CN104793253A - Airborne electromagnetic data denoising method based on mathematical morphology - Google Patents

Airborne electromagnetic data denoising method based on mathematical morphology Download PDF

Info

Publication number
CN104793253A
CN104793253A CN201510193706.9A CN201510193706A CN104793253A CN 104793253 A CN104793253 A CN 104793253A CN 201510193706 A CN201510193706 A CN 201510193706A CN 104793253 A CN104793253 A CN 104793253A
Authority
CN
China
Prior art keywords
morphological
signal
structural elements
filtering
closing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510193706.9A
Other languages
Chinese (zh)
Other versions
CN104793253B (en
Inventor
于生宝
李齐
高明亮
刘伟宇
陈旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510193706.9A priority Critical patent/CN104793253B/en
Publication of CN104793253A publication Critical patent/CN104793253A/en
Application granted granted Critical
Publication of CN104793253B publication Critical patent/CN104793253B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

本发明涉及一种基于数学形态学的航空电磁数据去噪方法,通过试验获取航空电磁探测数据,采用三角形结构元素与半圆形结构元素相结合,对航空电磁数据进行自适应多尺度复合形态滤波:先根据原始信号中相邻峰值间隔的最小值和最大值确定结构元素的长度范围并以此确定相应的分析尺度大小K;再根据信号峰值的最小值和最大值确定高度范围;采用各结构元素集对原始信号进行复合形态运算并取平均值作为输出结果。本发明提出的自适应多尺度复合形态滤波方法克服了传统形态滤波结构元素选取随机的问题,该方法能够根据信号局部特征和噪声特点自适应的选择结构元素类型和尺寸大小,然后对航空电磁信号进行滤波。

The invention relates to a mathematical morphology-based airborne electromagnetic data denoising method, which obtains airborne electromagnetic detection data through experiments, uses a combination of triangular structural elements and semicircular structural elements, and performs self-adaptive multi-scale composite morphological filtering on airborne electromagnetic data : First determine the length range of the structural elements according to the minimum and maximum intervals between adjacent peaks in the original signal and then determine the corresponding analysis scale K; then determine the height range according to the minimum and maximum values of the signal peaks; use each structure The element set performs complex morphological operations on the original signal and takes the average value as the output result. The self-adaptive multi-scale compound morphological filtering method proposed by the present invention overcomes the problem of random selection of structural elements in traditional morphological filtering. The method can adaptively select the type and size of structural elements according to the local characteristics of the signal and the characteristics of noise, and then analyze the airborne electromagnetic signal to filter.

Description

基于数学形态学的航空电磁数据去噪方法Denoising method for airborne electromagnetic data based on mathematical morphology

技术领域technical field

本发明涉及一种航空电磁领域的数据去噪方法,尤其是时间域航空电磁领域,具体是一种基于数学形态学的航空电磁数据去噪方法。The invention relates to a data denoising method in the field of aeronautical electromagnetics, especially in the field of time domain aeronautical electromagnetics, in particular to a method for denoising data in aeronautical electromagnetics based on mathematical morphology.

背景技术Background technique

航空电磁法是一种以飞机为载体,进行地球物理探测的一种勘察探测方法,主要用来快速普查金属矿体,大面积地质填图,水文地质,工程地质勘查和环境监测等领域。Airborne electromagnetic method is a kind of survey and detection method that uses aircraft as a carrier to carry out geophysical exploration. It is mainly used for rapid survey of metal ore bodies, large-scale geological mapping, hydrogeology, engineering geological exploration and environmental monitoring and other fields.

数学形态学是一门建立在严格数学理论基础上的学科,现已成功应用于图像处理、图形分析、模式识别、计算机视觉、电能扰动、机械振动及地震检测等工程实践领域,并引起广泛重视。该方法运算简单,其基本运算包括腐蚀、膨胀、开运算和闭运算以及在此基础上引出的形态开闭和形态闭开运算。基于数学形态学的信号去噪方法仅取决于待处理信号的局部特征,利用结构元素对信号的几何特征进行匹配或修正,同时保留目标信号的主要形状,以达到抑制噪声、提取有用信息和保留细节成分的目的。Mathematical morphology is a discipline based on strict mathematical theory. It has been successfully applied in engineering practice fields such as image processing, graphic analysis, pattern recognition, computer vision, electrical energy disturbance, mechanical vibration and earthquake detection, and has attracted widespread attention. . The operation of this method is simple, and its basic operations include corrosion, expansion, opening and closing operations, and the morphological opening and closing and morphological closing and opening operations derived from them. The signal denoising method based on mathematical morphology only depends on the local characteristics of the signal to be processed, and uses structural elements to match or correct the geometric characteristics of the signal while retaining the main shape of the target signal to suppress noise, extract useful information and preserve Detail the purpose of the ingredients.

数学形态学滤波方法中存在的一个主要难题是结构元素的选取,对结构元素类型的选取是影响其滤波效果的关键因素。采用不同类型的结构元素可将目标信号中不同的形状特征进行提取,结构元素的选取要尽可能地接近待处理信号本身的形状特点,这样才能尽可能达到最好的滤波效果,常见的结构元素类型有直线型、矩形、圆盘型、抛物线型、三角形以及其他多边形组合。One of the main problems in the mathematical morphology filtering method is the selection of structural elements, and the selection of structural element types is the key factor affecting its filtering effect. Different types of structural elements can be used to extract different shape features in the target signal. The selection of structural elements should be as close as possible to the shape characteristics of the signal to be processed, so as to achieve the best filtering effect as possible. Common structural elements Types are linear, rectangular, disc, parabolic, triangular, and other combinations of polygons.

现有的形态滤波方法大多只采用单尺度结构元素,单尺度形态学只选择一个固定的结构元素对信号进行形态学分析,这种方法虽然简单且易于实现,但其处理效果的好坏却极大的依赖相关先验知识,而准确有效的先验知识却往往难以获得。另外由于在信号中通常包含不止一种噪声类型,而且噪声在信号中往往也不是均匀分布的。Most of the existing morphological filtering methods only use single-scale structural elements, and single-scale morphology only selects a fixed structural element for morphological analysis of the signal. Although this method is simple and easy to implement, its processing effect is extremely poor. However, accurate and effective prior knowledge is often difficult to obtain. In addition, since the signal usually contains more than one type of noise, and the noise is often not evenly distributed in the signal.

现有的形态滤波方法均不能对不同尺度下的结构元素信号中不同类型与强度的噪声成分进行复合形态滤波。None of the existing morphological filtering methods can perform composite morphological filtering on different types and intensities of noise components in structural element signals at different scales.

发明内容Contents of the invention

本发明的目的就在于针对现有技术的不足,提供一种在抑制噪声、提取有用信息的同时,更好地保留信号细节特征的基于数学形态学的航空电磁数据去噪方法。The purpose of the present invention is to address the deficiencies of the prior art, and provide a mathematical morphology-based airborne electromagnetic data denoising method that better preserves signal detail features while suppressing noise and extracting useful information.

本发明的目的是通过以下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:

本发明的主要思想是:针对航空电磁数据中包含的多种干扰成分,提出了自适应多尺度的形态学滤波,选取了三角形结构元素和半圆形结构元素,滤除信号中的正、负脉冲噪声和随机噪声。The main idea of the present invention is: Aiming at various interference components contained in airborne electromagnetic data, an adaptive multi-scale morphological filter is proposed, and triangular structural elements and semicircular structural elements are selected to filter out positive and negative elements in the signal. Impulse noise and random noise.

基于数学形态学的航空电磁数据去噪方法,包括以下步骤:The airborne electromagnetic data denoising method based on mathematical morphology includes the following steps:

A、通过时间域直升机电磁探测实验,经数据采集硬件电路,进行定时等间隔采样,采集到原始航空电磁数据;A. Through the time-domain helicopter electromagnetic detection experiment, through the data acquisition hardware circuit, sampling at regular intervals is carried out, and the original aeronautical electromagnetic data is collected;

B、采用三角形结构元素与半圆形结构元素相结合,将航空电磁信号进行自适应多尺度复合形态滤波处理,滤除目标信号中的正、负脉冲噪声和随机噪声。B. Using the combination of triangular structural elements and semicircular structural elements, the aeronautical electromagnetic signal is subjected to self-adaptive multi-scale compound shape filtering processing, and the positive and negative pulse noise and random noise in the target signal are filtered out.

步骤B包括以下步骤:Step B includes the following steps:

a、首先根据原始信号中相邻峰值间隔的最小值和最大值确定结构元素的长度范围并以此确定相应的分析尺度大小K;a. First, determine the length range of the structural elements according to the minimum and maximum values of the interval between adjacent peaks in the original signal, and then determine the corresponding analysis scale K;

b、再根据信号峰值的最小值和最大值确定高度范围;b. Then determine the altitude range according to the minimum and maximum values of the signal peak value;

c、然后利用小/大长度对应小/大高度确定多尺度分析中的各结构元素并构成相应的多结构元素集;c. Then use the small/large length to correspond to the small/large height to determine each structural element in the multi-scale analysis and form a corresponding multi-structural element set;

d、最后采用各结构元素集对原始信号进行复合形态运算并取平均值作为输出结果。d. Finally, each structural element set is used to perform compound morphological operations on the original signal and an average value is taken as the output result.

所述的对原始信号进行复合形态运算是对航空电磁信号先分别进行腐蚀运算、膨胀运算、开运算和闭运算,再分别进行形态开闭滤波和形态闭开滤波:The said complex morphological operation on the original signal is to firstly perform corrosion operation, expansion operation, opening operation and closing operation on the aeronautical electromagnetic signal, and then respectively perform morphological opening and closing filtering and morphological closing and opening filtering:

腐蚀运算: ( fΘg ) ( n ) = min m = 0,1 , . . . , M - 1 { f ( n + m ) - g ( m ) } , n = 0,1 , . . . , N + M - 2 Corrosion operation: ( fΘg ) ( no ) = min m = 0,1 , . . . , m - 1 { f ( no + m ) - g ( m ) } , no = 0,1 , . . . , N + m - 2

膨胀运算: ( f ⊕ g ) ( n ) = max m = 0,1 , . . . , M - 1 { f ( n - m ) + g ( m ) } , n = 0,1 , . . . , N - M Expansion operation: ( f ⊕ g ) ( no ) = max m = 0,1 , . . . , m - 1 { f ( no - m ) + g ( m ) } , no = 0,1 , . . . , N - m

开运算: Open operation:

闭运算: ( f · g ) ( n ) = [ ( f ⊕ g ) Θg ] ( n ) Closing operation: ( f &Center Dot; g ) ( no ) = [ ( f ⊕ g ) Θg ] ( no )

其中,Θ表示腐蚀运算,表示膨胀运算,ο表示开运算,·表示闭运算,f为原始航空电磁波形数据,g为选定的形态学结构元素,m和n为输入信号的离散采样点数,N>>M;Among them, Θ represents the erosion operation, Represents expansion operation, ο represents opening operation, · represents closing operation, f is the original airborne electromagnetic waveform data, g is the selected morphological structure element, m and n are the discrete sampling points of the input signal, N>>M;

再分别进行形态开闭滤波和形态闭开滤波:Then perform morphological opening and closing filtering and morphological closing and opening filtering respectively:

形态开闭滤波: Morphological opening and closing filtering:

形态闭开滤波: Morphological closed-open filter:

最后,构造复合形态滤波器:Finally, construct the compound morphological filter:

自适应复合形态滤波器: z ( n ) = 1 2 Σ i = 1 N [ CFco ( f ( n ) , G i ) + CFoc ( f ( n ) , G i ) ] Adaptive complex morphological filter: z ( no ) = 1 2 Σ i = 1 N [ CFco ( f ( no ) , G i ) + CFoc ( f ( no ) , G i ) ]

其中,G=(g1,g2,...,gi),代表一组多结构元素集,N为结构元素的类型数。Wherein, G=(g 1 , g 2 ,..., g i ), represents a set of multiple structural elements, and N is the number of types of structural elements.

有益效果:基于数学形态学的航空电磁数据去噪方法,使其在去噪时不仅提取了有用信息,同时还很好地保留了航空电磁信号的细节信息,以便更进一步的对数据分析;本发明提出了自适应多尺度复合形态滤波方法,克服了现有形态滤波结构元素选取随机的问题,能够根据信号局部特征和噪声特点自适应的选择结构元素类型和尺寸大小,然后对航空电磁信号进行滤波。Beneficial effects: The denoising method of airborne electromagnetic data based on mathematical morphology not only extracts useful information during denoising, but also preserves the detailed information of airborne electromagnetic signals for further data analysis; The invention proposes an adaptive multi-scale compound morphological filtering method, which overcomes the problem of random selection of structural elements in the existing morphological filtering, and can adaptively select the type and size of structural elements according to the local characteristics of the signal and noise characteristics, and then perform airborne electromagnetic signal filtering.

附图说明:Description of drawings:

附图1基于数学形态学的航空电磁数据去噪方法流程图Accompanying drawing 1 is the flow chart of airborne electromagnetic data denoising method based on mathematical morphology

附图2自适应复合形态滤波方法图Accompanying drawing 2 self-adaptive composite shape filtering method diagram

附图3航空电磁原始数据图Attached Figure 3 is the original data map of airborne electromagnetic

附图4航空电磁原始信号及数学形态学滤波效果对比图Accompanying drawing 4 Comparison chart of airborne electromagnetic original signal and mathematical morphology filtering effect

附图5自适应复合形态滤波效果图Attached Figure 5 Effect diagram of self-adaptive composite morphological filtering

具体实施方式:Detailed ways:

下面结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

基于数学形态学的航空电磁数据去噪方法,包括以下步骤:The airborne electromagnetic data denoising method based on mathematical morphology includes the following steps:

A、通过时间域直升机电磁探测实验,经数据采集硬件电路,进行定时等间隔采样,采集到原始航空电磁数据;A. Through the time-domain helicopter electromagnetic detection experiment, through the data acquisition hardware circuit, sampling at regular intervals is carried out, and the original aeronautical electromagnetic data is collected;

B、采用三角形结构元素与半圆形结构元素相结合,将航空电磁信号进行自适应多尺度复合形态滤波处理,滤除目标信号中的正、负脉冲噪声和随机噪声。B. Using the combination of triangular structural elements and semicircular structural elements, the aeronautical electromagnetic signal is subjected to self-adaptive multi-scale compound shape filtering processing, and the positive and negative pulse noise and random noise in the target signal are filtered out.

步骤B包括以下步骤:Step B includes the following steps:

a、首先根据原始信号中相邻峰值间隔的最小值和最大值确定结构元素的长度范围并以此确定相应的分析尺度大小K;a. First, determine the length range of the structural elements according to the minimum and maximum values of the interval between adjacent peaks in the original signal, and then determine the corresponding analysis scale K;

b、再根据信号峰值的最小值和最大值确定高度范围;b. Then determine the altitude range according to the minimum and maximum values of the signal peak value;

c、然后利用小/大长度对应小/大高度确定多尺度分析中的各结构元素并构成相应的多结构元素集;c. Then use the small/large length to correspond to the small/large height to determine each structural element in the multi-scale analysis and form a corresponding multi-structural element set;

d、最后采用各结构元素集对原始信号进行复合形态运算并取平均值作为输出结果。d. Finally, each structural element set is used to perform compound morphological operations on the original signal and an average value is taken as the output result.

所述的对原始信号进行复合形态运算是对航空电磁信号先分别进行腐蚀运算、膨胀运算、开运算和闭运算,再分别进行形态开闭滤波和形态闭开滤波:The said complex morphological operation on the original signal is to firstly perform corrosion operation, expansion operation, opening operation and closing operation on the aeronautical electromagnetic signal, and then respectively perform morphological opening and closing filtering and morphological closing and opening filtering:

腐蚀运算: ( fΘg ) ( n ) = min m = 0,1 , . . . , M - 1 { f ( n + m ) - g ( m ) } , n = 0,1 , . . . , N + M - 2 Corrosion operation: ( fΘg ) ( no ) = min m = 0,1 , . . . , m - 1 { f ( no + m ) - g ( m ) } , no = 0,1 , . . . , N + m - 2

膨胀运算: ( f ⊕ g ) ( n ) = max m = 0,1 , . . . , M - 1 { f ( n - m ) + g ( m ) } , n = 0,1 , . . . , N - M Expansion operation: ( f ⊕ g ) ( no ) = max m = 0,1 , . . . , m - 1 { f ( no - m ) + g ( m ) } , no = 0,1 , . . . , N - m

开运算: Open operation:

闭运算: ( f · g ) ( n ) = [ ( f ⊕ g ) Θg ] ( n ) Closing operation: ( f &Center Dot; g ) ( no ) = [ ( f ⊕ g ) Θ g ] ( no )

其中,Θ表示腐蚀运算,表示膨胀运算,ο表示开运算,·表示闭运算,f为原始航空电磁波形数据,g为选定的形态学结构元素,m和n为输入信号的离散采样点数,N>>M;Among them, Θ represents the erosion operation, Represents expansion operation, ο represents opening operation, · represents closing operation, f is the original airborne electromagnetic waveform data, g is the selected morphological structure element, m and n are the discrete sampling points of the input signal, N>>M;

再分别进行形态开闭滤波和形态闭开滤波:Then perform morphological opening and closing filtering and morphological closing and opening filtering respectively:

形态开闭滤波: Morphological opening and closing filtering:

形态闭开滤波: Morphological closed-open filter:

最后,构造复合形态滤波器:Finally, construct the compound morphological filter:

自适应复合形态滤波器: z ( n ) = 1 2 Σ i = 1 N [ CFco ( f ( n ) , G i ) + CFoc ( f ( n ) , G i ) ] Adaptive complex morphological filter: z ( no ) = 1 2 Σ i = 1 N [ CFco ( f ( no ) , G i ) + CFoc ( f ( no ) , G i ) ]

其中,G=(g1,g2,...,gi),代表一组多结构元素集,N为结构元素的类型数。Wherein, G=(g 1 , g 2 ,..., g i ), represents a set of multiple structural elements, and N is the number of types of structural elements.

实施例1:Example 1:

(一)通过时间域直升机电磁探测飞行试验获得原始航空电磁数据。具体为:利用航空电磁探测系统数据采集硬件电路获得探测结果波形数据,经数据采集硬件电路进行定时等间隔采样,采集到航空电磁原始信号数据。(1) Raw airborne electromagnetic data obtained through the time-domain helicopter electromagnetic detection flight test. Specifically: use the data acquisition hardware circuit of the aeronautical electromagnetic detection system to obtain the waveform data of the detection result, and perform regular and equal interval sampling through the data acquisition hardware circuit to collect the original signal data of the aeronautical electromagnetic detection system.

(二)三角形结构元素适于滤除正、负脉冲噪声干扰,半圆形结构元素适于滤除随机噪声干扰。因此考虑采用三角形和半圆形结构元素对原始信号进行复合形态滤波。具体过程如下:(2) The triangular structural element is suitable for filtering positive and negative pulse noise interference, and the semicircular structural element is suitable for filtering random noise interference. Therefore, the use of triangular and semicircular structural elements is considered to perform complex morphological filtering on the original signal. The specific process is as follows:

(1)首先,分别对信号进行腐蚀运算、膨胀运算、开运算以及闭运算:(1) First, corrode, expand, open and close the signal respectively:

腐蚀运算: ( fΘg ) ( n ) = min m = 0,1 , . . . , M - 1 { f ( n + m ) - g ( m ) } , n = 0,1 , . . . , N + M - 2 Corrosion operation: ( fΘg ) ( no ) = min m = 0,1 , . . . , m - 1 { f ( no + m ) - g ( m ) } , no = 0,1 , . . . , N + m - 2

膨胀运算: ( f ⊕ g ) ( n ) = max m = 0,1 , . . . , M - 1 { f ( n - m ) + g ( m ) } , n = 0,1 , . . . , N - M Expansion operation: ( f ⊕ g ) ( no ) = max m = 0,1 , . . . , m - 1 { f ( no - m ) + g ( m ) } , no = 0,1 , . . . , N - m

开运算: Open operation:

闭运算: ( f · g ) ( n ) = [ ( f ⊕ g ) Θg ] ( n ) Closing operation: ( f · g ) ( no ) = [ ( f ⊕ g ) Θg ] ( no )

(2)再分别进行形态开闭滤波和形态闭开滤波:(2) Perform morphological opening and closing filtering and morphological closing and opening filtering respectively:

形态开闭滤波: Morphological opening and closing filtering:

形态闭开滤波: Morphological closed-open filter:

构造一种自适应复合形态滤波器,从而改善滤波效果。An adaptive composite morphological filter is constructed to improve the filtering effect.

自适应复合形态滤波: z ( n ) = 1 2 Σ i = 1 N [ CFco ( f ( n ) , G i ) + CFoc ( f ( n ) , G i ) ] Adaptive complex morphological filtering: z ( no ) = 1 2 Σ i = 1 N [ CFco ( f ( no ) , G i ) + CFoc ( f ( no ) , G i ) ]

其中   in

(三)三角形结构元素和半圆形结构元素的数学表达式分别如下所示:(3) The mathematical expressions of triangular structural elements and semicircular structural elements are as follows:

(1)三角形结构元素(1) Triangular structural elements

gg (( ii )) == Hh ×× [[ 11 -- || ii || LL ]] ,, (( ii == -- LL ,, .. .. .. ,, 00 ,, .. .. .. ,, LL ))

(2)半圆形结构元素(2) Semicircular structural elements

gg (( ii )) == Hh ×× [[ 11 -- (( ii LL )) 22 ]] ,, (( ii == -- LL ,, .. .. .. ,, 00 ,, .. .. .. ,, LL ))

其中,L代表结构元素的长度,H代表结构元素的高度。Among them, L represents the length of the structural element, and H represents the height of the structural element.

(四)结构元素长度的确定(4) Determination of the length of structural elements

设原始信号为X={xi|i=1,2,...,N}(N为原始信号的数据点数),首先计算原始信号的局部极大值序列,且在计算之前均已进行了均值化处理。设PE={PEi|i=1,2,...,NPE}为原始信号的局部极大值序列,NPE为局部极大值序列的个数。设NE={NEi|i=1,2,...,NNE}为原始信号的局部极小值序列,NNE为局部极小值序列的个数。定义局部极大值间隔为局部极小值间隔为由得到的局部极大极小间隔与三角、半圆形结构元素的特点,可以计算得到相应的形态学结构元素长度尺度的最小值Klmin和最大值KlmaxAssuming that the original signal is X={ xi |i=1,2,...,N} (N is the number of data points of the original signal), first calculate the local maximum value sequence of the original signal, and all have been carried out before the calculation averaged processing. Let PE={PE i |i=1,2,...,N PE } be the local maximum value sequence of the original signal, and N PE be the number of local maximum value sequences. Let NE={NE i |i=1,2,...,N NE } be the local minimum value sequence of the original signal, and N NE be the number of local minimum value sequences. Define the local maximum interval as The interval between local minima is Based on the obtained local maximum and minimum intervals and the characteristics of triangular and semicircular structural elements, the minimum value K lmin and maximum value K lmax of the length scale of the corresponding morphological structural elements can be calculated.

式中,为向上取整运算符,为向下取整运算符。In the formula, is the round up operator, is the floor operator.

由此可以得到结构元素的长度尺度序列Kl为:From this, the length scale sequence K l of the structural elements can be obtained as:

Kl={Klmin,Klmin+1,Klmax-1,Klmax}K l ={K lmin ,K lmin +1,K lmax -1,K lmax }

(五)结构元素高度的确定(5) Determination of the height of structural elements

由于结构元素的高度对应信号的幅值,因此根据信号局部极大极小值的幅值大小来确定结构元素的高度。设局部极大值序列的最大值和最小值分别为pp max和pp min,则信号的局部极大值和局部极小值的高度值分别为Hpe=pp max-pp min和Hne=pn max-pn min。为充分利用信号的高度局部特征信息,定义信号的局部极值的高度值为He Since the height of the structural element corresponds to the amplitude of the signal, the height of the structural element is determined according to the amplitude of the local maximum and minimum values of the signal. Suppose the maximum value and minimum value of the local maximum value sequence are p p max and p p min respectively, then the height values of the local maximum value and local minimum value of the signal are H pe =p p max -p p min and H ne =p n max -p n min . In order to make full use of the height local feature information of the signal, the height value of the local extremum of the signal is defined as He

He=max(Hpe,Hne)H e =max(H pe ,H ne )

为了使高度值序列Hl与结构元素长度尺度Kl相对应,可定义结构元素高度序列Hl为:In order to make the height value sequence Hl correspond to the structural element length scale Kl , the structural element height sequence Hl can be defined as:

Hl={α·[He/(Kmax-Kmin+1)+(j-1)·He/(Kmax-Kmin+1)]}H l ={α·[H e /(K max -K min +1)+(j-1)·H e /(K max -K min +1)]}

j=1,2,...,Kmax-Kmin+1j=1,2,...,K max -K min +1

式中α为高度比例系数,本实施例取0.05。In the formula, α is the height proportional coefficient, which is taken as 0.05 in this embodiment.

(六)单位结构元素的定义(6) Definition of unit structure elements

以三角形结构元素为例,选择三个数据点的结构元素为单位结构元素B,而(K-1次膨胀运算),尺度K=1时,KB={0,1,0},尺度K=2时,KB={0,1,2,1,0},依次类推,下划线表示原点的位置。Taking the triangular structure element as an example, select the structure element of three data points as the unit structure element B, and (K-1 expansion operation), when the scale K=1, KB={ 0 , 1,0}, when the scale K=2, KB={ 0,1,2,1,0 }, and so on, underlined The location of the origin.

(七)各尺度结构元素的确定(7) Determination of structural elements of each scale

G1=Hl(i)·Kl(i)BT i=1,2,...,Kmax-Kmin+1G 1 =H l (i)·K l (i)B T i=1,2,...,K max -K min +1

G2=Hl(i)·Kl(i)BS i=1,2,...,Kmax-Kmin+1G 2 =H l (i)·K l (i)B S i=1,2,...,K max -K min +1

其中,BT和BS分别为单位三角形结构元素和单位半圆形结构元素。Among them, B T and B S are the unit triangle structure element and the unit semicircle structure element respectively.

Claims (3)

1.一种基于数学形态学的航空电磁数据去噪方法,其特征在于,包括以下步骤:1. A method for denoising airborne electromagnetic data based on mathematical morphology, characterized in that, comprising the following steps: A、通过时间域直升机电磁探测实验,经数据采集硬件电路,进行定时等间隔采样,采集到原始航空电磁数据;A. Through the time-domain helicopter electromagnetic detection experiment, through the data acquisition hardware circuit, sampling at regular intervals is carried out, and the original aeronautical electromagnetic data is collected; B、采用三角形结构元素与半圆形结构元素相结合,将航空电磁信号进行自适应多尺度复合形态滤波处理,滤除目标信号中的正、负脉冲噪声和随机噪声。B. Using the combination of triangular structural elements and semicircular structural elements, the aeronautical electromagnetic signal is subjected to adaptive multi-scale compound shape filtering processing, and the positive and negative pulse noise and random noise in the target signal are filtered out. 2.按照权利要求1所述的基于数学形态学的航空电磁数据去噪方法,其特征在于,步骤B包括以下步骤:2. according to the airborne electromagnetic data denoising method based on mathematical morphology according to claim 1, it is characterized in that step B comprises the following steps: a、首先根据原始信号中相邻峰值间隔的最小值和最大值确定结构元素的长度范围并以此确定相应的分析尺度大小K;a. First, determine the length range of the structural element according to the minimum and maximum values of the interval between adjacent peaks in the original signal, and then determine the corresponding analysis scale K; b、再根据信号峰值的最小值和最大值确定高度范围;b. Then determine the altitude range according to the minimum and maximum values of the signal peak value; c、然后利用小/大长度对应小/大高度确定多尺度分析中的各结构元素并构成相应的多结构元素集;c. Then use the small/large length to correspond to the small/large height to determine each structural element in the multi-scale analysis and form a corresponding multi-structural element set; d、最后采用各结构元素集对原始信号进行复合形态运算并取平均值作为输出结果。d. Finally, each structural element set is used to perform compound morphological operations on the original signal and an average value is taken as the output result. 3.按照权利要求2所述的基于数学形态学的航空电磁数据去噪方法,其特征在于,所述的对原始信号进行复合形态运算是对航空电磁信号先分别进行腐蚀运算、膨胀运算、开运算和闭运算,再分别进行形态开闭滤波和形态闭开滤波:3. according to the airborne electromagnetic data denoising method based on mathematical morphology according to claim 2, it is characterized in that, the described original signal is carried out composite form operation is to carry out corrosion operation, dilation operation, opening respectively earlier to airborne electromagnetic signal Operation and closing operation, and then perform morphological opening and closing filtering and morphological closing and opening filtering respectively: 腐蚀运算: ( fΘg ) ( n ) = min m = 0,1 , . . . , M - 1 { f ( n + m ) - g ( m ) } n=0,1,...,N+M-2Corrosion operation: ( fΘg ) ( no ) = min m = 0,1 , . . . , m - 1 { f ( no + m ) - g ( m ) } n=0,1,...,N+M-2 膨胀运算: ( f ⊕ g ) ( n ) = min m = 0,1 , . . . , M - 1 { f ( n - m ) + g ( m ) } n=0,1,...,N-MExpansion operation: ( f ⊕ g ) ( no ) = min m = 0,1 , . . . , m - 1 { f ( no - m ) + g ( m ) } n=0,1,...,NM 开运算: Open operation: 闭运算: ( f · g ) ( n ) = [ ( f ⊕ g ) Θg ] ( n ) Closing operation: ( f &Center Dot; g ) ( no ) = [ ( f ⊕ g ) Θg ] ( no ) 其中,Θ表示腐蚀运算,表示膨胀运算,ο表示开运算,·表示闭运算,f为原始航空电磁波形数据,g为选定的形态学结构元素,m和n为输入信号的离散采样点数,N>>M;Among them, Θ represents the erosion operation, Represents expansion operation, ο represents opening operation, · represents closing operation, f is the original airborne electromagnetic waveform data, g is the selected morphological structure element, m and n are the discrete sampling points of the input signal, N>>M; 再分别进行形态开闭滤波和形态闭开滤波:Then perform morphological opening and closing filtering and morphological closing and opening filtering respectively: 形态开闭滤波:Foc(f(n))=fοg·gMorphological opening and closing filtering: Foc(f(n))=fοg·g 形态闭开滤波:Fco(f(n))=f·gοgMorphological closed-open filter: Fco(f(n))=f·gog 最后,构造复合形态滤波器:Finally, construct the compound morphological filter: 自适应复合形态滤波器: z ( n ) = 1 2 Σ i = 1 N [ CFco ( f ( n ) , G i ) + CFoc ( f ( n ) , G i ) ] Adaptive complex morphological filter: z ( no ) = 1 2 Σ i = 1 N [ CFco ( f ( no ) , G i ) + CFoc ( f ( no ) , G i ) ] 其中,G=(g1,g2,...,gi),代表一组多结构元素集,N为结构元素的类型数。Wherein, G=(g 1 , g 2 ,..., g i ), represents a set of multiple structural elements, and N is the number of types of structural elements.
CN201510193706.9A 2015-04-22 2015-04-22 Denoising method for airborne electromagnetic data based on mathematical morphology Expired - Fee Related CN104793253B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510193706.9A CN104793253B (en) 2015-04-22 2015-04-22 Denoising method for airborne electromagnetic data based on mathematical morphology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510193706.9A CN104793253B (en) 2015-04-22 2015-04-22 Denoising method for airborne electromagnetic data based on mathematical morphology

Publications (2)

Publication Number Publication Date
CN104793253A true CN104793253A (en) 2015-07-22
CN104793253B CN104793253B (en) 2018-01-26

Family

ID=53558214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510193706.9A Expired - Fee Related CN104793253B (en) 2015-04-22 2015-04-22 Denoising method for airborne electromagnetic data based on mathematical morphology

Country Status (1)

Country Link
CN (1) CN104793253B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068131A (en) * 2015-08-03 2015-11-18 中国科学院电子学研究所 Aeromagnetic data leveling method
CN105207645A (en) * 2015-08-25 2015-12-30 苏州汇川技术有限公司 Filtering method based on mathematical morphology and filtering system thereof
CN105629317A (en) * 2016-04-08 2016-06-01 中国矿业大学(北京) Magnetotelluric noise suppressing method based on intersite transfer function
CN105652325A (en) * 2016-01-05 2016-06-08 吉林大学 Exponential fit-adaptive Kalman-based ground-air electromagnetic data de-noising method
CN106154344A (en) * 2016-08-01 2016-11-23 湖南文理学院 A kind of Magnetotelluric signal denoising method based on combined filter
CN106814402A (en) * 2016-12-22 2017-06-09 中石化石油工程技术服务有限公司 Transient electromagnetic signal Prestack Noise Suppression Methods
CN109044365A (en) * 2018-07-02 2018-12-21 苏州大学 The recognition methods of two dimensional motion state based on brain hemoglobin information
CN109143369A (en) * 2017-06-28 2019-01-04 中国石油化工股份有限公司 The method for efficiently filtering out seismic data random disturbances based on shape filtering
CN109684937A (en) * 2018-12-06 2019-04-26 国电南瑞科技股份有限公司 A kind of signal antinoise method and device based on FFT and Mathematical Morphology method
CN109712129A (en) * 2018-12-25 2019-05-03 河北工业大学 A kind of arc image processing method based on mathematical morphology
CN109858413A (en) * 2019-01-18 2019-06-07 国网江苏省电力有限公司检修分公司 A kind of vibration of reactor signal processing method based on morphological filter
WO2019144486A1 (en) * 2018-01-24 2019-08-01 吉林大学 Method and device for suppressing noise in airborne electromagnetic data
CN110286412A (en) * 2019-07-02 2019-09-27 自然资源部第二海洋研究所 A Submarine Spontaneous Potential Observation Method and Electric Interference Correction Method Equipped with Transient Electromagnetic Dual Drag Body
CN110412656A (en) * 2019-07-18 2019-11-05 长江大学 A kind of method and system that Magnetotelluric Data time-domain pressure is made an uproar
CN111126231A (en) * 2019-12-18 2020-05-08 中国地质科学院地球物理地球化学勘查研究所 Filtering method, device and equipment for aviation electromagnetic data and storage medium
CN111780817A (en) * 2020-06-07 2020-10-16 承德石油高等专科学校 Algorithm for detecting and processing noise signal of low-frequency excitation electromagnetic flowmeter

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
CHEN SHI-HAI AND WANG EN-YUAN: "Electromagnetic Radiation Signals of Coal or Rock Denoising Based on Morphological Filter", 《PROCEDIA ENGINEERING》 *
Electromagnetic Radiation Signals of Coal or Rock Denoising Based on Morphological Filter;CHEN Shi-hai and WANG En-yuan;《Procedia Engineering》;20111231;第588-593页 *
刘俊峰,等: "基于多结构元素形态滤波的大地电磁去噪", 《物探与化探》 *
卢志才,等: "多尺度多元素形态滤波自适应降噪研究", 《河北科技大学学报》 *
基于多结构元素形态滤波的大地电磁去噪;刘俊峰,等;《物探与化探》;20140228;第38卷(第1期);第110-112页 *
多尺度多元素形态滤波自适应降噪研究;卢志才,等;《河北科技大学学报》;20110630;第32卷(第3期);第228-232页 *
数学形态滤波与大地电磁噪声压制;汤井田,等;《地球物理学报》;20120531;第55卷(第5期);第1784-1793页 *
数学形态滤波在音频大地电磁去噪中的应用;汤磊,等;《工程地球物理学报》;20130731;第10卷(第4期);第534、535页 *
汤井田,等: "数学形态滤波与大地电磁噪声压制", 《地球物理学报》 *
汤磊,等: "数学形态滤波在音频大地电磁去噪中的应用", 《工程地球物理学报》 *
章立军,等: "自适应多尺度形态学分析及其在轴承故障诊断中的应用", 《北京科技大学学报》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068131A (en) * 2015-08-03 2015-11-18 中国科学院电子学研究所 Aeromagnetic data leveling method
CN105207645A (en) * 2015-08-25 2015-12-30 苏州汇川技术有限公司 Filtering method based on mathematical morphology and filtering system thereof
CN105207645B (en) * 2015-08-25 2018-09-07 苏州汇川技术有限公司 Filtering method based on mathematical morphology and filtering system
CN105652325A (en) * 2016-01-05 2016-06-08 吉林大学 Exponential fit-adaptive Kalman-based ground-air electromagnetic data de-noising method
CN105652325B (en) * 2016-01-05 2017-09-19 吉林大学 Denoising method for ground-space electromagnetic data based on exponential fitting-adaptive Kalman
CN105629317A (en) * 2016-04-08 2016-06-01 中国矿业大学(北京) Magnetotelluric noise suppressing method based on intersite transfer function
CN106154344A (en) * 2016-08-01 2016-11-23 湖南文理学院 A kind of Magnetotelluric signal denoising method based on combined filter
CN106814402A (en) * 2016-12-22 2017-06-09 中石化石油工程技术服务有限公司 Transient electromagnetic signal Prestack Noise Suppression Methods
CN106814402B (en) * 2016-12-22 2019-08-23 中石化石油工程技术服务有限公司 Transient electromagnetic signal Prestack Noise Suppression Methods
CN109143369A (en) * 2017-06-28 2019-01-04 中国石油化工股份有限公司 The method for efficiently filtering out seismic data random disturbances based on shape filtering
WO2019144486A1 (en) * 2018-01-24 2019-08-01 吉林大学 Method and device for suppressing noise in airborne electromagnetic data
CN109044365A (en) * 2018-07-02 2018-12-21 苏州大学 The recognition methods of two dimensional motion state based on brain hemoglobin information
CN109684937A (en) * 2018-12-06 2019-04-26 国电南瑞科技股份有限公司 A kind of signal antinoise method and device based on FFT and Mathematical Morphology method
CN109684937B (en) * 2018-12-06 2022-08-26 国电南瑞科技股份有限公司 Signal denoising method and device based on FFT and mathematical morphology method
CN109712129A (en) * 2018-12-25 2019-05-03 河北工业大学 A kind of arc image processing method based on mathematical morphology
CN109858413A (en) * 2019-01-18 2019-06-07 国网江苏省电力有限公司检修分公司 A kind of vibration of reactor signal processing method based on morphological filter
CN110286412A (en) * 2019-07-02 2019-09-27 自然资源部第二海洋研究所 A Submarine Spontaneous Potential Observation Method and Electric Interference Correction Method Equipped with Transient Electromagnetic Dual Drag Body
CN110412656A (en) * 2019-07-18 2019-11-05 长江大学 A kind of method and system that Magnetotelluric Data time-domain pressure is made an uproar
CN110412656B (en) * 2019-07-18 2021-05-04 长江大学 Magnetotelluric sounding data time domain noise suppression method and system
CN111126231A (en) * 2019-12-18 2020-05-08 中国地质科学院地球物理地球化学勘查研究所 Filtering method, device and equipment for aviation electromagnetic data and storage medium
CN111126231B (en) * 2019-12-18 2023-04-18 中国地质科学院地球物理地球化学勘查研究所 Filtering method, device and equipment for aviation electromagnetic data and storage medium
CN111780817A (en) * 2020-06-07 2020-10-16 承德石油高等专科学校 Algorithm for detecting and processing noise signal of low-frequency excitation electromagnetic flowmeter

Also Published As

Publication number Publication date
CN104793253B (en) 2018-01-26

Similar Documents

Publication Publication Date Title
CN104793253B (en) Denoising method for airborne electromagnetic data based on mathematical morphology
CN104459809B (en) Full-wave nuclear magnetic resonance signal denoising method based on independent component analysis
CN106680775A (en) Method and system for automatically identifying radar signal modulation modes
CN104268883A (en) Time-frequency spectrum curve extracting method based on edge detection
CN105652325A (en) Exponential fit-adaptive Kalman-based ground-air electromagnetic data de-noising method
CN105785439A (en) Method and apparatus for predicting spatial distribution position of small-scale heterogeneous geologic body
CN106886044A (en) A kind of microseism first break pickup method based on shearing wave Yu Akaike's Information Criterion
CN103674230B (en) Denoising source separation based naval vessel vibration noise source separation and recognition method
CN105182417B (en) A kind of surface wave separation method and system based on anatomic element analysis
Duan et al. A novel classification method for flutter signals based on the CNN and STFT
CN107329137A (en) GPR buried target localization method and system based on box spline wavelets frameworks
CN104462803B (en) A kind of autonomous type underwater robot fault identification method based on small echo approximate entropy
CN107576380A (en) A kind of three-dimensional vibrating Modulation recognition method towards Φ OTDR techniques
CN108802175A (en) A kind of Pulsed eddy current testing signal de-noising method based on EMD
CN103605120A (en) Range-extended target intrinsic mode local singular value orderly fusion detection method
CN108615238A (en) Sea Clutter from HF Radar method for extracting region based on region segmentation
CN116719088B (en) A method for suppressing noise in aviation transient electromagnetic data
CN100530236C (en) Self-adapting image background estimation method
CN105960613A (en) System identification device
CN118276021A (en) A radar target detection method based on WPE-EEMD and improved multifractal spectrum characteristic parameters
CN116296243B (en) Pneumatic identification method based on large-size nuclear dense blocks
CN105260249A (en) Method for extracting calculation intensity features of spatial calculation domain
CN104182617B (en) End effect suppression method based on intrinsic waveform matching
CN115345216A (en) FMCW radar interference elimination method fusing prior information
CN106813784A (en) A kind of real-time microwave pulse chirp detection means and its detection method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180126

Termination date: 20190422

CF01 Termination of patent right due to non-payment of annual fee