CN104793640B - 极轴坐标系槽式集热双轴跟踪结构的控制方法 - Google Patents

极轴坐标系槽式集热双轴跟踪结构的控制方法 Download PDF

Info

Publication number
CN104793640B
CN104793640B CN201510169609.6A CN201510169609A CN104793640B CN 104793640 B CN104793640 B CN 104793640B CN 201510169609 A CN201510169609 A CN 201510169609A CN 104793640 B CN104793640 B CN 104793640B
Authority
CN
China
Prior art keywords
formula
ground
optically focused
board mount
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510169609.6A
Other languages
English (en)
Other versions
CN104793640A (zh
Inventor
刘立群
刘春霞
孔屹刚
孙志毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN201510169609.6A priority Critical patent/CN104793640B/zh
Publication of CN104793640A publication Critical patent/CN104793640A/zh
Application granted granted Critical
Publication of CN104793640B publication Critical patent/CN104793640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种极轴坐标系的槽式集热双轴跟踪结构的控制方法,属于太阳能热应用领域,其特征是在于其结构的控制方法是:(1)设定初始值;(2)计算n、δ;(3)计算ωsr、ωss、tss、tsr;(4)计算tz,tz≥tsr,是,执行(5),否,返回(4);(5)天阴,是,返回(5),否,执行(6);(6)碰到限位开关,是,结构停止,否,执行(7);(7)计算γs,调整αs、γs,执行(8);(8)比较R2、R2'、R2”、R2”',R2=R2'=R2”=R2”',是,保持αs、γs,执行(13),否,执行(9);(9)R2≠R2'≠R2”≠R2”',是,依次调整αs、γs,执行(13),否,执行(10);(10)R2=R2'≠R2”=R2”',是,调整αs,执行(13),否,执行(11);(11)R2=R2”≠R2'=R2”',是,结合S调整γs,执行(13),否,执行(12);(12)寻找Rmin,依次调整αs、γs,执行(13);(13)Δt结束,是,执行(14),否,返回(13);(14)tz≥tss,是,结构停止;否,执行(5)。

Description

极轴坐标系槽式集热双轴跟踪结构的控制方法
技术领域
本发明属于太阳能热应用技术领域,具体涉及一种槽式集热双轴跟踪结构的控制方法。
背景技术
目前,可再生能源的开发和利用日益得到各国政府的关注,在不久的将来通过真空集热器将太阳能转换成热能具有很大的开发潜力。据2004年欧盟联合研究中心预测,到本世纪末,太阳能的应用在整个世界能源供应中的比率将超过70%。现有的槽式集热双轴跟踪结构(以下将简称为“结构”)大多是基于地平坐标系的双轴跟踪方式,大都没有考虑太阳日升方位角、日落方位角、当地经度与时区经度间的经度差、太阳时角和真太阳时角间的误差等因素对太阳位置判断的影响,导致结构跟踪效率变差,输出效率降低;此外,没有考虑部分遮蔽的情况,导致结构输出效率降低;同时由于结构运行和公式计算误差导致预测太阳位置与实际太阳位置存在偏差。因此研究提供一种基于极轴坐标系的槽式集热双轴跟踪结构的控制方法是十分必要的。
发明内容
本发明目的是提供一种极轴坐标系槽式集热双轴跟踪结构的控制方法,可有效地提高槽式集热结构跟踪精度。
本发明是这样实现的,如图1所示,极轴坐标系槽式集热双轴跟踪结构包括有槽式聚光板1、第一、第二、第三、第四光敏传感器2、2'、2”、2”'、上部支架3、左右上部弯管4、4'、聚光板支架5、真空集热管6、热存储器7、上、下部底座8、8'、上下水管道9、10、水泵11、上部丝杆轴12、上部蜗轮蜗杆减速器13、上部步进电机14、上部支撑平台15、倾斜丝杆轴16、倾斜轴步进电机18、倾斜轴蜗轮蜗杆减速器19、倾斜平台23、摆动支杆25、下部支座28、安装在下部底座8'上的滑动轨道29及移动轴承座30;其结构是可移动轴承座30通过定位螺钉31调整在滑动轨道29内的位置,摆动支杆25上端通过上部支撑销轴21与固定在倾斜平台23上的固定支座20相铰接,摆动支杆25下端通过下部支撑销轴21”与可移动轴承座30相铰链,下部支座28固定在下部底座8'上,下部支座28的上部通过中部支撑销轴21'与固定在倾斜平台23下面的下部轴承座24相铰接,安装在倾斜平台23上的倾斜轴步进电机18和倾斜轴蜗轮蜗杆减速器19带动倾斜丝杆轴16转动,倾斜丝杆轴16通过上下轴承座17、17’支撑在倾斜平台23上,倾斜丝杆轴16的下端安装有编码器32,上部支撑平台15下部通过穿通孔35与倾斜丝杆轴16固定连接,上部蜗轮蜗杆减速器13和上部步进电机14安装在上部支撑平台15上,聚光板支架5与上部蜗轮蜗杆减速器13和上部步进电机14带动的上部丝杆轴12固定连接,槽式聚光板1安装在聚光板支架5上,槽式聚光板1的四角处分别安装有第一、第二、第三、第四光敏传感器2、2'、2”、2”',真空集热管6安装在上部支架3上,上部支架3安装在聚光板支架5上,真空集热管6左右端分别通过上下水管道9、10与热存储器7连通,槽式聚光板1上的光线汇聚到真空集热管6上,上、下部底座8、8'通过通孔27、27'固定于地面。本发明特征在于对上述结构的控制方法是:
首先通过调节可移动轴承座30在滑动轨道29内的位置确定摆动支杆25与地平面的夹角为θ=φ,φ是当地维度。判断某一天是一年中的第n天,n为正整数,根据式(1)计算出太阳赤纬角δ,则聚光板支架5与地面的倾角αs可由式(2)得到,式(2)中的正负号取春夏为正,秋冬为负,太阳方位角γs可由式(3)得到。
αs=θ±δ (2)
其中ω是太阳时角,中午12点为0°,上午为负,下午为正,每小时的时角为15°。
由于地球围绕太阳的运行轨道是椭圆形轨道,因此真太阳时角ωz与太阳时角ω间存在误差。真太阳时角ωz可由式(4)、(5)、(6)计算得到,然后将式(3)中的太阳时角ω用真太阳时角ωz代替。
E=9.87 sin 2B-7.53 cos B-1.5 sin B (5)
其中由式(7)得到时钟时间t,t=12点时ω=0,L为当地的经度,Ls为当地标准时间所在地的经度,由于我国位于东半球,所以式(4)中的正负号应取正号,则真太阳时间tz可由式(8)得到。
每天的日出和日落的方位角可由式(9)得到,其中日出方位角ωsr=-ωs,日落方位角ωss=ωs,则每天的日出日落时刻可由式(10)和(11)得到。
ωs=arccos(-tanφtanδ) (9)
由于公式计算和结构运行都会存在误差,此外,结构在运行过程中可能会部分遮敝,因此,在槽式聚光板1上安装有第一、第二、第三、第四光敏传感器2、2'、2”、2”',在倾斜丝杆轴16上安装有编码器32,分别对第一、第二、第三、第四光敏传感器2、2'、2”、2”'的电阻值R2、R2'、R2”、R2'进行比较:
如果,R2=R2'=R2”=R2”',则说明无极轴误差且槽式聚光板没有被部分遮蔽;
如果R2≠R2'≠R2”≠R2”',则说明聚光板支架5与地面的倾角αs和结构的太阳方位角γs均有误差,首先通过上部蜗轮蜗杆减速器13和上部步进电机14调整聚光板支架5与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器32的角度信号S,通过倾斜轴步进电机18和倾斜轴蜗轮蜗杆减速器19调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',即R2=R2'=R2”=R2”'
如果R2≠R2”,但R2=R2'和R2”=R2”',则说明聚光板支架5与地面的倾角αs有误,判断R2与R2”的大小,使聚光板支架5与地面的倾角αs向电阻值小的一侧运行,直到R2=R2'=R2”=R2”'
如果,R2≠R2',但R2=R2”和R2'=R2”',则说明结构的太阳方位角γs有误,判断R2与R2'的大小,使结构的太阳方位角γs向电阻值小的一侧运行,结合编码器32的角度信号S,使得R2=R2'=R2”=R2”'
如果,突然出现四个光敏电阻值中三个相等,一个不等的情况(例如R2=R2'=R2”≠R2”'),则说明出现了部分遮蔽情况,判断四个电阻值那个最小,使聚光板支架5与地面的倾角αs和结构的太阳方位角γs向电阻值最小的一侧运行,首先调整聚光板支架5与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器32的角度信号S,调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',即R2=R2'=R2”=R2”'
为了防止误动作对结构的损害,在倾斜平台23上安装有限位开关22、当上部蜗轮蜗杆减速器13碰到限位开关22,结构停止。
上述控制方法的实施步骤如图3所示,是:
步骤一、根据结构精度要求确定结构最小运行角度Δ,确定每次运行间隔时间Δt,当地经度L和维度φ,当地标准时间所在地的经度Ls,确定摆动支杆25与地平面的夹角为θ,水泵流速V,采样编码器32的角度信号S;
步骤二、计算某一天在一年中的第n天,由公式(1)计算出当天的太阳赤纬角δ;
步骤三、根据太阳赤纬角δ和当地维度φ,由公式(2)得到聚光板支架5与地面的倾角αs,由公式(9)得到当天的日出方位角ωsr和日落方位角ωss,由公式(10)和(11)得到当天的日出时刻tsr和日落时刻tss
步骤四、根据时钟时间由公式(8)计算真太阳时间tz,判断真太阳时间tz是否大于等于日出时刻tsr,是,执行步骤五;否,返回步骤四;
步骤五、根据第一、第二、第三、第四光敏传感器判断是否阴天,是,返回步骤五;否,执行步骤六;
步骤六、判断是否碰到了限位开关22,是,结构停止,否,执行步骤七;
步骤七、根据真太阳时间由公式(3)计算出太阳方位角γs,根据Δ调整聚光板支架5与地面的倾角αs和结构的太阳方位角γs,执行步骤八;
步骤八、比较R2、R2'、R2”、R2”',判断R2=R2'=R2”=R2”',是,保持聚光板支架5与地面的倾角αs和结构的太阳方位角γs,执行步骤十三;否,执行步骤九;
步骤九、判断R2≠R2'≠R2”≠R2”',是,根据Δ,依次调整聚光板支架5与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器32的角度信号S,调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',执行步骤十三;否,执行步骤十;
步骤十、判断是否R2=R2'≠R2”=R2”',是,根据Δ调整聚光板支架5与地面的倾角αs使得R2=R2'=R2”=R2”',执行步骤十三;否,执行步骤十一;
步骤十一、判断是否R2=R2”≠R2'=R2”',是,结合编码器32的角度信号S,根据Δ调整结构的太阳方位角γs,使得R2=R2'=R2”=R2”',执行步骤十三;否,执行步骤十二;
步骤十二、寻找最小阻值Rmin,根据Δ调整聚光板支架5与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器32的角度信号S,调整结构的太阳方位角γs,使得R2=R2'=R2”=R2”',执行步骤十三
步骤十三、判断运行间隔时间Δt是否结束,是,执行步骤十四;否,等待行间隔时间Δt结束,返回步骤十三;
步骤十四、判断真太阳时间tz是否大于等于日落时刻,是,结构停止,否,返回执行步骤五;
本发明与现有技术相比,具有以下优点和积极效果:①与现有技术比较,由于控制方法中的结构采用了极轴坐标结构,可以减少结构在极轴方向的运行次数,延长了就寿命;②由于在结构上安装了第一、第二、第三、第四光敏传感器和编码器,提高了结构的跟踪精度;③控制方法中采用了部分遮蔽的跟踪控制方法,提高了结构在部分遮敝情况下的输出功率;④结构简单、控制方便、成本低廉、性价比高。
附图说明
图1为本发明结构示意图;
图2为本发明上部支撑平台15结构示意图
图3为本发明控制方法流程图;
图4为本发明智能控制法与传统计算太阳位置跟踪法输出对比图;
图中:1—槽式聚光板,2、2'、2”、2”'—第一、第二、第三、第四光敏传感器,3—上部支架,4、4'—左右弯管,5—聚光板支架,6—真空集热管,7—热存储器,8、8'—上、下部底座,9—上水管道,10—下水管道,11—水泵,12—上部丝杆轴,13—上部蜗轮蜗杆减速器,14—上部步进电机,15—上部支撑平台,16—倾斜丝杆轴,17、17'—上下轴承座,18—倾斜轴步进电机,19—倾斜轴蜗轮蜗杆减速器,20—固定支座,21、21'、21”—上、中、下部支撑销轴,22—限位开关,23—倾斜平台,24—下部轴承座,25—摆动支杆,26—螺母,27、27'—通孔,28—下部支座,29—滑动轨道,30—移动轴承座,31—定位螺钉,32—编码器,33-上部平台,34-金具,35—穿通孔。
具体实施方式
如图1所示为本实施例的结构示意图,选取上部步进电机14和倾斜轴步进电机18的额定功率为200W,额定电压为50V,额定电流为4A,结构上安装的槽式聚光板最大输出功率为1000W,齿数比为50:1;选定光敏电阻为CdS光敏电阻。
以上海2013年9月22日下午15点为例,其控制方法步骤为(1)设定的最小运行角度Δ=0.1°和每次运行间隔时间Δt=5分钟,当地经度和纬度分别为121.48°和31.2°,当地标准时间所在地的经度(即北京的经度)为116.4°,确定摆动支杆25与地平面的夹角为θ=φ=31.2°,水泵流速为0.01m/s,采样编码器32的角度信号S为0°,执行步骤(2);(2)确定9月22日为一年中的第266天,由公式(1)计算的太阳赤纬角为δ=-0.8966°,执行步骤(3);(3)根据太阳赤纬角δ=-0.8966°和当地维度φ=31.2°,由公式(2)得到聚光板支架5与地面的倾角αs=32.0966°,由公式(9)得到9月22日的日出和日落时角分别为ωsr=-89.5°和ωss=89.5°,由公式(10)和(11)得到日出时刻和日落时刻分别为tsr=6.03和tss=17.97小时,执行步骤(4);(4)由公式(8)计算的真太阳时间为tz=14.72小时,大于日出时刻,执行步骤(5);(5)没有阴天,执行步骤(6);(6)没有碰到限位开关22,执行步骤(7);(7)由公式(3)计算出太阳方位角γs=58.2°,调整聚光板支架5与地面的倾角αs=32.0966°和结构的太阳方位角γs=58.2°,执行步骤(8);(8)比较第一、第二、第三、第四光敏传感器2、2’、2”、2”’的电阻值R2、R2'、R2”、R2”',判断R2=R2'=R2”=R2”',不成立,执行步骤(9);(9)判断第一、第二、第三、第四光敏传感器2、2’、2”、2”’的电阻值R2≠R2'≠R2”≠R2”',不成立,执行步骤(10);(10)判断第一、第二、第三、第四光敏传感器2、2’、2”、2”’的电阻值R2=R2'≠R2”=R2”',成立,调整聚光板支架5与地面的倾角αs=32.12°,使得R9=R10=R11=R12,执行步骤(13);(13)运行间隔时间Δt已结束,执行步骤(14);(14)判断真太阳时间tz小于日落时刻,返回执行步骤(5)。
其运行结果与传统计算太阳位置跟踪法比较如图4所示。
可见本发明在一天中的任意时刻达到基于极轴坐标的槽式集热双轴跟踪结构的跟踪精度,且减少结构在极轴方向的运行次数,延长了结构寿命,有效克服太阳被部分遮敝的影响,提高结构上安装的槽式集热结构的输出功率。

Claims (1)

1.一种极轴坐标系槽式集热双轴跟踪结构的控制方法,极轴坐标系槽式集热双轴跟踪结构包括有槽式聚光板(1)、第一、第二、第三、第四光敏传感器(2、2'、2”、2”')、上部支架(3)、左右上部弯管(4、4')、聚光板支架(5)、真空集热管(6)、热存储器(7)、上、下部底座(8、8')、上下水管道(9、10)、水泵(11)、上部丝杆轴(12)、上部蜗轮蜗杆减速器(13)、上部步进电机(14)、上部支撑平台(15)、倾斜丝杆轴(16)、倾斜轴步进电机(18)、倾斜轴蜗轮蜗杆减速器(19)、倾斜平台(23)、摆动支杆(25)、下部支座(28)、安装在下部底座(8')上的滑动轨道(29)及移动轴承座(30),其结构是移动轴承座(30)通过定位螺钉(31)调整在滑动轨道(29)内的位置,摆动支杆(25)上端通过上部支撑销轴(21)与固定在倾斜平台(23)下面的固定支座(20)相铰接,摆动支杆(25)下端通过下部支撑销轴(21”)与移动轴承座(30)相铰接,下部支座(28)固定在下部底座(8')上,下部支座(28)的上部通过中部支撑销轴(21')与固定在倾斜平台(23)下面的下部轴承座(24)相铰接,安装在倾斜平台(23)上的倾斜轴步进电机(18)和倾斜轴蜗轮蜗杆减速器(19)带动倾斜丝杆轴(16)转动,在倾斜平台(23)上面安装有对上部支撑平台(15)起限位作用的限位开关(22),倾斜丝杆轴(16)通过上下轴承座(17、17’)安装在倾斜平台(23)上,倾斜丝杆轴(16)的下端安装有编码器(32),上部支撑平台(15)下部通过穿通孔(35)与倾斜丝杆轴(16)固定连接,上部蜗轮蜗杆减速器(13)和上部步进电机(14)安装在上部支撑平台(15)上,聚光板支架(5)与上部蜗轮蜗杆减速器(13)和上部步进电机(14)带动的上部丝杆轴(12)固定连接,槽式聚光板(1)安装在聚光板支架(5)上,槽式聚光板(1)的四角处分别安装有第一、第二、第三、第四光敏传感器(2、2'、2”、2”'),真空集热管(6)安装在上部支架(3)上,上部支架(3)安装在聚光板支架(5)上,真空集热管(6)左右端分别通过上下水管道(9)、(10)与热存储器(7)连通,槽式聚光板(1)上的光线汇聚到真空集热管(6)上,上、下部底座(8、8')通过通孔(27、27')固定于地面上;
其特征在于上述结构的控制方法是:首先通过调节移动轴承座(30)在滑动轨道(29)内的位置确定摆动支杆(25)与地平面的夹角为θ=φ,φ是当地维度;判断某一天是一年中的第n天,n为正整数,根据式(1)计算出太阳赤纬角δ,则聚光板支架(5)与地面的倾角αs可由式(2)得到,式(2)中的正负号取春夏为正,秋冬为负,太阳方位角γs可由式(3)得到:
αs=θ±δ (2)
sinγ s = c o s δ s i n ω cosα s - - - ( 3 )
其中ω是太阳时角,中午12点为0°,上午为负,下午为正,每小时的时角为15°,
由于地球围绕太阳的运行轨道是椭圆形轨道,因此真太阳时角ωz与太阳时角ω间存在误差;真太阳时角ωz可由式(4)、(5)、(6)计算得到,然后将式(3)中的太阳时角ω用真太阳时角ωz代替,
E=9.87sin 2B-7.53cos B-1.5sin B (5)
B = 360 ( n - 81 ) 364 - - - ( 6 )
其中由式(7)得到时钟时间t,t=12点时ω=0,L为当地的经度,Ls为当地标准时间所在地的经度,由于我国位于东半球,所以式(4)中的正负号应取正号,则真太阳时间tz可由式(8)得到,
t = ( ω 15 ) + 12 - - - ( 7 )
t z = ( ω z 15 ) + 12 - - - ( 8 )
每天的日出和日落的方位角可由式(9)得到,其中日出方位角ωsr=-ωs,日落方位角ωss=ωs,则每天的日出日落时刻可由式(10)和(11)得到:
ωs=arccos(-tanφtanδ) (9)
t s r = ( ω s r 15 ) + 12 - - - ( 10 )
t s s = ( ω s s 15 ) + 12 - - - ( 11 )
由于公式计算和结构运行都会存在误差,此外,结构在运行过程中可能会部分遮敝,因此,在槽式聚光板(1)上安装有第一、第二、第三、第四光敏传感器(2、2'、2”、2”'),在倾斜丝杆轴(16)上安装有编码器(32),分别对第一、第二、第三、第四光敏传感器(2、2'、2”、2”')的电阻值R2、R2'、R2”、R2'进行比较:
如果,R2=R2'=R2”=R2”',则说明无极轴误差且槽式聚光板没有被部分遮蔽;
如果R2≠R2'≠R2”≠R2”',则说明聚光板支架(5)与地面的倾角αs和结构的太阳方位角γs均有误差,首先通过上部蜗轮蜗杆减速器(13)和上部步进电机(14)调整聚光板支架(5)与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器(32)的角度信号S,通过倾斜轴步进电机(18)和倾斜轴蜗轮蜗杆减速器(19)调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',即R2=R2'=R2”=R2”'
如果R2≠R2”,但R2=R2'和R2”=R2”',则说明聚光板支架(5)与地面的倾角αs有误,判断R2与R2”的大小,使聚光板支架(5)与地面的倾角αs向电阻值小的一侧运行,直到R2=R2'=R2”=R2”'
如果,R2≠R2',但R2=R2”和R2'=R2”',则说明结构的太阳方位角γs有误,判断R2与R2'的大小,使结构的太阳方位角γs向电阻值小的一侧运行,结合编码器(32)的角度信号S,使得R2=R2'=R2”=R2”'
如果,突然出现四个光敏电阻值中三个相等,一个不等的情况,则说明出现了部分遮蔽情况,判断四个电阻值哪个最小,使聚光板支架(5)与地面的倾角αs和结构的太阳方位角γs向电阻值最小的一侧运行,首先调整聚光板支架(5)与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器(32)的角度信号S,调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',即R2=R2'=R2”=R2”'
上述控制方法的实施步骤是:
步骤一、根据结构精度要求确定结构最小运行角度Δ,确定每次运行间隔时间Δt,当地经度L和维度φ,当地标准时间所在地的经度Ls,确定摆动支杆(25)与地平面的夹角为θ,水泵流速V,采样编码器(32)的角度信号S;
步骤二、计算某一天在一年中的第n天,由公式(1)计算出当天的太阳赤纬角δ;
步骤三、根据太阳赤纬角δ和当地维度φ,由公式(2)得到聚光板支架(5)与地面的倾角αs,由公式(9)得到当天的日出方位角ωsr和日落方位角ωss,由公式(10)和(11)得到当天的日出时刻tsr和日落时刻tss
步骤四、根据时钟时间由公式(8)计算真太阳时间tz,判断真太阳时间tz是否大于等于日出时刻tsr,是,执行步骤五;否,返回步骤四;
步骤五、根据第一、第二、第三、第四光敏传感器判断是否阴天,是,返回步骤五;否,执行步骤六;
步骤六、判断是否碰到了限位开关(22),是,结构停止,否,执行步骤七;
步骤七、根据真太阳时间由公式(3)计算出太阳方位角γs,根据Δ调整聚光板支架(5)与地面的倾角αs和结构的太阳方位角γs,执行步骤八;
步骤八、比较R2、R2'、R2”、R2”',判断R2=R2'=R2”=R2”',是,保持聚光板支架(5)与地面的倾角αs和结构的太阳方位角γs,执行步骤十三;否,执行步骤九;
步骤九、判断R2≠R2'≠R2”≠R2”',是,根据Δ,依次调整聚光板支架(5)与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器(32)的角度信号S,调整结构的太阳方位角γs,使得R2=R2'、R2”=R2”',执行步骤十三;否,执行步骤十;
步骤十、判断是否R2=R2'≠R2”=R2”',是,根据Δ调整聚光板支架(5)与地面的倾角αs使得R2=R2'=R2”=R2”',执行步骤十三;否,执行步骤十一;
步骤十一、判断是否R2=R2”≠R2'=R2”',是,结合编码器(32)的角度信号S,根据Δ调整结构的太阳方位角γs,使得R2=R2'=R2”=R2”',执行步骤十三;否,执行步骤十二;
步骤十二、寻找最小阻值Rmin,根据Δ调整聚光板支架(5)与地面的倾角αs使得R2=R2”、R2'=R2”',然后结合编码器(32)的角度信号S,调整结构的太阳方位角γs,使得R2=R2'=R2”=R2”',执行步骤十三;
步骤十三、判断运行间隔时间Δt是否结束,是,执行步骤十四;否,等待行间隔时间Δt结束,返回步骤十三;
步骤十四、判断真太阳时间tz是否大于等于日落时刻,是,结构停止,否,返回执行步骤五。
CN201510169609.6A 2015-04-10 2015-04-10 极轴坐标系槽式集热双轴跟踪结构的控制方法 Expired - Fee Related CN104793640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510169609.6A CN104793640B (zh) 2015-04-10 2015-04-10 极轴坐标系槽式集热双轴跟踪结构的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510169609.6A CN104793640B (zh) 2015-04-10 2015-04-10 极轴坐标系槽式集热双轴跟踪结构的控制方法

Publications (2)

Publication Number Publication Date
CN104793640A CN104793640A (zh) 2015-07-22
CN104793640B true CN104793640B (zh) 2017-07-25

Family

ID=53558524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510169609.6A Expired - Fee Related CN104793640B (zh) 2015-04-10 2015-04-10 极轴坐标系槽式集热双轴跟踪结构的控制方法

Country Status (1)

Country Link
CN (1) CN104793640B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108951024B (zh) * 2018-08-02 2020-12-01 郑州航空工业管理学院 共享智能防尘晒被机及其晒被方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913074B1 (ko) * 2008-09-10 2009-08-21 (주) 파루 고효율 집광용 태양광 추적 장치 및 그 방법
CN202758247U (zh) * 2012-01-14 2013-02-27 燕山大学 一种具有聚光器的太阳能自动追光系统
CN103123494A (zh) * 2011-11-18 2013-05-29 西安博昱新能源有限公司 一种用于跟踪小角度变化的角度微调装置
CN203325925U (zh) * 2013-05-29 2013-12-04 上海电机学院 一种太阳能电池板自动调节装置
CN103809617A (zh) * 2014-03-11 2014-05-21 太原科技大学 光伏发电双轴跟踪系统的控制方法
CN103853174A (zh) * 2012-11-28 2014-06-11 飞秒光电科技(西安)有限公司 一种槽式发电跟踪机构的控制装置
CN103941758A (zh) * 2014-03-27 2014-07-23 夏之秋 一种新型双轴跟踪太阳光照的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100913074B1 (ko) * 2008-09-10 2009-08-21 (주) 파루 고효율 집광용 태양광 추적 장치 및 그 방법
CN103123494A (zh) * 2011-11-18 2013-05-29 西安博昱新能源有限公司 一种用于跟踪小角度变化的角度微调装置
CN202758247U (zh) * 2012-01-14 2013-02-27 燕山大学 一种具有聚光器的太阳能自动追光系统
CN103853174A (zh) * 2012-11-28 2014-06-11 飞秒光电科技(西安)有限公司 一种槽式发电跟踪机构的控制装置
CN203325925U (zh) * 2013-05-29 2013-12-04 上海电机学院 一种太阳能电池板自动调节装置
CN103809617A (zh) * 2014-03-11 2014-05-21 太原科技大学 光伏发电双轴跟踪系统的控制方法
CN103941758A (zh) * 2014-03-27 2014-07-23 夏之秋 一种新型双轴跟踪太阳光照的装置

Also Published As

Publication number Publication date
CN104793640A (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
CN103809617B (zh) 光伏发电双轴跟踪系统的控制方法
Yao et al. A multipurpose dual-axis solar tracker with two tracking strategies
CN201479045U (zh) 东西方向向日水平轴单轴跟踪系统
CN201417782Y (zh) 改善太阳能光伏电池组件发电效率的机构
CN102566587A (zh) 一种光伏组跟踪装置
CN105958930A (zh) 一种智慧型太阳跟踪器控制系统及其跟踪支架
JP2010010543A (ja) 太陽光発電装置のトラッキングシステム
CN104793639B (zh) 极轴坐标系蝶式发电双轴跟踪结构的控制方法
CN2791552Y (zh) 基于跟踪姿态反馈的太阳跟踪装置
CN103092215B (zh) 双轴跟踪太阳位置装置及其预测扰动控制方法
CN104793640B (zh) 极轴坐标系槽式集热双轴跟踪结构的控制方法
CN104914881B (zh) 基于极轴的光伏发电双轴跟踪结构的控制方法
Tang et al. Installation design of solar panels with seasonal adjustment of tilt-angles
CN101777856B (zh) 利用光感差的光伏跟踪装置及基于网络的监控方法
CN201956932U (zh) 一种光伏组跟踪装置
CN103809616B (zh) 适于部分遮蔽的太阳位置双轴跟踪系统结构的控制方法
CN104808698B (zh) 基于极轴的碟式发电双轴跟踪结构的控制方法
CN104793641B (zh) 极轴坐标系光伏发电双轴跟踪结构的控制方法
CN104793642B (zh) 基于极轴的槽式集热双轴跟踪结构的控制方法
CN201622470U (zh) 一种节能环保型太阳光跟踪装置
CN104238577B (zh) 太阳能发电板组的双轴数控定位方法及系统
CN204790584U (zh) 太阳电池方阵自动跟踪装置
CN207380562U (zh) 一种光伏板追日装置
CN102111091B (zh) 太阳能发电树及控制方法
Zhengxi et al. The control method and design of photovoltaic tracking system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170725

Termination date: 20200410

CF01 Termination of patent right due to non-payment of annual fee