2-Gd 2o 3-CaO 2powder;
5) vacuum-sintering:
By repressed for the powder after above-mentioned drying and calcining shaping after, vacuum-sintering obtains CaO 2doping UO 2-10wt%Gd 2o 3burnable poison.
Adopt the CaO that described in the application, method prepares 2doping UO 2-10wt%Gd 2o 3burnable poison has the advantages such as inner homogeneous, purity and crystal structure are good, sintering temperature is low, good mechanical performance.
Wherein, described 1) UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4the preparation section step of mixed solution as follows:
By U 3o 82.5h is dried, by Gd at 350 DEG C 2o 3powder dries 2h at 550 DEG C,
Take the U after described prebake in proportion 3o 8and Gd 2o 3, put into dissolving tank, add appropriate deionized water, in whipping process, add appropriate red fuming nitric acid (RFNA) and dissolve, dissolve 20-30min, the filtrate obtained after filtration is UO 2(NO 3) 2with Gd (NO 3) 3mixed solution,
By CaO 2shared ratio takes appropriate calcium hydroxide, adds appropriate amount of deionized water, in whipping process, adds after appropriate red fuming nitric acid (RFNA) dissolves and obtains stable calcium nitrate solution,
The calcium nitrate solution of preparation is joined UO while stirring 2(NO 3) 2with Gd (NO 3) 3mixed solution in, stir 25-35min, form uniform UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution.
Wherein, described 3) process of precipitation reaction is as follows:
By UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution join in stillpot, stir, be heated to temperature of reaction 40-45 DEG C, then by saturated (NH 4) 2cO 3solution is added drop-wise in stillpot with the speed of 7-8ml/min, regulates the pH value of mixed solution, makes it remain on 6.5-7.5, dropping limit, limit is stirred, react fully, reinforced terminate after to add appropriate absolute ethyl alcohol more complete to mixed solution precipitation reaction, lose flowability.
Wherein, described 4) process of drying and calcining is as follows:
The sediment obtained after above-mentioned precipitation reaction is carried out filtration and obtains filter cake, filter cake, with after absolute ethanol washing 3-4 time, is dried 12-15h and is obtained precursor powder at 65-70 DEG C, and by precursor powder in 550-600 DEG C of insulation 2.5-3.5h, cooling, grinding obtain UO 2-Gd 2o 3-CaO 2powder.
Wherein, described 5) process conditions of vacuum-sintering are: sintering temperature is 1650 DEG C-1750 DEG C, temperature retention time is 3.5-4.5h, heating rate is 25 DEG C/min, vacuum tightness is 10 -2-10 -3pa, sintering atmosphere are H 2.
Wherein, the pressed by powder after described drying and calcining is shaped to the cylindrical powder briquetting of diameter 8mm, height 10mm, and typed pressure is 4.0ton/cm 2.
Wherein, in described precipitation reaction step, the absolute ethyl alcohol added plays stable and cleaning function, and it is more stable with mixed solution system, does not react, and absolute ethyl alcohol itself volatilizees than being easier to, and molecular weight is little, easily removes at follow-up drying process.
To sum up, the invention has the beneficial effects as follows: the application passes through at UO 2-Gd 2o 3adulterate in burnable poison CaO 2, the concentration of gadolinium oxide can be improved to 10wt%, and this burnable poison can also be kept to have good sintered density, crystallite dimension and thermal conductivity.
Summary of the invention
Technical matters to be solved by this invention is to provide a kind of UO of high oxidation gadolinium concentration 2-Gd 2o 3burnable poison, and this burnable poison has excellent sintered density, crystallite dimension and thermal conductivity.
The present invention's adopted technical scheme that solves the problem is:
A kind of CaO 2doping UO 2-10wt%Gd 2o 3, be made up of the component of following percentage by weight:
CaO 20-0.5wt%; Gd 2o 310wt%; Surplus is UO 2.
The present inventor is at UO 2-10wt%Gd 2o 3adulterate in burnable poison CaO 2, on the one hand, doping CaO 2burnable poison in gadolinium oxide concentration improve, can deepen nuclear reactor fuel burnup, increase fuel recycle length, improve the safety and reliability that nuclear reactor runs, on the other hand, adulterate in this burnable poison CaO 2, obviously can improve the phenomenon of sintered density, crystallite dimension and the thermal conductivity reduction brought owing to improving gadolinium oxide concentration.
And along with the raising of gadolinium oxide concentration, after 10wt%, very difficult in manufacture, bring the impact of negative neutron economy to reactor operation simultaneously.And the present inventor finds when gadolinium oxide concentration is 10wt%, doping CaO 2the various performance parameters of burnable poison all better, and be comparatively easy to manufacture.
The present inventor found through experiments UO 2-10wt%Gd 2o 3the crystallite dimension of burnable poison is about 6.5 μm, sintered density is about 10.42g/cm 3, thermal conductivity is about 0.047W/ (cm. DEG C); And the CaO that adulterates 2after UO 2-10wt%Gd 2o 3the crystallite dimension of burnable poison can reach 14.7 μm, sintered density can reach 10.52g/cm 3, thermal conductivity about can reach 0.051W/ (cm. DEG C); Can find out: doping CaO 2the crystallite dimension of burnable poison be about unadulterated more than 2 times, and sintered density and thermal conductivity are all more unadulterated significant difference (p < 0.05).This is due at UO 2-10wt%Gd 2o 3the CaO adulterated in burnable poison 2belong to active sintering agent, be beneficial to sintering, reduce energy of activation.Reduce the pinning effect of crystal boundary, thus crystallite dimension is suitably increased.The material of doping can form stable, interconnective high thermal conductance phase in combustible poison core block, thus is beneficial to thermal conductivity raising.
Wherein, the present inventor tests discovery: work as CaO 2when doping is more than 0.5wt%, CaO 2the precipitation of free phase is along with CaO 2doping to increase and further obvious, thus affect mechanics and the chemical property of burnable poison, and as the CaO that adulterate 2when content is 0.1wt%, the amplification of burnable poison sintered density is comparatively obvious, therefore, and described CaO 2the preferred 0.1-0.5wt% of content; And work as CaO 2when doping rises to 0.3wt%, the more unadulterated burnable poison of sintered density of burnable poison has significant difference (p < 0.05), therefore, and CaO 2doping is preferred 0.3-0.5wt% further; Best preferably CaO 2doping is 0.5wt%, and now, the sintered density of burnable poison is best.
CaO described in the application 2doping UO 2-10wt%Gd 2o 3the ripe powder metallurgical technique of tradition can be adopted to prepare, although this method looks that economy perhaps can be better, but it is more that the product inner homogeneous of preparation is difficult to control, densification difficulty, internal porosity and defect, and in preparation process, produce a large amount of dust, contaminated environment, damage personnel's is healthy.
Accompanying drawing explanation
Fig. 1 is doping Different Ca O 2the UO of content 2-10wt%Gd 2o 3the XRD diffracting spectrum of burnable poison, wherein, A is the CaO that undopes 2uO 2-10wt%Gd 2o 3burnable poison, B is doping 0.3wt%CaO 2uO 2-10wt%Gd 2o 3burnable poison, C is doping 0.5wt%CaO 2uO 2-10wt%Gd 2o 3burnable poison, D is doping 0.6wt%CaO 2uO 2-10wt%Gd 2o 3burnable poison;
Fig. 2 is doping Different Ca O 2the UO of content 2-10wt%Gd 2o 3the sintered density curve map of burnable poison.
Embodiment
Below in conjunction with embodiment, the present invention is described in further detail, but embodiments of the present invention are not limited thereto.
Embodiment 1
The first step, by pure for core level U 3o 8at 350 DEG C, dry 2.5h, be the Gd of 99.9% by purity 2o 3powder dries 2h at 550 DEG C.By UO 2-10wt%Gd 2o 3gd in burnable poison 2o 3shared massfraction, gets 89.6g UO respectively 2powder (89.6wt%), 10g Gd 2o 3powder (10wt%) puts into dissolving tank, adds a certain amount of deionized water toward it, under rapid mixing conditions, adds appropriate red fuming nitric acid (RFNA) and dissolves, after dissolving 25min, after leaching insolubles, form UO 2(NO 3) 2with Gd (NO 3) 3homogeneous mixture solotion.
With CaO 2the mass ratio accounting for prepared burnable poison is that 0.4wt% calculates, and takes 0.6g calcium hydroxide and puts into beaker, add a certain amount of deionized water toward it, under rapid mixing conditions, adds after appropriate red fuming nitric acid (RFNA) dissolves and obtains stable calcium nitrate solution.Under rapid stirring the calcium nitrate solution prepared slowly is added dropwise to UO 2(NO 3) 2with Gd (NO 3) 3mixed solution in, and constantly stir 20min, form uniform UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution.
The pure solid carbonic acid ammonium of analysis taking 80g puts into beaker, adds deionized water and continuous rapid stirring, be made into saturated (NH toward it 4) 2cO 3solution.
Second step: by UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution joins in stillpot, starts and stirs, be heated to temperature of reaction 40 DEG C, then by saturated (NH 4) 2cO 3solution is added drop-wise in stillpot with the speed of 7ml/min, regulates the pH value of mixed solution, makes it remain on about 7, drip while strong stirring, make it fully react, after reinforced end, add the absolute ethyl alcohol of 3ml again, after a period of time, mixed solution precipitation reaction is complete, loses flowability.Then carry out filtration to sediment and obtain filter cake, filter cake, with after absolute ethanol washing 3 times, is dried 13h and is obtained precursor powder at 65 DEG C.
3rd step, by dried precursor powder 560 DEG C of insulation 2.5h in batch-type furnace, takes out after air cooling and grinds and obtain UO 2-Gd 2o 3-CaO 2powder.Finally by repressed for the powder of drying and calcining shaping after (typed pressure is 4.0ton/cm 2, specimen size is: diameter is about 8mm, is highly about the cylindrical briquettes of 10mm) and be 2.8 × 10 in vacuum tightness -3pa, sintering temperature are: 1650 DEG C, temperature retention time is 4h, heating rate is 25 DEG C/min, sintering atmosphere is H 2condition under vacuum-sintering obtain fine and close CaO 2doping UO 2-10wt%Gd 2o 3burnable poison.
The solid density of above-mentioned obtained burnable poison is not less than 95.5%T.D, and crystallite dimension is 14.4 μm, and thermal conductivity is 0.050W/ (cm. DEG C).
Embodiment 2
The method identical with embodiment 1 is adopted to prepare CaO 2doping UO 2-10wt%Gd 2o 3burnable poison, the difference of itself and embodiment 1 is: CaO 2the content accounting for described burnable poison is 0.1wt%, and the amount that correspondence takes calcium hydroxide is 0.15g, UO 2powder is 89.9g (89.9wt%).
The solid density of above-mentioned obtained burnable poison is not less than 95.5%T.D, and crystallite dimension is 13.4 μm, and thermal conductivity is 0.049W/ (cm. DEG C).
Embodiment 3
The method identical with embodiment 1 is adopted to prepare CaO 2doping UO 2-10wt%Gd 2o 3burnable poison, the difference of itself and embodiment 1 is: CaO 2the content accounting for described burnable poison is 0.3wt%, and the amount that correspondence takes calcium hydroxide is 0.45g, UO 2powder is 89.7g (89.7wt%).
The solid density of above-mentioned obtained burnable poison is not less than 95.5%T.D, and crystallite dimension is 14.2 μm, and thermal conductivity is 0.050W/ (cm. DEG C).
Embodiment 4
The method identical with embodiment 1 is adopted to prepare CaO 2doping UO 2-10wt%Gd 2o 3burnable poison, the difference of itself and embodiment 1 is: CaO 2the content accounting for described burnable poison is 0.5wt%, and the amount that correspondence takes calcium hydroxide is 0.75g, UO 2powder is 89.5g (89.5wt%).
The solid density of above-mentioned obtained burnable poison is not less than 95.5%T.D, and crystallite dimension is 14.7 μm, and thermal conductivity is 0.051W/ (cm. DEG C).
Embodiment 5
The method identical with embodiment 1 is adopted to prepare CaO 2doping UO 2-10wt%Gd 2o 3burnable poison, the difference of itself and embodiment 1 is: CaO 2the content accounting for described burnable poison is 0.6wt%, and the amount that correspondence takes calcium hydroxide is 0.90g, UO 2powder is 89.4g (89.4wt%).
The solid density of above-mentioned obtained burnable poison is not less than 95.5%T.D, and crystallite dimension is 14.5 μm, and thermal conductivity is 0.051W/ (cm. DEG C).
Embodiment 6
The method identical with embodiment 1 is adopted to prepare UO 2-10wt%Gd 2o 3burnable poison, the difference of itself and embodiment 1 is: not containing CaO in described burnable poison 2.
The burnable poison prepared is carried out test and obtains Fig. 1-2, be respectively doping Different Ca O 2the UO of content 2-10wt%Gd 2o 3the XRD diffracting spectrum of burnable poison and sintered density figure.As can be seen from Figure 1, CaO 2micro-CaO has been had when being doped to 0.5wt% 2free phase is separated out, and CaO 2when doping is more than 0.5wt%, CaO 2the precipitation of free phase is along with CaO 2doping to increase and further obvious, therefore, the application selects the CaO that adulterates 2content is for being no more than 0.5wt%.
Consult Fig. 2, can find out, as the CaO of doping 2when content is 0.1wt%, the sintered density of burnable poison is significantly increased relative to the sintered density of unadulterated burnable poison, is increased to 10.48g/cm from 10.42 3, sintered density when reaching 0.30wt% to its content is about 10.52g/cm 3, compared to unadulterated, there is significant difference (p < 0.05).The CaO of doping 2when content continues to be increased to 0.5wt%, the sintered density of burnable poison reaches optimum, then along with CaO 2the increase of content, the sintered density of burnable poison is on a declining curve.Therefore, the CaO of doping 2the preferred 0.3-0.5wt% of content.
In sum, the invention provides a kind of UO of high oxidation gadolinium concentration 2-Gd 2o 3burnable poison, and at this UO 2-Gd 2o 3adulterate in burnable poison appropriate CaO 2, make the UO of high oxidation gadolinium concentration 2-Gd 2o 3burnable poison still can keep excellent sintered density, crystallite dimension and thermal conductivity.
As mentioned above, the present invention can be realized preferably.
The above; it is only preferred embodiment of the present invention; not any pro forma restriction is done to the present invention; according to technical spirit of the present invention; within the spirit and principles in the present invention; the any simple amendment that above embodiment is done, equivalently replace and improve, within the protection domain all still belonging to technical solution of the present invention.

Claims (9)

1. a CaO 2doping UO 2-10wt%Gd 2o 3, it is characterized in that, be made up of the component of following percentage by weight:
CaO 20-0.5wt%; Gd 2o 310wt%; Surplus is UO 2.
2. CaO according to claim 1 2doping UO 2-10wt%Gd 2o 3, it is characterized in that, described CaO 2content is 0.1-0.5wt%.
3. CaO according to claim 2 2doping UO 2-10wt%Gd 2o 3, it is characterized in that, described CaO 2content is 0.3-0.5wt%.
4. CaO according to claim 3 2doping UO 2-10wt%Gd 2o 3, it is characterized in that, described CaO 2content is 0.5wt%.
5. prepare the CaO according to any one of Claims 1-4 for one kind 2doping UO 2-10wt%Gd 2o 3method, it is characterized in that, comprise the following steps:
1) UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4the preparation of mixed solution:
By U 3o 8, Gd 2o 3carry out prebake after,
Take the U after described prebake in proportion 3o 8and Gd 2o 3, the filtrate obtained after mixing, dissolving, filtration is UO 2(NO 3) 2with Gd (NO 3) 3mixed solution,
By CaO 2shared ratio takes appropriate calcium hydroxide, and add water stirring, dissolves obtain stable calcium nitrate solution with appropriate red fuming nitric acid (RFNA),
Obtained calcium nitrate solution is dissolved in above-mentioned UO 2(NO 3) 2with Gd (NO 3) 3mixed solution in form UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution;
2) saturated (NH 4) 2cO 3the preparation of solution:
Take appropriate hartshorn salt, add water stirring, is mixed with saturated (NH 4) 2cO 3solution;
3) precipitation reaction:
Get UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution, stir, be heated to temperature of reaction 40-45 DEG C, then limit adds saturated (NH 4) 2cO 3solution limit is stirred, and regulates the pH value of solution to remain on 6.5-7.5, reinforced terminate after to add absolute ethyl alcohol more complete to mixed solution precipitation reaction;
4) drying and calcining:
The sediment obtained after above-mentioned precipitation reaction is carried out filtration and obtains filter cake, dry 12-15h and obtain precursor powder after Washing of Filter Cake at 65-70 DEG C, by precursor powder in 550-600 DEG C of insulation 2.5-3.5h, cooling, grinding obtain UO 2-Gd 2o 3-CaO 2powder;
5) vacuum-sintering:
By repressed for the powder after above-mentioned drying and calcining shaping after, vacuum-sintering obtains CaO 2doping UO 2-10wt%Gd 2o 3burnable poison.
6. CaO according to claim 5 2doping UO 2-10wt%Gd 2o 3preparation method, it is characterized in that, described 1) UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4the preparation section step of mixed solution as follows:
By U 3o 82.5h is dried, by Gd at 350 DEG C 2o 3powder dries 2h at 550 DEG C,
Take the U after described prebake in proportion 3o 8and Gd 2o 3, put into dissolving tank, add appropriate deionized water, in whipping process, add appropriate red fuming nitric acid (RFNA) and dissolve, dissolve 20-30min, the filtrate obtained after filtration is UO 2(NO 3) 2with Gd (NO 3) 3mixed solution,
By CaO 2shared ratio takes appropriate calcium hydroxide, adds appropriate amount of deionized water, in whipping process, adds after appropriate red fuming nitric acid (RFNA) dissolves and obtains stable calcium nitrate solution,
The calcium nitrate solution of preparation is joined UO while stirring 2(NO 3) 2with Gd (NO 3) 3mixed solution in, stir 25-35min, form uniform UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution.
7. CaO according to claim 5 2doping UO 2-10wt%Gd 2o 3preparation method, it is characterized in that, described 3) process of precipitation reaction is as follows:
By UO 2(NO 3) 2, Gd (NO 3) 3with Ca (NO 3) 4mixed solution join in stillpot, stir, be heated to temperature of reaction 40-45 DEG C, then by saturated (NH 4) 2cO 3solution is added drop-wise in stillpot with the speed of 7-8ml/min, regulates the pH value of mixed solution, makes it remain on 6.5-7.5, and dropping limit, limit is stirred, and reacts fully, reinforced terminate after to add appropriate absolute ethyl alcohol more complete to mixed solution precipitation reaction.
8. CaO according to claim 5 2doping UO 2-10wt%Gd 2o 3preparation method, it is characterized in that, described 4) process of drying and calcining is as follows:
The sediment obtained after above-mentioned precipitation reaction is carried out filtration and obtains filter cake, filter cake, with after absolute ethanol washing 3-4 time, is dried 12-15h and is obtained precursor powder at 65-70 DEG C, and by precursor powder in 550-600 DEG C of insulation 2.5-3.5h, cooling, grinding obtain UO 2-Gd 2o 3-CaO 2powder.
9. CaO according to claim 5 2doping UO 2-10wt%Gd 2o 3preparation method, it is characterized in that, described 5) process conditions of vacuum-sintering are: sintering temperature is 1650 DEG C-1750 DEG C, temperature retention time is 3.5-4.5h, heating rate is 25 DEG C/min, vacuum tightness is 10 -2-10 -3pa, sintering atmosphere are H 2.
CN201510106346.4A 2015-03-11 2015-03-11 A kind of CaO doping UO2 10wt%Gd2O3 burnable poisons and preparation method thereof Active CN104795112B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510106346.4A CN104795112B (en) 2015-03-11 2015-03-11 A kind of CaO doping UO2 10wt%Gd2O3 burnable poisons and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510106346.4A CN104795112B (en) 2015-03-11 2015-03-11 A kind of CaO doping UO2 10wt%Gd2O3 burnable poisons and preparation method thereof

Publications (2)

Publication Number Publication Date
CN104795112A true CN104795112A (en) 2015-07-22
CN104795112B CN104795112B (en) 2017-12-15

Family

ID=53559864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510106346.4A Active CN104795112B (en) 2015-03-11 2015-03-11 A kind of CaO doping UO2 10wt%Gd2O3 burnable poisons and preparation method thereof

Country Status (1)

Country Link
CN (1) CN104795112B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821186A (en) * 2015-03-11 2015-08-05 中国核动力研究设计院 MgO2 doped UO2-10wt%Gd2O3 burnable poison and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853176A (en) * 1988-07-05 1989-08-01 General Electric Company Hafnium stainless steel absorber rod for control rod
US5267290A (en) * 1992-06-30 1993-11-30 Combustion Engineering, Inc. Zirconium alloy absorber layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853176A (en) * 1988-07-05 1989-08-01 General Electric Company Hafnium stainless steel absorber rod for control rod
US5267290A (en) * 1992-06-30 1993-11-30 Combustion Engineering, Inc. Zirconium alloy absorber layer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J.H.HANDWERK等: "Ceramic Nuclear Fuels in the System UO2-ZO2-CaO", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
J.H.HANDWERK等: "Ceramic Nuclear Fuels in the System UO2-ZrO2-CaO", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
JAKOB ARBORELIUS等: "Advanced Doped UO2 Pellets in LWR Applications", 《JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY》 *
许奎等: "共沉淀法制备AUGdC的工艺研究", 《原子能科学技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821186A (en) * 2015-03-11 2015-08-05 中国核动力研究设计院 MgO2 doped UO2-10wt%Gd2O3 burnable poison and preparation method thereof
CN104821186B (en) * 2015-03-11 2017-10-24 中国核动力研究设计院 A kind of MgO doping UO210wt%Gd2O3Burnable poison and preparation method thereof

Also Published As

Publication number Publication date
CN104795112B (en) 2017-12-15

Similar Documents

Publication Publication Date Title
CN104466154A (en) Preparation method of lithium ion battery positive material nickel cobalt aluminum
CN108493435B (en) Lithium ion battery anode material Li (Ni)0.8Co0.1Mn0.1)1-xYxO2And preparation method
CN112803022B (en) Surface structure spinel-rock salt phase integrated lithium-rich material and preparation method thereof
CN112794369B (en) Preparation method and application of nano lithium cobalt oxide positive electrode material
CN101113010A (en) Method for preparing cerium oxide nano particle by auxiliary microwave
CN113314700B (en) Dual-action modified lithium ion Chi Gaonie anode material and preparation method thereof
CN110247107A (en) A kind of solid electrolyte, and its preparation method and application
CN112723427A (en) Ternary positive electrode precursor and preparation method and application thereof
CN106654401A (en) Bismuth ferrite/nickel hydroxide secondary alkali battery and preparation method therefor
CN102938460A (en) Aluminum-doped spinel manganese-based material and preparation method thereof
CN100480189C (en) Preparation of positive electrode material Li(1+x)V3O8 of lithium ion cell and doping method
CN103887081B (en) Nanocomposite material of nitrogen doped with graphene/zinc ferrite and preparation method thereof
CN111477948A (en) Preparation method of garnet type solid electrolyte and product
CN114520318A (en) High-nickel cobalt-free nickel tungsten lithium manganate positive electrode material for power battery and preparation method thereof
CN103346323A (en) Preparation method of carbon-coated lithium iron phosphate material with polystyrene microspheres and polyethylene glycol as carbon sources
CN105720242A (en) Method for modifying lithium ion battery cathode material
EP4113660A1 (en) Method for preparing material having composition gradient characteristic, and application in battery
CN107565123B (en) Nickel, cobalt and lithium manganate core-shell material gel and preparation method thereof
CN113903909A (en) Cobalt nano coating modified nickel-rich low-cobalt single crystal multi-element positive electrode material and preparation method thereof
CN105126852A (en) Dynamic ferrate oxygen storage material and application of dynamic ferrate oxygen storage material
CN104751903B (en) A kind of TiO2Adulterate UO2‑10wt%Gd2O3Burnable poison and preparation method thereof
CN102637887A (en) Low-temperature preparation method of oxidapatite-structure lanthanum germanium acid electrolyte material powder body
CN104795112A (en) CaO2 doped UO2-10wt%Gd2O3 burnable poison and preparation method thereof
CN103449811B (en) Co-precipitation preparation method of ZrO2/Gd203 composite ceramic material for nuclear power
CN106848253A (en) A kind of anode material for lithium-ion batteries Li2Mn1‑xMgxSiO4/ C and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant