CN104770004B - 一种通信系统和方法 - Google Patents

一种通信系统和方法 Download PDF

Info

Publication number
CN104770004B
CN104770004B CN201380054159.5A CN201380054159A CN104770004B CN 104770004 B CN104770004 B CN 104770004B CN 201380054159 A CN201380054159 A CN 201380054159A CN 104770004 B CN104770004 B CN 104770004B
Authority
CN
China
Prior art keywords
base station
radio resource
user
interference
user equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380054159.5A
Other languages
English (en)
Other versions
CN104770004A (zh
Inventor
伊马德·阿德南·阿尔苏萨
瓦尤·阿贡·普拉穆迪托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Manchester
Original Assignee
University of Manchester
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Manchester filed Critical University of Manchester
Publication of CN104770004A publication Critical patent/CN104770004A/zh
Application granted granted Critical
Publication of CN104770004B publication Critical patent/CN104770004B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Abstract

本发明的实施例涉及一种通信系统和方法,适用于对基站的用户之间的干扰进行管理。

Description

一种通信系统和方法
技术领域
本发明的实施例涉及一种通信系统和方法。
背景技术
用于支持移动宽带服务的蜂窝网络的结构是众所周知的。简单来说,移动业务交换中心(Mobile-services Switching Centre)对多个基站控制器(Base StationController,BSC)进行控制,基站控制器转而控制多个基站收发信台(Base TransceiverStation,BTS);BSC和BTS构建众所周知的基站系统(Base Station System,BSS)。
然而,在基本的系统构架下,宏(macro)小区、微(micro)小区、皮(pico)小区和毫微微(femto)小区由于频谱的压力而得到了发展。皮小区是室内基站,该室内基站由蜂窝提供者进行安装和管理,并且通常提供比毫微微小区更好的数据速率。毫微微小区也是室内基站,但是毫微微小区由最终用户安装并且由蜂窝提供者部分地管理。毫微微小区在3GPP、毫微微论坛和宽带论坛三者建立的标准中进行定义。该标准形成了3GPP release 8的一部分,并且与宽带论坛对其技术报告069(TR-069)的扩展相互依存。
尤其是,皮小区和毫微微小区由蜂窝提供者和最终用户进行部署,这是因为50%的语音通话以及70%的数据流量源自室内,这意味着80%的无线传输源自室内。通过减小小区尺寸,皮小区和毫微微小区提供了更高的频谱利用率,但是多出了与管理干扰相关联的开销。众所周知,干扰的增大导致可达到的数据速率的减小。此外,皮小区和毫微微小区的提供增大了与网络基础设施相关的成本。
由于毫微微小区由最终用户安装,所以可导致不协调的传输,这转而增大了对下行链路和上行链路两者的干扰。这个问题在毫微微小区密度高的区域内恶化。WiMax(IEEE802.16)以及先进长期演进技术(3GPP release 10)为用于提高移动或无线环境中的数据速率的两种技术标准,也就是,控制移动宽带业务的标准。LTE和WiMax使用的并行传输使用了多载波调制,例如,OFDM、MIMO、SC-FDMA和MIMO-SOFDMA。因而,能够理解,当相邻的毫微微小区分配并使用相同子载波时,会出现干扰。
发明内容
本发明的实施例的目的在于至少缓和现有技术中的一个或更多问题。
本发明的实施例提供了一种通信系统和方法,对频谱进行动态分配和使用,从而以管理干扰的方式向基站用户提供子载波。
有利地,本发明的实施例能够在毫微微小区的密度相对较高的服务区中实现平均数据速率的大于20%的提高,并且在毫微微小区的密度相对较低的服务区中实现超过50%的提高。
进一步,本发明的实施例能够在毫微微小区的密度相对较高的区域中实现业务质量(QoS)至少50%的提高,并且在毫微微小区的密度相对较低的区域中实现QoS高达300%的提高。
更进一步,能够在毫微微小区的密度相对较低的区域中实现功耗大幅降低至少37%并且在毫微微小区的密度相对较高的区域中降低多达70%。
附图说明
参照附图仅以示例方式对本发明的实施例进行说明,在附图中:
图1示出了根据本发明实施例的移动宽带网络架构;
图2示出了根据本发明实施例的无线资源管理的流程图;
图3a和3b示出了小区分组;
图4示出了根据小区分组的资源分配的流程图;
图5示出了多个毫微微小区的无线环境;
图6示出了干扰场景;
图7示出了干扰报告;
图8描绘了干扰场景;
图9示出了测量报告和干扰报告;
图10示出了分配子载波矩阵、优先子载波矩阵和禁止子载波矩阵中的子载波分配;
图11示出了每个用户的数据速率随着毫微微小区数量的变化的曲线图;
图12示出了每个用户的保证数据速率随着毫微微小区数量的变化;
图13示出了RF功耗随着毫微微小区数量的变化的曲线图;
图14示出了根据本发明实施例工作的、包括宏小区和毫微微小区簇的异构网络;
图15描绘了示出异构网络背景下每个用户的数据速率随着毫微微小区数量的变化的性能曲线;
图16示出了展示异构网络背景下每个用户的保证数据速率随着毫微微小区数量的变化的性能曲线;
图17示出了展示每个用户的数据速率随着毫微微小区数量的变化的性能曲线;
图18描绘了示出每个用户的保证数据速率随着毫微微小区数量的变化的性能曲线;
图19示出了无线资源管理的流程图;
图20示出了两组干扰载波簇;
图21示出了冲突矩阵的构建;
图22示出了由局部冲突矩阵构建全局冲突矩阵;
图23示出了基站管理系统所进行的无线资源分配;
图24至29示出了改变的占优干扰场景;
图30示出了无线资源分配的规则;
图31示出了示例性网络;
图32示出了无线资源分配的等级和量子;
图33示出了初始资源分配;
图34至42示出了无线资源的分配;以及
图43示出了时间图。
具体实施方式
图1示出了根据一个实施例的移动宽带网络100。网络可以是异构网络或同构网络。网络100包括宏小区基站102。宏小区基站102被连接到无线网络控制器104上,无线网络控制器104转而被连接到移动核心网络106上。毫微微网关108也被连接到移动核心网络106上。运营商管理系统110被连接到毫微微小区管理系统112上。该运营商管理系统110被连接到移动核心网络106上。毫微微网关108支持一个或更多毫微微小区基站。示出了两个毫微微小区基站114和116。应当理解,实施例能够使用多于两个毫微微小区基站来实现。毫微微小区基站114和116服务于一个或更多用户设备或移动站。能够理解,毫微微小区基站114和116被示为服务于四个移动站118至124。另外,能够理解,宏小区基站102被示为服务于若干、也就是一个或更多的诸如移动站126至128之类的用户设备。
同样示出的有诸如基站102、114和116之类的一个或更多基站与各自移动站之间的有意的通信链接。两个有意的通信链接130和132被示为已经建立在宏小区基站102及其相应移动站126和128之间。四个有意的通信链接134至140被示为已经分别建立在毫微微小区基站114和116与对应的移动站118、120和122、124之间。
同样示出了多个非有意的干扰信号。第一对干扰信号142和144被示为从宏小区基站102发出。这些干扰信号142和144被示为对毫微微小区基站114所服务的移动站118和120造成影响。进一步的干扰信号146被示为从毫微微小区基站116发出。该进一步干扰信号146被示为对毫微微小区基站114所服务的其中一个移动站120造成影响。
实施例使用基于LTE的调制,也就是OFDMA子载波和/或SC-FDMA。然而,实施例并不仅限于此。可以实现使用其他调制技术对无线资源进行调制的实施例。众所周知,在LTE中,无线资源的优选实施例为资源块。
毫微微小区管理系统112充当整体的中央控制器,该中央控制器负责对宏小区基站102和一个或更多毫微微小区基站114和116所服务的地理区域(未示出)内的频率规划和频率复用进行管理。
在通电状态下,毫微微小区基站被默认地设置为使用全部诸如频谱之类的无线资源或者全部资源块、或者某些其他资源单元。能够理解,这有可能对诸如其他毫微微小区之类的其他基站与其各自移动站之间建立的有意通信链接造成干扰,这些移动站同样在最新加电的毫微微小区基站所建立的无线覆盖的区域内。
当移动站想要由毫微微小区基站提供服务时,移动站编译的测量报告被递交到毫微微小区基站。此外,当到达移动站的服务毫微微小区基站的上行链路信号的能量下降到预定阈值以下或者移动站超出预定速度阈值时,则也会要求移动站的测量报告。
测量报告包括与各个移动站受到的由相邻基站产生的干扰相关联的数据,尤其是测量报告包含当前信号与用户受到的干扰的比率的指示。
测量报告被用于在一个或更多基站(比如,一个或更多毫微微小区基站)中的至少一个之内以及在基站管理系统(例如,毫微微小区管理系统112)之内构建冲突矩阵构建。在这样的管理系统112和一个或更多的诸如毫微微小区基站之类的基站之内构建冲突矩阵的实施例能够被实现。冲突矩阵被用于建立各个毫微微小区基站114和116之间的虚拟连接以产生高效的无线资源利用。资源分配算法被用来实现或者管理对无线资源的利用。资源分配算法能够经由毫微微小区管理系统112集中执行,或者由单独的毫微微小区基站114和116以分布式方式执行,受到具有足够或者足够可用的计算能力的毫微微小区基站114和116的限制。这样的计算能力能够在例如毫微微小区基站的空闲状态下获得。
参照图2,示出了资源分配算法的流程图200。在步骤202中毫微微小区基站被通电。在步骤204中毫微微小区基站被设置为使用全部可用的资源块。在步骤206中,确定是否要求用户设备或移动站发送测量报告。如果步骤206中的确定为肯定,则在步骤208中毫微微小区基站被设置为请求各自的移动站或多个移动站准备并递交测量报告和/或更新冲突矩阵。在递交测量报告和/或更新冲突矩阵之后,在步骤210中确定最近构建的冲突矩阵或测量报告与一个或更多之前构建的冲突矩阵或测量报告之间是否存在预定的相关性。如果该确定为肯定,那么处理转向步骤212。在步骤206中,如果不要求任何移动站发送测量报告,那么控制转向步骤212。
参照步骤212,确定是否已经从毫微微小区管理系统112接收中断。如果确定及步骤212为否定,那么在步骤214中确定是否能够实现对部分资源块的使用。如果对部分资源块的使用能够实现,那么通电的毫微微小区基站在步骤216中使用该部分资源块以支持无线通信。部分资源块已经被提前确定。部分资源块对应于可用的或者整个无线资源的子集,例如可用频谱的子集。如果步骤214中的确定为否定,那么控制转到步骤204,毫微微小区基站由此尝试使用整个可用的无线资源,例如整个资源块。
如果步骤212中的确定为肯定,那么在步骤218中确定是否已经接收指令以使用全部资源块来支持无线通信。如果该确定为肯定,那么控制转到步骤220,在此,基站适于使用整个资源块。能够理解,步骤220在功能上等价于步骤204,这使得控制能够从步骤218直接转到步骤204。
如果在步骤210中确定当前构建的冲突矩阵与之前构建的冲突矩阵之间存在的相关程度不足,或者如果在步骤218中确定毫微微小区基站并未接收指令以使用全部资源块,那么在步骤222中,有关此结果的报告被发送到毫微微小区管理系统112。
毫微微小区管理系统112通过分配资源块和/或提供针对步骤210的其他决策标准或信息来作出响应,所述其他决策标准或信息在步骤224中由毫微微小区基站进行接收。例如,在从毫微微小区网关接收分配的子载波之后,毫微微小区可能要进行重新调度,包括基于用户设备需要重新分配子载波。决策标准或信息为由于相邻或其他用户设备对子载波的使用而导致的特定用户设备的全部禁止子载波的指示。应当理解,术语“子载波”为载波的一个实施例。
在步骤226中确定毫微微小区基站内是否能够使用调度。如果在毫微微小区基站内能够使用调度,那么毫微微小区基站在步骤228中被设置为在不违反一个或更多标准的情况下重新分配资源。自此,毫微微小区基站在步骤230中使用新分配的资源块来支持无线通信。如果在毫微微小区基站内不能够使用调度,那么毫微微小区基站在步骤230中使用新分配的资源块。
自此,控制返回步骤206。
在此对冲突矩阵的构建进行说明。
如果当前基站(BS)Tm具有的用户数为Zm,其包括宏小区、皮小区和毫微微小区在内的全部相邻BS的列表为其中,Cm为Tm的指数为cm的相邻BS的数量,当前基站Tm的冲突矩阵为:
其中,wc为大于0的任何正整数,代表用户uz受到的来自另一基站的干扰的存在。冲突矩阵为Zm乘Cm的实数矩阵。在扩展形式下,应当理解,基站Tm的冲突矩阵采用以下一般形式:
例如,能够理解,基站Tm的用户u2受到来自基站的干扰如果没有干扰,代表用户j受到的来自基站i的干扰的测量的数值为零。
每次Tm更新ζm时,使用之前的测量值来检查作为结果的冲突矩阵。假设ζm之前的测量值给定为ζ′m,如果满足例如以下预定条件,则当前基站Tm向FMS 112报告,
也就是说,在该实施例中,如果冲突矩阵中有任何改变,那么要求更新或者至少向毫微微小区管理系统112发送测量报告。应当理解,可以建立其他条件,例如,其中,x为用于引入迟滞的可控测量的预定值。
在从当前基站Tm接收到ζm更新时,在对整个网络的冲突矩阵进行更新之前,FMS112等待一段时间以便集合内的其他BS发送自身的冲突矩阵,该时间可以是毫秒,整个网络的冲突矩阵由下式给出:
由此得出
来自FMS的中断
在特定环境下,FMS 112能够要求一个或更多基站递交干扰报告。如果不要求BSTm发送冲突矩阵或者确定占优的干扰场景发生改变,那么在满足以下条件中任何一个的情况下,FMS 112可以中断并要求相关的BS递交报告:
1、
其中,ζ′为来自之前测量结果的冲突矩阵,这意味着要求毫微微小区提供更新,也就是测量报告,因为该毫微微小区正在对不同的毫微微小区所服务的给定用户造成干扰,该干扰是因为用户移动到同样由被要求递交报告该新的干扰毫微微小区所服务的区域而产生的。
2、
其中,∧表示AND(与)逻辑运算,并且x={a~!b}意味着当a不等于b时x=1,否则x=0,这意味着用户从一个毫微微小区到另一毫微微小区的切换之后应当递交更新的测量报告。
3、当c≠m时
其中,Sm为受Tm影响的全部用户并且由下式给出:
S′m为基于ζ′矩阵的受影响用户,这意味着毫微微小区的服务区内检测到的用户的数量改变已经得到识别。
资源分配的规则集
诸如频谱分配或者频率复用方案之类的无线资源分配根据以下各项来确定:
1、对小型小区分组
●基于冲突矩阵对小区分组以便FMS 112能够进行并行计算,也就是说,以彼此的用户的干扰为基础对小区分组。参考图3a,示出了网络层次300a的一个示例,包括:
○宏小区302,具有其服务区,也就是无线覆盖,
■第一微小区304,转而在其覆盖区内包括相应的皮小区306和相应的毫微微小区308,
■第二微小区310,转而包括各自的皮小区312,
■进一步的一对毫微微小区314和316。
●能够理解,微小区1 304、皮小区306和毫微微小区308之间存在干扰的可能或实际的干扰。微小区2 310和皮小区2 312之间存在干扰的可能性,并且毫微微小区1 316和毫微微小区3 314之间存在干扰的可能。
●参考图3b,示出了针对以上的网络层次300a的层次分组300b。能够理解,层次分组300b包括3个分组;也就是,分组1 318、分组2 320和分组3 322。分组1 318包括第一微小区304及其各自的皮小区306和毫微微小区308。分组2 320被示为包括第二微小区310及其各自的皮小区312。分组3 322被指为包括一对毫微微小区314和316。如上所指,各个小区根据其被干扰的可能性或者以实际干扰为基础进行分组。
2、排序:基于每个分组中的至少一个预定标准按从第一至最后的分配顺序对冲突BS进行排列。实施例中根据用户密度对基站进行排列,也就是根据毫微微小区的服务区内检测到的用户的数量进行排列,尽管这些用户实际上并不由该毫微微小区提供服务。
3、建立分配矩阵,分配矩阵包含分配载波矩阵A、禁止载波矩阵Θ以及优先载波矩阵P。
●各行指的是子载波并且属于毫微微小区中的一个用户。将一切归零。
●A指的是每个单独用户的分配矩阵,Θ被用来表明针对单独用户所禁止的子载波,并且P被用来表明可获得高效分配的优先子载波分配。
4、根据BS排序,从BS 1开始为其用户分配预定数量的子载波。
●确保分配给各用户的子载波在频率上隔开以获得一定的频率差异性。
●(可选地)BS可以发送各UE的子载波的优先顺序。
●如果BS排序包括宏小区和/或微小区,那么宏小区BS和微小区BS的用户与皮小区和毫微微小区的用户相比总具有最高优先级。
5、更新分配矩阵
●分配给一个用户的子载波对该用户的一定距离内的全部用户而言是禁止的。该距离由在开始时建立的冲突矩阵获得。
6、只要对BS 1中的全部用户进行了分配,就在考虑到更新后的冲突矩阵的情况下为排序中的下一BS中的用户分配子载波。
●每当为新用户分配子载波时更新分配矩阵。
7、在为全部用户都分配预定数量的子载波之后,将其余的子载波分配给内部用户。
●内部用户被定义为Tm提供所服务的并且对于c≠m满足的任何用户,也就是说,未受到干扰的用户。
8、重复步骤6,直至对全部BS中的全部用户进行了分配。
参考图4,示出了如上指出的资源分配的流程图400。在步骤402中,根据确定的干扰水平或者被干扰的可能性对小区的给定网络层次进行分析和分组。在每个分组中,在步骤404中根据至少一个标准按照分配顺序对基站进行排列。实施例根据用户密度递减的顺序对基站进行排列。在步骤406中建立包括分配载波矩阵、禁止载波矩阵和优先载波矩阵在内的分配矩阵。对于当前分组中的当前基站,在步骤408中将载波分配给该当前基站的任何用户。响应于步骤406中完成的分配,在步骤410中对分配矩阵进行更新。在步骤412中确定是否全部用户都已经分配有资源。如果确定为否定,那么处理回到步骤408以将资源分配给当前基站的其余用户。如果步骤412中的确定为肯定,那么在步骤414中确定是否已经对基站的当前分组内的全部基站进行了处理。如果步骤414中的确定为否定,则在步骤416中从基站的当前分组中挑选另一基站并且控制转向步骤406以开始为其用户分配对应资源。如果已经对基站的当前分组内的全部基站进行了处理,则在步骤418中确定是否对步骤402中确定的基站的全部分组进行了处理。如果步骤418中的确定为否定,那么在步骤420中挑选基站的下一分组,并且对于基站的当前所挑选的分组,处理回到步骤404。如果在步骤418中的确定为肯定,则在步骤422中将剩余资源分配给内部用户。在将子载波分配给给定用户的同时,在禁止矩阵中进行相应的记录以确保只要新分配子载波的用户与一个或更多其他用户之间不存在干扰的可能,新分配的子载波就无法被分配给任何其他用户。如果不存在任何这样的干扰可能,则可以允许频率复用以使得新分配的子载波还能够被分配给非干扰用户。只要全部用户都已经分配有子载波,任何剩余的子载波在没有受到任何干扰的这些用户之间进行分配、较优地被平均分配。
在此参考图5对现有技术以及本发明的实施例的操作进行说明,图5示出了包括4个基站的网络500,这4个基站也被称为毫微微小区接入点502、504、506和508。第一毫微微小区接入点502具有多个用户。在所示实施例中,第一接入点502具有4个用户,也就是A、B、C和D。第二毫微微小区接入点504具有各自的多个用户,也就是E、F、G和H。第三毫微微小区接入点506具有各自的多个用户,也就是I、J、K和L。第四毫微微小区接入点508也具有多个用户,也就是M、N、O和P。
参考图6,示出了由毫微微小区接入点502至508所引起的干扰的模型600。能够理解,Fi→Fj指出了表明毫微微小区Fi请求相邻毫微微小区Fj对其发射功率和子载波分配进行修改,这是由于在毫微微小区Fi中至少一个处受到干扰并且该毫微微小区Fi为移动站(未示出)中至少一个提供服务。然而,因为全部的毫微微小区具有相似的目的,即以可达到的最大数据速率为其用户提供服务,所以修改发射功率和子载波分配的各个请求并不容易适应。更进一步,如果毫微微小区Fi过载负载较多,也就是说,具有更大的用户数量或者更大的流量,则该毫微微小区将有权要求相邻的毫微微小区修改该相邻毫微微小区的特定移动站的频谱分配。然而,如果各毫微微小区上的用户数量或者各毫微微小区处理的流量基本相同,那么这再一次导致了无法解决的冲突。
参考图7,示出了根据本发明的实施例的可解决的干扰模型700。应当理解,Fi→Fj指的是毫微微小区Fi对相邻毫微微小区Fj中至少一个及其用户造成干扰,并且指的是相邻毫微微小区Fi和Fj之间存在相互干扰。每个受到干扰的毫微微小区接入点向毫微微小区网关108或毫微微小区管理系统112或其他网络管理实体提供毫微微小区接入点报告。毫微微小区接入点报告的接收者为了解决任何冲突而进行上述的分配处理。分配处理较优地周期性地更新。在优选实施例中,分配处理每秒或每两秒更新一次。
参考图8,示出了网络800,网络800包括3个毫微微小区接入点802至806以及相关的毫微微网关808。第一毫微微小区802具有多个用户,在所示实施例中为用户A、B、C和D。第二毫微微小区804也具有各自的多个用户,在所示实施例中为用户E、F和G。第三毫微微小区806具有多个用户,即用户H、I和J。本领域的技术人员将会理解,在本示例中受分配的用户仅仅是说明性的。围绕毫微微小区802至806中的每一个的点划线810至814旨在示出各自毫微微小区的服务区。如果来自一个毫微微小区Fi的信号与来自相邻毫微微小区Fj的信号的比率γic小于选择的信号干扰比γth,那么该毫微微小区Fi的用户被分类为受到来自相邻毫微微小区Fj的干扰。在说明性实施例中,如图9中所示,假设用户B、C、F、G和I受到干扰,则这些用户将产生并传输各自的毫微微小区测量或干扰报告902至912。反过来,毫微微小区802至806将关于干扰情况900的对应报告914至918转发到毫微微网关808。应当理解,全部用户都递交测量报告,而不管这些用户是否受到干扰的不利影响,以使得FMS能够构架你干扰场景的精确图并且了解哪些毫微微小区为哪些相应用户提供服务。
毫微微网关808确定各毫微微小区内的用户数量Sm。能够理解,多个用户被表明受到来自相邻毫微微小区的干扰的不利影响。在当前情况下,移动站B、C、D、F、G和I被表明受到干扰。
毫微微网关808确定每用户的子载波初始数量Nfm,即为小于或等于以下商的最大整数,其中,N为可用子载波的数量。根据各毫微微小区递交的冲突矩阵来进行确定,冲突矩阵包含每个毫微微小区的用户数量以及分配给这些用户的总的子载波数量的指示。在该示例中,Nf1=1,Nf2=2且Nf3=3。
毫微微小区网关808随后将各用户的子载波初始数量Nuz设定为等于其服务毫微微小区接入点的子载波初始数量Nfm,这是对于受到干扰的用户。对于受到干扰的用户,各用户的子载波初始数量Nuz被设定为等于每用户的最小子载波初始数量Nfm,该每用户的最小子载波初始数量Nfm从针对具有受到干扰的用户的那些毫微微小区所确定的每用户的子载波初始数量组中挑选。因而,例如应当理解:
对于那些未受到干扰的用户,NuA=Nf1=1,NuE=Nf2=2且NuJ=Nf3=3,然而
对于那些受到干扰的用户,NuC=NuF=NuI=Nf1=2。
根据各自的毫微微小区分配,也就是根据每用户的子载波数量Nfm,毫微微网关808以降序支持毫微微小区,即F1→F2→F3。优选实施例从具有最高用户密度的基站开始分配子载波。替代性或额外地,实施例从受到干扰的用户的百分比最大的基站开始分配子载波。
毫微微小区网关808针对禁止子载波Θ、优先子载波P和分配子载波A建立三个空矩阵。禁止子载波、优先子载波和分配子载波矩阵根据以上确定的升序由各自毫微微小区的用户填充,这导致图10中所示的频率分配1000。在此情况下,参考分配子载波矩阵1002,能够理解,与第一毫微微小区802相关联的用户的频率分配在三个矩阵中得到体现。因而能够理解,该用户A分配有第1对子载波。类似地,用户B分配有不同的第2对子载波。同样,用户C分配有第3对子载波,用户D分配有第4对子载波。类似地,用户E分配有相应时隙中的一对子载波。因为测量报告示出,用户A和E之间不存在干扰。用户F分配有第5对子载波且用户G分配有第6对子载波。关于第3毫微微小区806,用户H分配有第7对子载波,用户I分配有第8对子载波,且用户J分配有3个子载波。
参考优先子载波矩阵1004,能够理解,第1毫微微小区802的用户A分配有第1对子载波1008和第2对子载波1010。用户E也分配有与分配给用户A的第1对子载波相同的第1对子载波1012,以及第2对子载波1014。分配给用户E的第2对子载波1014与分配给用户A的第2对子载波1010不同。用户G分配有第1对子载波1016,且用户J分配有第一组4个子载波1018以及用作优先子载波的第二组2个子载波1020。用户A、E和G为内部用户,内部用户被指为不受到任何干扰。
参考禁止子载波矩阵1006,代表分配子载波矩阵与优先子载波矩阵中所指定的子载波之间的“或”运算的被编号的子载波提供了可被各自用户使用的子载波的指示,并且未编号的子载波提供了禁止各自用户使用的子载波的指示。
接下来,毫微微小区网关808通过将剩余的未分配频谱用于内部用户以使得子载波分配最大化;内部用户为不受到干扰的用户。在当前情况下,用户A、E和J为内部用户。在将剩余的子载波分派给那些内部用户之后,优先子载波矩阵和分配子载波矩阵被相应更新。
可选择地,毫微微小区网关进行隐藏频谱分派以确保全部可用的子载波都进行了分配。中央分配资源,也就是FGW或FMS,对提供全部内部用户进行识别,全部内部用户可以是Tm所服务的并且对于c≠m满足的任何“a”用户,其中,ζ为冲突矩阵。参考图9,能够理解,用户A、E和J为内部用户。对于每个毫微微小区,中央点测量未分配子载波的总数,并且每个内部用户分配有相同数量的未分配子载波。应当理解,隐藏频谱分派最后进行,其本质是初始频率分配的步骤的重复,但是这是对于由二进制数填充的分配矩阵。因而,如果在一组频率更新内存在Z个用户,N个子载波、分配子载波矩阵和禁止子载波矩阵分别给定为A和Θ,重复初始频率分配直到子载波分配指示符Saloc等于NZ,其由下式给出:
其中,∨为逻辑或运算符。
在示例中,这意味着重复初始频率分配直到Saloc等于160。
本发明的实施例实现了自组织网络无线资源管理,其具有比现有技术好的多的性能收益。
例如,参考图11,示出了曲线图1100,曲线图1100示出了对于多个子载波分配技术,每用户的数据速率随着毫微微小区数量的变化,其中,毫微微小区包含在60m×60m的区域内以及100m×100m的区域内。曲线图1100示出了现有技术中的中央无线资源管理技术的第一性能曲线1102。能够理解,每用户的数据速率相对较低。曲线图1100示出了与已知的自组织无线资源管理技术的分别1和10次自组织迭代相关联的一对性能曲线1104和1106。能够理解,与曲线1102相比,性能曲线1104和1106具有显著提高的每用户的数据速率。然而,还能够理解,与随机子载波分派相比,对应于曲线1104和1106的自组织无线资源管理技术具有较弱的性能。性能曲线1108与这样的随机子载波分派相关联。最后,示出了与本发明的实施例相关联的一对性能曲线1110和1112,其信号干扰比的阈值分别为28dB和22dB。能够理解,本发明的实施例的数据速率相比于现有技术具有超过20%的提升,尤其是对于较高的毫微微小区密度而言。
参考图12,示出了曲线图1200,曲线图1200示出了对于多个子载波分配技术,每用户的保证数据速率随着毫微微小区数量的变化,其中,毫微微小区包含在60m×60m的区域内以及100m×100m的区域内。曲线图1200示出了现有技术中的中央无线资源管理技术的第一性能曲线1202。能够理解,每用户的保证数据速率为零。曲线图1200示出了与已知的自组织无线资源管理技术的分别1和10次自组织迭代相关联的一对性能曲线1204和1206。能够理解,相比于曲线1202,性能曲线1204和1206具有明显提升的每用户的数据速率。与图11中示出的性能曲线相反,能够理解,曲线1104和1106对应的自组织无线资源管理技术相比于随机子载波分派具有更优的性能。性能曲线1208与这样的随机子载波分派相关联。最后示出了与本发明相关联的一对性能曲线1210和1212,其信号干扰比的阈值分别为28dB和22dB。能够理解,相比于现有技术,本发明的实施例的保证数据速率对于较高的毫微微小区密度具有超过50%提升并且保证数据速率对于较低的毫微微小区密度具有超过300%的提升。
参考图13,示出了曲线图1300,曲线图1300示出了对于多个子载波分配技术,RF功耗随着毫微微小区数量的变化,其中,毫微微小区包含在60m×60m的区域内以及100m×100m的区域内。曲线图1300示出了现有技术的中央无线资源管理技术的第一性能曲线1302。能够理解,功耗并未改变。曲线图1300示出了与已知的自组织无线资源管理技术的分别1和10次自组织迭代相关联的一对性能曲线1304和1306。能够理解,性能曲线1204和1206对应于明显更高的功耗。能够理解,曲线1304和1306对应的自组织无线资源管理技术相比于随机子载波分派具有更优的性能。性能曲线1308与这样的随机子载波分派相关联。最后,示出了与本发明的实施例相关联的一对性能曲线1310和1312,其信号干扰比的阈值分别为28dB和22dB。能够理解,本发明的实施例与随机子载波分派技术相比在100m×100m区域内的功率节省提高了2dB或37%并且在更高的毫微微小区密度中的功耗节省提高了5dB或69%,并且与现有技术的自组织无线资源管理技术相比从较低至较高的毫微微小区密度具有1dB至2dB的提升。
图14示出了在异构网络背景下本发明的实施例的模拟场景1400,异构网络包括宏小区基站1402以及多个毫微微小区1414至1420,宏小区基站1402具有多个用户1404至1412,毫微微小区1414至1420服务于给定区域1422内的相应用户。在所示实施例中,给定区域为60m×60m的区域。该图为了清楚起见仅描绘了七个室内用户。模拟假设了20个毫微微小区用户。模拟参数如下:
-20个毫微微小区用户,并且使用5和10个毫微微小区的情况;
-针对外部用户的宏小区基站发射功率为20W;
-针对内部用户的宏小区基站发射功率为2W;
-毫微微小区发射功率为100mW;以及
-MIMO被用于提高性能——空间-时间块码MIMO由两个发射机和一个接收机使用。
图15示出了曲线图1500,曲线图1500为在5个毫微微小区的情况下,用户数据速率随着毫微微小区服务区1422与宏小区基站的距离的变化。与现有技术的自组织无线资源管理技术的分别2和10次迭代相关联的第一对性能曲线1504和1506被示为达到合适的数据速率,该数据速率优于随机分派子载波,随机分派子载波的性能曲线由1508示出。所示出的第二对性能曲线1510和1512针对信号干扰比的阈值分别为22dB和28dB的本发明的实施例。能够理解,当工作在宏小区下时,本发明的实施例与现有技术相比具有高达70%的性能提升。模拟使用了5个和10个毫微微小区。图17示出了10个毫微微小区情况下的相同曲线。
图16示出了曲线图1600,曲线图1600为保证用户数据速率随着毫微微小区服务区1422与宏小区基站的距离的变化。与现有技术的自组织无线资源管理技术的分别2和10次迭代相关联的第一对性能曲线1604和1606被示为达到合适的数据速率,该数据速率优于随机分派子载波,随机分派子载波的性能曲线由1608示出。所示出的第二对性能曲线1610和1612针对信号干扰比的阈值分别为22dB和28dB的本发明的实施例。能够理解,当工作在宏小区下时,本发明的实施例与现有技术相比具有高达70%的性能提升。图18示出了10个毫微微小区情况下的相同曲线。
应当理解,以上实施例中的一个或更多在基站级或更下级应用干扰管理或减轻技术,也就是说,在宏小区级和更下级尤其是在基站级和更下级。前述内容例如由毫微微小区管理系统112全局进行。然而,实施例并不限于此。实施例能够以占优干扰这样更加局部的方面实施,并且能够对以上的一个或更多实施例进行额外或者作为替代的资源规划。
因而,参考图19,示出了另一资源分配算法的流程图1900。诸如毫微微小区基站之类的基站在步骤1902中被通电。在步骤1904中,基站被设置为使用整个可用资源块。在步骤1906中确定是否要求与该基站相关联的任何用户发送测量报告。如果在步骤1906中的确定为肯定,则在步骤1908中,基站被设置为请求一个或更多用户设备准备并发送测量报告到基站,以用于对由基站所拥有并管理的至少一个局部冲突矩阵以及由诸如毫微微小区管理系统112之类的另一实体所拥有并管理的全局冲突矩阵进行更新。在递交测量报告和/或更新冲突矩阵之后,在步骤1910中确定最近构建的局部冲突矩阵或测量报告与一个或更多之前构建的局部冲突矩阵之间是否存在预定的相关性。如果确定为肯定,则处理转向步骤1912。
在步骤1906中,如果不要求任何用户设备发送测量报告,则控制转向步骤1912。
参考步骤1912,确定是否从诸如毫微微小区管理系统112之类的基站管理系统接收到中断。如果步骤1912中的确定为否定,则在步骤1914中确定是否能够实现对部分资源块的使用。如果能够实现对部分资源块的使用,则在步骤1916中,通电的基站使用该部分资源块以支持无线通信。部分资源块将被提前确定。部分资源块对应于可用无线资源的子集或者整个无线资源,例如,可用频谱的子集。如果在步骤1914中的确定为否定,则控制转向步骤1904,基站借此尝试使用整个可用无线资源块,例如,使用整个资源块。
如果在步骤1912中的确定为肯定,则在步骤1918中确定是否接收到指令以使用全部资源块来支持无线通信。如果确定为肯定,则控制转向步骤1920,其中,基站适于使用整个资源块。能够理解,步骤1920在功能上等同于步骤1904,这使得控制可以从步骤1918直接转向步骤1904。
如果在步骤1910中确定了当前构建的冲突矩阵与之前构建的冲突矩阵之间的相关性程度不足,或者如果在步骤1918中确定了基站并未接收到使用全部资源块的指令,则在步骤1922中将有关此结果的的报告发送到诸如毫微微小区管理系统112之类的基站管理系统。
在步骤1930中,基站管理系统112通过以下方式进行响应:在基站管理系统112的控制之下基于与全部基站相关联的全局冲突矩阵来解决冲突基站之间的冲突资源块分配。在步骤1932中,基站管理系统112随后发送子载波标准到全部冲突基站;子载波标准包括对步骤1924中由基站接收的无线资源的分配。例如,在从基站管理系统接收到分配的无线资源(子载波)之后,基站可能要进行重新调度,重新调度包括基于用户设备需要对子载波进行重新分配。决策标准或信息为由于相邻或其他用户设备对子载波的使用而导致的特定用户设备的全部禁止子载波的指示。
在步骤1924中确定在基站内是否能够使用调度。如果在基站内能够使用调度,则在步骤1926中,基站被设置为在不违背一个或更多标准的情况下重新分配资源。此后,基站使用在步骤1928中新分配的资源块以支持无线通信。如果在基站处不能够使用调度,则在步骤1928中基站使用新分配的资源块。
此后,控制返回步骤1906。
在所提供的实施例中,应用或使用诸如最大公平、比例公平、比例速率约束之类的任何调度标准的基站能够在它们的用户设备之间自主地进行对诸如其分配的资源块之类的无线资源的分配,其前提是分配基站不违背各自的局部冲突矩阵。
能够理解,全局冲突矩阵是来自在基站管理系统112控制下的基站、并且尤其是来自在基站控制系统112控制下的冲突基站的局部冲突矩阵的聚集。因而应当理解,给定基站Tm的局部冲突矩阵如上所述由ζm给出,并且全局冲突矩阵由给出,其中,Z为用户总数,且M为在基站管理系统112控制下的基站的总数。
为了解决可能出现的任何问题,例如,在极高密度场景下的瓶颈,无线资源分配以用户分簇为基础来完成。因而,实施例提供了以下分配规则集:
1、对小型小区分组
基于如图20中所示的连通性图2000对基站进行分组。参考图20,即参考连通性图2000,多个基站F1 2002至F13 2026被示为连接。实施例较优地被实现为,基站为毫微微小区基站或者至少包括一个或更多毫微微小区基站。然而,实施例并不限于将毫微微小区基站作为基站。实施例能够被实现为本申请中所述的任何或全部实施例,其中,基站可以是负责分配无线资源和使用无线资源中至少一个的另一类型的实体,例如,宏小区基站、微小区基站、皮小区基站或者具有该责任的用户设备。
基站被分组为第一分组2028和第二分组2030。能够理解,第一分组2028包括11个基站;即F1 2002至F11 2022。虚拟连通性图2000提供了基站2002至2026的指示,这些基站干扰另一基站的无线资源分配或者至少具有干扰另一基站的无线资源分配的可能性。例如,能够理解,第一基站F1 2002被表明有可能干扰四个其他基站或者受到四个其他基站的干扰,即基站F2 2004至F5 2010。第二分组2030仅包括两个基站2022和2024,这两个基站干扰另一基站或者至少具有干扰另一基站的无线资源分配的可能性。
为简单起见,将注意力集中在第一分组上,尽管后续内容同样可用于第二分组2020。
2、排序
与以上实施例相比,排序根据一个或更多标准基于分组内的用户来进行。基于图20中给出的示例,针对每个基站,在下表1中给出了受影响用户的数量Sm以及子载波的初始数量Nfm在下表,假设子载波的总数N为30:
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11
Sm 4 6 5 3 5 4 7 6 4 4 6
Nfm 7 5 6 10 6 7 4 5 7 7 5
表1
其中,Sm由下式给出
并且,
Nfm给出。
随后确定每用户设备的子载波数量如上所述,该子载波数量被设定为等于各自服务基站的初始子载波分配Nfm。因而,使用下面表2中所示的全局分配矩阵。
表2全局冲突矩阵(MoC),ζ,示例
因而,基于表2的每用户设备的子载波初始数量如以下表3所示:
表3基于表1的每用户的子载波初始数量
通过使用表2,根据预定标准对用户设备进行排序或排列。在优选实施例中,预定标准为满足以下排序的每用户的初始子载波的数量
(N,O,P,Q,T,W,Y)->(A,B,C,D,E,G,R,S,U,X,Z)->(F,I,J,K)->(L,H,V)。
3、建立分配矩阵:
a)分配载波矩阵A
建立临时的分配载波矩阵。
b)部分禁止载波矩阵Φ
建立二进制矩阵,该二进制矩阵指出禁止无线资源,该禁止无线资源是由于相邻基站的用户设备之间需要保留或者实现正交要求而产生的,正如以上表2中示出的全局冲突矩阵所指出的。
c)完整禁止载波矩阵Θ
建立二进制矩阵,该二进制矩阵指出禁止无线资源,该禁止无线资源是由于相邻基站的用户之间的正交要求,正如以上表2中所示的冲突矩阵所指出的。
d)分组优先载波矩阵Pg
建立二进制矩阵,该二进制矩阵决定了针对每个分组的初始优先矩阵。
e)全部优先载波矩阵P
建立二进制矩阵,该二进制矩阵表明了了优先子载波。
4、将分组内的用户分簇
可选地,基于排序顺序,对具有相同的子载波初始数量的用户进行分簇。基于图2中示出的虚拟连通性图完成分簇。实施例被设置为仅对具有相同并且由相同基站和/或由直接相连的不同基站提供服务的用户设备分簇。
在表2即冲突矩阵中所示的示例中,分簇的结果在下表4中示出。
表4分簇结果
5、根据用户设备的排序,从用户1开始为用户设备分配预定数量的子载波。
○确保分配给各用户设备的子载波在频率上隔开以获得一定的频率差异性。
○(可选地)基站可以发送各用户设备的子载波的优先顺序。
○如果用户排序包括宏小区和/或微小区、宏小区和微小区,则这样的基站的用户相比于皮小区和毫微微小区的用户总是具有最高的优先级。
○将无线资源并行分配给具有相同的两个或更多簇。
6、更新分配矩阵
○分配给一个用户设备的子载波对该用户设备的一定距离内的全部其他用户设备而言是禁止的。应当理解,该距离反映的是用户之间的干扰的可能性。因而,冲突矩阵能够被用于确定给定用户的禁止子载波。
○当对应簇基于虚拟连接与之前分配的用户相关时,仅更新用户的优先子载波和禁止子载波。
7、只有用户分配有无线资源,就在考虑到更新后的分配矩阵的情况下对排序中的下一个用户分配子载波。
每当为新用户分配子载波时更新分配矩阵。
●在为全部用户分配预定数量的子载波之后,将其余的子载波分配给内部用户,内部用户被定义为Tm提供所服务的并且对于c≠m满足的任何用户设备;也就是说,未受到干扰的用户设备。
8、重复步骤5直到对全部BS中的全部用户进行了分配。
9、
参考图21,示出了视图2100,视图2100为占优干扰场景2102和对应的冲突矩阵2104。在干扰场景2102中,三个基站2106至2110被示为向各自的用户设备2112至2116提供服务。基站例如能够为毫微微小区基站,尤其是LTE毫微微小区基站,但是还可以是其他类型的基站,诸如以任何和全部组合形式的共同和分别为宏小区基站、微小区基站、皮小区基站和毫微微小区基站中的至少一个。
基站2106至2110被示为使用各自的无线资源2118至2122与它们各自的用户设备通信。因而能够理解,第一基站2106使用第一无线资源EA,12118与相应的用户设备2112通信。第二基站2108使用第二无线资源EB,2与其用户设备2114通信。第三基站2110使用第三无线资源EC,32112与其用户设备2116通信。总之,与给定的基站X以及给定的用户设备Y相关联的信号、有意信号或干扰信号的标号约定(labelling convention)由EX,Y给出。在场景2102中,有意信号由点划线箭头表示,而干扰信号由点线箭头表示。因而能够理解,第一基站2106与第二用户设备2114和第三用户设备2116之间存在形式为相应的干扰信号EB,12124和EC,12126的干扰。第二基站2108与第一用户设备2112之间也存在形式为相应干扰信号EA, 22128的干扰。最后,第三基站2110与第一用户设备2122之间存在形式为相应干扰信号EA, 32130的干扰。
尽管以上信号中的某些被定义为干扰信号,但是这些干扰信号是否表示有问题的干扰信号由预定阈值γth来确定。因而,例如,如果第一用户设备2112的有意信号EA,12118与干扰信号EA,22128的比率小于预定的相应阈值γth,则第一用户设备2112被视为受到有问题的干扰,也就是说:
考虑到图21中所示的完整场景,冲突矩阵2104能够构建为表示超过一个或更多相应阈值的干扰,给定的用户设备受到该干扰。因而能够理解,第一用户设备2112受到来自与干扰线号EA,2相关联的第二基站2108的干扰,而未受到来自与第三基站2110相关联的信号,即信号EA,32130的足够干扰,也就是超过相应阈值的干扰。根据接收或检测到的信号是否超过相应阈值能够针对其他用户设备2114和2116构建类似的冲突矩阵。应当理解,全部的基站请求其用户设备测量并报告来自相邻基站的接收信号强度,也就是测量并报告来自能够检测到传输并且能够基于此确定出相关联的接收信号强度的基站的接收信号强度。
参考图22及以下内容给出了应用上述场景的一个示例。
参考图22,示出了网络2200,网络2200包括第一至第三基站,例如,上述的第一至第三毫微微小区2106至2110以及多个用户设备2202至2212。第一基站2106被示为向两个用户设备提供服务,即用户设备A 2202和用户设备B 2204。第二基站2108为用户设备E 2210和用户设备F 2212提供服务。第三基站2110被示为向用户设备C 2206和用户设备D 2208提供服务。各基站2106至2110请求各自的用户设备递交测量报告,测量报告提供了来自诸如至少一个其他基站以及其他用户设备之类的其他实体的信号的信号强度的指示。
各基站2106至2110构建局部冲突矩阵,局部冲突矩阵提供了各自用户设备受到的超过各自阈值的干扰水平的指示。第一基站2106构建第一局部冲突矩阵2214’。能够理解,第一冲突矩阵2214’表明用户设备A 2202并未受到来自第二基站2108和第三基站2110的超过至少一个相应阈值的任何干扰。对于用户设备B 2204同样如此。在第二基站2108处构建的第二局部冲突矩阵2216表明用户设备E 2210和用户设备F 2212都未受到来自第一基站2106和第三基站2110的超过至少一个相应干扰阈值的干扰。类似地,在第三基站2110处构建的第三冲突矩阵2218表明用户设备C 2206和用户设备D 2208并未受到来自第一基站2106和第二基站2108的超过至少一个相应阈值的干扰。
尽管实施例能够使用公共阈值γth,但是实施例并不限于此。实施例能够被实现为,针对用户设备检测到的各信号建立各自的阈值,或者挑选的用户设备组使用相同的阈值,该阈值与其他挑选的用户设备组使用的阈值不同。例如,与第一基站相关联的用户设备可以具有相关联的相应阈值,而与另一基站相关联的用户设备具有不同的阈值。
在本实施例中,假设公共阈值γth被用于确定是否存在干扰。
在构建了局部冲突矩阵2214、2216和2218之后,这些矩阵被转发到基站管理系统,例如,毫微微小区管理系统112。FMS 112对局部冲突矩阵进行整理以产生全局冲突矩阵2220。在全局冲突矩阵中2220中使用以下命名:
“2”指的是相应的用户设备由对应的基站提供服务;
“1”指的是相应的用户设备受到来自对应基站的干扰;
“0”指的是相应的用户设备未受到来自对应基站的干扰。
例如,能够理解,用户设备A 2202被表明由第一基站F1 2106提供服务。这同样适用于用户设备B。用户设备C 2206和D 2208被表明由第三基站2110提供服务,并且用户设备被表明由第二基站2108提供服务。能够理解的是不存在干扰。
因为不存在干扰,所以各用户设备自由使用全部的无线资源,例如,使用图23中所理解的资源块,其中,已经分析了全局冲突矩阵并且发现不存在干扰的FMS 112为各基站提供无线资源分配指示2300至2304以指示各基站的各自用户设备能够使用全部的无线资源,也就是可由基站及其各自用户设备使用的整个资源块。
无线资源分配指示2300至2304能够包括用于基站和给定用户设备之间通信的无线资源的指示。该分配是设备特定的。替代性或额外地,无线资源分配指示2300至2304能够欠规范(less prescriptive),以使得例如,诸如无线资源块之类的无线资源能够被表明可供基站及其各自用户设备所使用,来自该无线资源的实际分配在各自基站的自由裁量内,即在各自基站的控制之下。
参考图24,示出了视图2400,视图2400为干扰情况的改变。能够理解,用户设备D2208移动到基站F1 2106的服务区2404与基站F3 2110的服务区2406之间的重叠区2402中。同样,用于设备A 2202移动到相同的重叠区2402中。当用户设备随后发送测量报告时,用户设备A 2202报告其能够从第三基站F3 2110接收信号,并且用户设备D 2208报告其能够从第一基站2106接收信号。该意思的测量报告被发送到各自基站。来自用户设备A 2202和D2208的测量报告表明它们的干扰场景发生了改变。根据第一冲突矩阵2214能够理解,第一用户设备A 2202由于来自第三基站2110的传输而受到超过预定阈值的干扰。根据第三冲突矩阵2218能够理解,第一用户设备D 2208由于来自第一基站2106的传输而收到超过预定阈值的干扰。如果该改变足以超过预定阈值,正如当前示例中所假设的情况,则第一基站2106将更新的冲突矩阵2214发送到基站管理系统112,并且第三基站2110将更新的冲突矩阵2218发送到基站管理系统112。
基站管理系统112接收局部冲突矩阵2214和2218,并且更新全局冲突矩阵2220,从而表明第一基站A 2202受到来自第三基站2110的干扰,且用户设备D 2208受到来自第一基站2106的干扰,正如从各自实体2408和2410中看到的。
参考图25,示出了无线资源分配受到以上干扰场景作用的视图2500。基站管理系统112应用上述参照例如图2和19所描述的算法按照基站的用户设备所引起的干扰量或者经受的干扰量的顺序对基站排序,并且将来自最坏干扰场景的无线资源分配到最小干扰场景。本质上说,实施例按照从最坏干扰到最小干扰的程度顺序分配无线资源。因而,能够理解的是,无线资源2502和2054由基站管理系统112分别分配给第一基站2106和第三基站2110。各自的无线资源2502和2504适于使用诸如不会相互干扰的载波和时隙中至少之一之类的无线资源,也就是说,干扰场景通过无线资源的合理再分配得到解决。能够理解的是,被分配给第一基站2106以供其用户设备A 2202和用户设备B 2204使用的无线资源允许用户设备A 2202使用无线资源的第一分配2506。能够理解的是,无线资源的第二分配2508已被分派供第二用户设备2204使用。还可以看出,被分配给第三基站2110的无线资源2504包括与被分配给第一基站2106的无线资源不重合或者无任何相同之处的无线资源。能够理解的是,整体无线资源仍可用于第二基站F2 2108。只有对可用无线资源的整个集合的使用被从干扰的观点进行管理,以使得与干扰相关联的基站使用无线资源的相应子集,该子集较优地为相互排斥的子集。能够看到,分配给第三基站2206使用的无线资源包括供用户设备C使用的无线资源2510以及供用户设备D 2208使用的无线资源2512。能够看到,分配给第一基站2106使用的无线资源的子集中,受到最多干扰的用户设备A 2202与并未受到或者受到较少干扰的用户设备B 2204相比分配有更少的无线资源2506。优选地,按照最多干扰到最少干扰的顺序分配最少到最多的无线资源。能够理解,无线资源分配与干扰之间存在互反关系。无线资源根据需要进行分配。在本实施例中,该需要至少与减轻干扰有关。
图26示出了视图2600,视图2600为无线环境的改变。能够理解,用户设备B 2204已经移动到第一基站2106的服务区2404内。然而,该移动并未导致占优干扰场景的改变。因而,用户设备B 2204发送的任何测量报告将不会改变或者至少差别很小,也就是说,在各自的阈值以下,在局部冲突矩阵2214中不存在改变。
参考图27,示出了进一步的视图2700,视图2700为进一步改变的无线环境。能够理解,用户设备F 2212已经移动到第一基站2106的服务区2404和第二基站2108的服务区2704之间的重叠区2702。在从用户设备F 2212发送到第二基站2108的测量报告2704中,存在用户设备能够从第一基站2106接收至少一个信号的指示。因而,第二基站2108将更新其局部冲突矩阵2216以表明用户设备F 2212受到或者至少可能受到与第一基站2106相关联的干扰或来自第一基站2106的干扰,正如从冲突矩阵内的“1”2706能够看到的一样。更新后的局部冲突矩阵2706被发送到基站管理系统112。
基站管理系统112使用与用户设备F 2212受到的干扰场景相关的新信息来更新全局冲突矩阵2220,正如从与用户设备F 2212和第一基站2106相关的更新条目2708能够看到的一样。
参考图28,示出了视图2800,视图2800为响应于用户设备F 2212报告其干扰的动作。可选地,基站管理系统在请求来自第一基站2106的关于其局部冲突矩阵2214的更新之前,等待诸如10ms的预定时段,该局部冲突矩阵在此情况下未改变,这是因为第一基站2106的用户设备2202和2204受到的干扰并未改变。第一基站2106响应于来自基站管理系统112的请求报告其局部冲突矩阵2214。响应于从第二基站2108接收至少局部冲突矩阵2216,并且较优地还接收局部冲突矩阵2214,基站管理系统应用或采用例如至少在图2或图19中限定的步骤通过合适的无线资源分配来减轻任何干扰的效果。能够理解,需要解决或避免用户设备F 2212和第一基站2106之间的干扰可能。因此,基站管理系统112确定整体无线资源的相互排斥子集是否是可用的,以使得用户设备F 2212第一基站2106不具有相互干扰或至少具有相互干扰的可能性。
从图23和25能够理解,被分配给用户设备F 2212的无线资源2302,也就是被分配给图27中示出的场景中受到最多干扰的用户设备的无线资源,与分配给第一基站2106尤其是分配给用户设备B 2204使用的无线资源2508重叠。基站管理系统112通过向第一基站2106和第二基站2108分配整体可用无线资源的各自无线资源子集,解决了冲突或者冲突的可能。各自的子集相互排斥,以使得分配给第一基站2106以供用户设备B 2204使用的无线资源2508与分配给第二基站2108以供用户设备F 2212使用的无线资源2802之间不存在重叠。
参考图29,示出了视图2900,视图2900为用户设备A 2202和B 2204不再活动的占优无线环境。实施例被设置以使得,当诸如第一基站2106的基站没有活动的用户设备时,基站放弃其无线资源。第一基站2106将指示2902发送到基站管理系统112,该指示2902为不再需要之前分配给第一基站2106的无线资源。第一基站2106较优地对其局部冲突矩阵2214进行更新,局部冲突矩阵2214示出了第一基站2106不具有受到干扰的用户设备,这是因为第一基站2106没有活动的用户设备。较优地,这样的基站2106进入待机模式。可选地,最新的局部冲突矩阵能够被发送到基站管理系统112。
响应于接收基站具有至少一个非活动用户设备或者进入了待机模式的指示2092,基站管理系统更新其全局冲突矩阵2220。全局冲突矩阵2220不再具有针对用户设备A 2202和B 2204的条目。全局冲突矩阵2220具有诸如用户设备C 2206至F 2210之类的活动的用户设备的条目。基站管理系统112分析全局冲突矩阵2220以确定是否可以变更第二基站2108和第三基站2110的无线资源分配。能够理解,第一和第二基站之前使用整体可用无线资源的各自子集以减轻干扰,并且第一和第三基站之前使用整体可用无线资源的各自子集以减轻干扰。对全局冲突矩阵2220的分析显示出,第二基站2108和第三基站2110能够使用全体的可用无线资源,这是因为目前存在非实际干扰或非可能干扰中至少之一。因而,基站管理系统112发送中断到提供待使用的无线资源的指示的第二基站2108和第三基站2110中至少一个且较优地发送中断到该两者。在当前情况下,能够理解,基站管理系统112将分配给第二基站2108的无线资源的指示2904和已经转发到第三基站2110的类似指示2906进行转发。在当前示例中,虽然指示2904和2906通知各自基站使用整个可用无线资源,但是实施例并不仅限于这样的设置,实施例可以额外或替代性地通知第二基站2108和第三基站2210使用整个无线资源的各自子集。实施例能够被实现为,那些各自子集具有某些重叠或公共的无线资源或者不具有重叠或公共的无线资源。
参考图30,示出了视图3000,视图3000为基站管理系统112应用的无线资源分配的规则。
在规则1 3002中,基站被分组为相应的小基站分组318至322,正如参考图3和4所述的一样。
接下来,按照规则2 3004进行每个分组内的排序,其中,进行每用户设备的载波数量即无线资源数量的初始计算,其后按最高优先级到最低优先级来排列用户,以使得具有最少无线资源分配的用户设备被给予最高优先级。
之后为规则3 3006,进行初始无线资源分配,举例来说,包括根据确定的排序较优地每次对一个用户设备分配初始无线资源,并且在该分配之后更新全部小区的公共信息以减轻对给定用户设备的最近(most recent)分配之后的任何干扰可能。
规则4 3008被应用于将任何未使用的无线资源分配给内部用户设备,也就是分配给未受到干扰或者不具有受到任何干扰的可能的用户设备。应当理解,将未使用的无线资源分配给内部用户设备是相对直接的任务,该任务能够增加整体技术方案的收敛速率。
较优地,规则5 3010被应用于重复步骤3以将不容易分配给内部用户设备的进一步未使用的资源分配给任何其他用户设备。
参考图31至X,给出了处理过的示例。图31示出了视图3100,视图3100为包括第一基站2106至第三基站2108、各自的用户设备2202至2214’、各自的服务区2404、2406和2704以及基站管理系统112的占优网络。假设存在12单位的无线资源。第一基站2106具有三个用户设备,即用户A至C;第二基站2108具有三个用户设备,即用户设备D至F;以及,第三基站2110具有单个用户设备2214’。
能够理解,多个用户设备在服务区2404、2406和2704重叠的区域3102至3106中。假设这些重叠区域内的用户设备受到的干扰超过各自的阈值;这样的各自阈值对于全部的用户设备能够相同,或者对于一个或更多用户设备不同。因此,在发送各自的测量报告以及相关的局部冲突矩阵之后,基站管理系统112构建全局冲突矩阵3108。
从全局冲突矩阵3108能够理解:
用户设备A和B受到来自第二基站2108的干扰;
用户设备C受到来自第三基站2110的干扰;
用户设备F受到来自第三基站2110的干扰;以及
用户设备G受到来自第一基站2106的干扰。
分组产生三个分组,即,第一分组3110包括用户设备A至C,第二分组3112包括用户设备D至F,并且第三分组3114包括用户设备G。
参考图32,示出了视图3200,视图3200为在各个分组内从受到最多干扰的分组开始且朝向具有最小干扰的分组的排序步骤。能够理解,全局冲突矩阵3108示出,第一分组3110具有最大的干扰情况,即三个用户设备A、B和C受到来自第二基站2108和第三基站2110的干扰;第二分组3112受到仅来自第三基站2110的干扰,并且最后分组受到来自第一基站2106的干扰。在步骤3202中,基站管理系统112确定每个小区(服务区)内受到作用或影响的用户设备的数量Sm。接下来,在步骤3204中,基站管理系统112计算每用户设备的初始无线资源分配从表3206中能够理解,第一基站2106包括受其影响的四个用户设备A至C和G,第二基站2108具有受其影响的五个用户设备,并且第三基站2110具有受其影响的三个用户设备。已知那些用户设备数量Sm的值分别为3、2和4。
在步骤3208中,基站管理系统112按照Nfm从表明最大无线资源干扰的最小值至表明最小无线资源干扰的最小值的顺序对小区即基站进行分类。能够理解,基站2106至2110按照第二基站、第一基站和第三基站排列。可选地,用户设备也根据分组并且根据分组内的最大干扰进行排列。因而,用户设备排列为D、E、F、A、B、C、G。
基站管理系统112在步骤3210中使用全局冲突矩阵3108计算每用户设备的无线资源分配的初始(调整)数量NU。基站管理系统112,首先针对每个用户设备确定一个集合ξa(m)={ζ(m,a)}Nfm,其中,m=1,…,3且a=A,…,G,即m表示基站数量且a表示用户设备。每用户设备的无线资源数量NU为:
其中,将以上结果应用在第二表3212中,其中,用户设备A、B、D、E、F全都具有两单位的无线资源,例如资源块,并且用户设备C和G各自都有三单位的无线资源,例如资源快。
参考图33,示出了视图3200,视图3200为初始无线资源分配。分配矩阵3302被构造为包括至少分配资源矩阵A 3304。分配资源矩阵3304包括针对每个检测到的用户设备的条目,即用户设备A至G,以及针对每个可能的无线资源的条目;在本示例中,N=12,即12个可能的资源块例如能够被分配给用户设备A至G。回想到,上述的资源分配顺序为D、E、F、A、B、C、G。还示出了其他可选的矩阵。作为当前无线资源分配的替代方式,优先资源矩阵P 3306表明当出现干扰时相应用户设备的哪些资源被按照优先级进行分配。示出的禁止矩阵Θ3308包含相应用户设备不被允许使用的无线资源的指示。示出的部分禁止资源矩阵Φ3310包含当前或临时禁止的无线资源的指示,但是这些无线资源当与基站及其用户相关联的干扰场景改变时可用。这样的改变可在例如如下情况下发生:由给定用户设备的基站提供服务的另一用户设备所使用的资源在该给定用户设备对应的部分禁止矩阵中被表明为部分禁止的或者被表明为该部分禁止矩阵的一部分。
参考图34,示出了初始资源分配的视图3400。考虑到用户设备无线资源分配顺序以及每用户设备的无线资源数量,能够理解,用户设备D被分配有相应的资源3402。在示例中,无线资源包括第一资源块3404和第二资源块3406。实施例并不仅限于这样的分配。实施例能够被实现为分配有某些其他单位的无线资源。应当理解,那些无线资源不再被受到来自服务于用户设备D的基站的干扰的任何用户设备所使用。因而,基站管理系统112使用全局冲突矩阵对P、Θ、Φ中至少一个且较优地对全部三个矩阵进行更新。基站管理系统112识别与刚被分配了无线资源的用户设备相关联的基站,并且应用以下规则:
-如果全局冲突矩阵包含对应于干扰的值“1”,那么相关联的用户设备在Θ和Φ中至少一个中并且较优地在两个中具有条目,该条目表明分配给用户设备D的无线资源无法供在全局冲突矩阵中具有“1”的用户设备所使用;
-否则,
○如果全局冲突矩阵包含表明对应的用户设备由基站提供服务的值“2”,则禁止矩阵Θ的条目被更新以表明那些无线资源无法供各自用户设备所使用;
○否则,
○更新优先矩阵P以表明:如果由于占优无线环境的改变而需要重新分配无线资源,则无线资源可以基于优先级或优先权而被对应用户设备所使用。
通过应用上述规则,能够理解,全局冲突矩阵在各自用户设备A和B中包含“1”。因而,Θ和Φ矩阵中至少一个且较优地两者的各自条目3408至3414被更新以表明,分配给用户设备D的无线资源3402无法被分配用于由各自基站2106向用户设备A和B提供服务。
接下来,遍历全局冲突矩阵,用户设备C遇到“0”,表明第二基站2108与用户设备C之间没有干扰。因而,优先矩阵P的条目3416和3418被更新以表明:如果无线环境改变,被无线资源3404和3406能够被优先地分配到设备C。
接下来,能够理解,用户设备E和F遇到一对“2”。因而,在禁止资源矩阵Θ中产生对应条目3420至3426,这是因为各自的资源矩阵已经被分配给第二基站2108使用用于服务用户设备D。因此,第二基站F2被禁止让户设备E和F使用第一和第二无线资源。
接下来,用户设备G遇到“0”,这意味着第二基站与用户设备G之间没有干扰,以使得各自的无线资源3404和3406可以基于优先级被用于设备G。因而,在优先矩阵P中产生对应条目3428和3430。
参考图35,示出了视图3500,视图3500为关于给定设备沿垂直方向遍历全局冲突矩阵2220以确定那些禁止相应用户设备使用的无线资源。如果遇到“1”,则Θ和Φ矩阵中至少一个且较优地两者的相应条目被更新以表明,被分配以供对应于“1”的基站(即,作为干扰源的基站)使用的资源对当前用户设备不可用。以上适用于全局冲突矩阵2220中与分配有无线资源的当前用户设备对应的全部垂直条目。如果全局冲突矩阵中的当前条目不为“1”,垂直遍历继续,直到对当前用户对应的全部垂直条目进行了处理为止。
通过应用上述处理,能够理解,全局冲突矩阵2220包含对应于第一基站2106的“0”3502,表明用户设备D与第一基站2106之间没有干扰,以使得在用户设备D或其对应的基站2108对被分配给第一基站2106的无线资源的使用上没有约束。下一条目为“2”3504,不出所料,这是因为第二基站2108为用户设备D提供服务。全局冲突矩阵2220中的下一条目3506也为“0”,这表明第三基站2110的无线资源不引起对用户设备D的干扰,以使得不需要对用户设备D及其对应的基站2108中至少一个对第三基站的无线资源的使用加入约束。
参考图36,示出了视图3600,视图3600为下一用户设备即用户设备E的初始资源分配。从分配表3602中能够理解,待分配给用户设备E的无线资源的数量Nu为2。因而,分配矩阵A被修改为向用户设备E分配两个无线资源块,正如从条目3604和3606能够理解的一样。
下一步,更新其他矩阵,也就是说,通过针对当前用户设备对应的基站在水平方向对全局分配矩阵2220进行处理来更新优先矩阵P、禁止矩阵Θ和部分禁止矩阵Φ中的至少一个或更多个,在本示例中,当前用户设备对应的基站为第二基站2108。如上所指,在水平遍历时应用以下规则:
-如果全局冲突矩阵在当前设备对应的当前基站的行中包含值“1”,则该基站与相关联的其他用户设备之间存在干扰,以使得相关联的其他设备在Θ和Φ的至少一个且较优地在两者中具有条目,这些条目表明被分配给当前用户设备的无线资源无法供在全局冲突矩阵中具有“1”的相关联的其他用户设备所使用;
-否则,
○如果全局冲突矩阵包含表明基站向对应用户设备提供服务的值“2”,则禁止矩阵Θ中的条目被更新以表明那些无线资源无法供任何其他用户设备所使用,
○否则,
○更新优先矩阵P以表明:如果由于占优无线环境的改变而需要重新分配无线资源,则无线资源可以基于优先级或优先权而被对应用户设备所使用。
应用以上所述得出:
全局冲突矩阵2220对于用户设备A和B包含值“1”,这意味着第二基站2108对用户设备A和B造成干扰。因而,通过关于禁止矩阵Θ和部分禁止矩阵Φ中的资源3和4的对应条目3702,指出无线资源3604和3606被用于用户设备A和B。
接下来,对第二基站2108和用户设备C的水平条目进行处理。能够理解,该条目为“0”。因而,更新优先矩阵P以指出当前分配给用户设备E的无线资源能够基于优先级或优先权供用户设备C所使用,正如从条目3704和3706能够看到的一样。
全局冲突矩阵2220中的下一条目对应于用户设备D,已经对该条目进行了处理并因而忽略该条目。
全局冲突矩阵2220中的下一条目为对应于用户设备F的“2”,用户设备F与当前用户设备即用户设备E由同一基站提供服务。因而,更新禁止矩阵Θ的条目3708和3710,该条目3708和3710指出相关联的无线资源禁止供用户设备F所使用。
全局冲突矩阵中对应于用户设备E和的下一条目为“0”,指出第二基站与用户设备G之间没有干扰。因而,优先矩阵P的对应条目3712和3714被更新以指出被分配给用户设备E的资源即资源块3和4基于优先级或优先权供用户设备G所使用。
全局冲突矩阵2220中的垂直条目被处理并且应用以下规则:
如果全局冲突矩阵包含值“1”,则对禁止矩阵Θ和部分禁止矩阵Φ中至少一个且较优地对两者进行更新,相应的条目指出分配给当前用户设备即用户设备E的无线资源无法供对应于“0”的基站即本示例中的第一基站2106所使用。如果全局冲突矩阵2220包含不同于“1”的其他值,则垂直遍历继续处理下一条目。
通过以上处理,不对禁止矩阵或部分禁止矩阵进行更新,这是因为,全部的条目或者为“0”,指出没有干扰,又或者为“2”,指出对应基站为服务基站。
参考图39,示出了视图3900,视图39000为全部用户在特定顺序下的完整资源分配过程。
关于分配矩阵A,能够理解:
用户设备A分配有第七和第八无线资源;
用户设备B分配有第九和第十无线资源;
用户设备C分配有第一和第三无线资源;
用户设备D分配有第一和第二无线资源;
用户设备E分配有第三和第四无线资源;
用户设备F分配有第五和第六无线资源;
用户设备G分配有第四、第十一和第十二无线资源。
关于优先矩阵P,能够理解,已经确定了以下优先级或优先分配:
用户设备C分配有第一至第六潜在无线资源;
用户设备D分配有第一至第三以及第七至第十潜在无线资源;
用户设备E分配有第一至第三以及第七至第十潜在无线资源;
用户设备F分配有第一至第三以及第七至第十潜在无线资源;以及
用户设备G分配有第一至第六潜在无线资源。
关于禁止矩阵Θ,能够理解:
用户设备A无法使用第一至第六以及第九至第十二无线资源;
用户设备B无法使用第一至第八以及第十一和第十二无线资源;
用户设备C无法使用第四以及第七至第十二无线资源;
用户设备D无法使用第三至第十无线资源;
用户设备E无法使用第一和第二以及第五至第十无线资源;
用户设备F无法使用第一至第四以及第七至第十二无线资源;
用户设备G无法使用第一至第三以及第五至第十无线资源;
关于部分禁止矩阵Φ,能够理解,暂时有:
用户设备A无法使用第一至第六以及第十一和第十二无线资源;
用户设备B无法使用第一至第六以及第十一和第十二无线资源;
用户设备C无法使用第四、第十一和第十二无线资源;
用户设备D无法使用第七至第十无线资源;
用户设备E无法使用第七至第十无线资源;
用户设备F无法使用第四以及第七至第十二无线资源;
用户设备G无法使用第一至第三以及第五至第十无线资源。
参考附图40,示出了内部用户分配的示例4000。内部用户被定义为未受到干扰的用户。从全局分配矩阵2220能够理解,存在由条目4002和4004指出的两个内部用户。剩余未使用的无线资源被平均分配给内部用户。这两个内部用户为用户设备D和E。从禁止矩阵Θ和部分禁止矩阵Φ的至少一个且较优地从两者中能够理解,并未禁止用户设备D和E使用无线资源11和12。因而,那些剩余的非禁止无线资源在用户设备D和E之间均匀分享,正如从分配矩阵A中的各自条目4006和4008中能够理解的一样。正如从各自条目4010和4012中能够理解的,要求在将未使用的无线资源分配到禁止矩阵Θ之后进行相应的更新,这致使相互排斥的内部用户对分配的未使用无线资源的使用。
重复步骤C3直至全部的无线资源得到分配。能够理解,重复上述步骤导致第五和第六无线资源被分配给用户设备C。用于用户设备的资源能够通过执行来确定。
只要分配矩阵A被最终确定,无线资源分配被传送到各个基站。易于按照分配矩阵A中指定的那样使用分配的无线资源,并且接收基站能够直接使用该分配。
替代性地,无线资源能够作为可用资源的集合而不是作为在用户设备粒度水平下所指定的分配资源被传送到各个基站,该集合赋予基站在对分配进行管理上的某些自由裁量,也就是说,可用分配在基站粒度水平下进行指定。传送可用资源赋予基站在分配无线资源上的某些自由裁量,分配无线资源是调度策略的一部分,调度策略即为基站粒度水平下的无线资源分配和管理。可用资源Λ由部分禁止资源的取反(NOT)即给出,正如从图42中能够理解的那样,图42示出了网络4202和相关联的可用无线资源分配矩阵4204的视图4200。
参考图43,示出了与实施例的各种实体之间的通信相关的时间图4300。能够理解,时间图包括用户设备4302、第一基站4304、基站管理系统4306和第二基站4308。假设第一基站4304受到干扰或者其用户设备受到干扰,则在步骤4310中,第一基站向用户设备请求测量报告。响应于该请求,用户设备4302在对应的测量报告时段tmr4312上监视网络的无线资源并确定是否存在任何干扰。在步骤4314中,测量报告从用户设备4302发送到请求基站4304。请求基站4304产生局部冲突矩阵,并且在步骤4316中,局部冲突矩阵在时段tip4318中被发送到基站管理系统4306(或112)。可选地,在基站管理系统4306在步骤4322中请求诸如第二基站4308之类的任何相关联基站的局部冲突矩阵之前存在等待时段tw432。第二基站4308通过在步骤4324中将自身的局部冲突矩阵发送到基站管理系统4306来响应于所述请求。能够理解,请求和响应发生在特定的时段2tip4326上。在获得了相关信息的情况下,基站管理系统4306在相应时段4328上进行无线资源分配。此后,在步骤4330和4332中,基站管理系统根据解决的无线资源分配,在各自时间长度4334上分发分配矩阵到第一基站4304和第二基站4308中的至少一个上。图43还示出了解决干扰场景的最坏和最好的情况下的延迟。
在本申请所述的实施例中,用户设备和基站为通信实体的实施例。用户设备通常采用通信设备的形式,例如,设置为使用数据和语音中至少一个、或者两者进行通信的移动通信设备。这样的用户设备包含设置用于实现实施例的各自方面的硬件和软件。任何这样的软件可以有这样的作为一个或更多处理器的硬件执行。前述还适用于基站和基站管理系统中的至少一个。这样的基站或基站管理系统的实施例通常可以使用可在一个或更多处理器上执行的软件实现。
在本申请的实施例中,基站管理系统112下发的无线资源分配能够采用多个形式,诸如以下中至少一种:
用于由一基站提供服务的全部用户设备的完全的无线资源分配;
仅用于在一基站的服务区内受到干扰的用户设备的无线资源分配;
用于表示基站管理系统112所设置的用于解决干扰而确定的无线资源分配与供经受到该干扰的用户设备使用的、基站的当前无线资源分配之间的差异的分配;
特定于用户设备的无线资源分配,就基站而言不具有将这些无线资源分配给其用户设备的自由裁量;
特定于用户设备的无线资源分配,就基站而言具有将这些无线资源分配给其用户设备的自由裁量;
一般的无线资源分配,包括就基站而言将那些资源分配给其用户设备的自由裁量;
以上形式以任何或全部排列组合的方式被共同和分别采用。
在本申请的实施例中,局部冲突矩阵能够以任何合适形式被报告给基站管理系统112,也就是说,能够发送整个矩阵,或者仅发送之前发送的冲突矩阵与当前占优的局部冲突矩阵之间差异的指示。
在实施例中,本申请中的用户设备发送的测量报告能够在以下至少一种情况下发送:
响应于用户设备检测到无线环境的改变;特别地,如果给定用户设备能够从除其服务基站之外的其他基站接收信号,特别是如果干扰实际出现或者至少有可能出现干扰;
响应于来自诸如基站管理系统112之类的另一网络实体的请求;
响应于预定的周期或非周期的报告调度;
以上情况以任何或全部排列的方式被共同或分别采用。
本申请中所述的实施例尤其适用于LTE背景下的应用,即长期演进背景下的应用。
在以上实施例的一个或更多中,尤其但并不仅限于参考图2和19的至少一个所述的实施例,任何这样的相关用户设备包括以下各项至少之一:由该基站服务的用户设备,也就是使用该基站的无线资源的用户设备;在该基站的服务区内但是当前并不占用该基站的无线资源的用户设备,例如,在该基站的服务区内但占用另一基站的资源的用户设备,或者当前与另一基站相关联但是将要切换到所述基站的用户设备。
应当理解,本发明的实施例能够以硬件、软件或硬件和软件的组合形式实现。任何这样的软件能够以易失存储或非易失存储形式存储,例如,存储设备如无论可擦除或可重写与否的ROM,或者以内存的形式存储,例如,RAM、内存芯片、集成电路或者在光学或磁式可读介质的设备,例如,CD、DVD、磁盘或磁带或类似物。应当理解,存储设备和存储媒体为适用于存储包括指令的程序的机器可读存储的实施例,这些指令在被执行时实施本发明的实施例。相应地,实施例提供了用于实施如本申请中所述的系统、设备或方法或者如本申请中所要求的机器可执行代码以及存储这样的程序的机器可读存储器。进一步地,这样的程序可以经由诸如有线或无线连接上的通信信号之类的任何介质以电子方式传送,并且实施例适宜地包括相同特征。
尽管参考执行资源分配和再分配的毫微微小区网关或毫微微小区管理系统对本发明的实施例进行了说明,但是本发明的实施例不限于这样的设置。实施例能够被实现为由某些其他实体执行该处理,例如,图1中示出的实体中的任一个,即无线网络控制器104、运营商管理系统110、毫微微管理系统112或诸如eNode B之类的某些其他实体。
本发明的实施例不只适用于小型小区基站和/或小型小区用户设备,而且适用于其他尺度的小区以及相应的用户设备。而且,本发明的实施例可应用于对下行无线资源、上行无线资源、上行和下行无线资源两者的干扰管理,以及应用于对等链接即自组织(adhoc)网络,在自组织网络中,用户设备起到基站和基站管理系统中至少一个的作用,较优地起到基站和基站管理系统二者的作用。
附录
一种用于基于部分频率重用的蜂窝网络中的能量和QoS优化的混合资源管理技术Wahyu Pramudito,IEEE学生会员;Emad Alsusa,IEEE高级会员
摘要:本论文提出了一种用于对宏小区级的使用部分频率重用(fractionalfrequency reuse,FFR)的异构蜂窝网络中的能耗和服务质量(QoS)进行优化的新技术。所提出的技术将无线资源管理(radio resource management,RRM)与网络路由原理相结合以产生一种使用频谱的有效方式。基于干扰映射的新颖方法,以分布或集中方式调用RRM以分配资源。在集中式RRM的情况下,网络路由被应用于使频谱利用率最大化。通过将数学分析与计算机仿真进行匹配示出,相对于现有的公知技术,所提出的技术提供了明显的QoS改善,保证了每个用户的数据速率,并且增强了网络的整体能效。
索引词:异构蜂窝网络、无线资源管理、干扰规避、冲突范式、干扰、LTE、OFDMA、绿色通信
I.简介
众所周知,异构蜂窝网络的概念是满足日益增长的蜂窝网路容量的一个优良的解决方案,尤其是异构蜂窝网络提高了室内容量并且允许微小区和宏小区将更多的频谱用于其用户。为了获得1的频率复用因数(frequency re-use factor,FRF),在使用部分频率复用(FFR)时,长期演进(LTE)必须能够具有第四代(4G)系统中的蜂窝网络用户的最大资源利用率[1]。然而,异构蜂窝网络(Hetnets)中为1的FRF增大了用户设备(UE)处的干扰水平,特别是增大了来自小型小区基站(small-cells basestation,SBS)的干扰,例如,微小区和皮小区基站(BS)。而且,毫微微小区的出现加剧了干扰问题,这是因为毫微微小区由终端用户以不协调的方式安装[2][3]。因而,为了在使用FFR的异构蜂窝网络中获得为1的FRF,关键在于具有能够同时管理全部BS中的干扰的越级干扰规避能力,这就是本论文的目标。
下行干扰实际使用主动式无线资源管理(RRM)技术进行控制,主动式RRM技术包括使用正交频分复用接入(OFDMA)的4G蜂窝网络中的频谱分配和功率控制[4][5]。一般来说,OFDMA RRM技术能够分为三种:分布式网络、集中式网络和自组织网络(self-organizingnetwork,SON)[5][6][7]。集中式RRM通过在高密度小型蜂窝网络中添加一个中枢节点来工作,其中,来自SBS的信号能够由相同遮蔽区域中的全部UE可靠接收[5]。中枢节点的作用是计算SBS和UE中的哪一个在给定子载波上具有最高的棘手的信噪干扰比(SINR)。这通过对SBS和UE之间的信道状态信息(channel state information,CSI)路径损失进行周期监视来实现。该RRM的主要问题是,当来自一个SBS的干扰可能不影响全部UE时,造成低频谱效率。此外,因为CSI可以随时间快速变化,该信息的持续更新导致与随机频率分配相比的复杂度的巨大增加。
另一方面,在分布式RRM方法中,各SBS对其UE的分别来自相邻SBS的资源进行管理,但是以此方式能够使干扰最小化[8][9]。这能够通过请求UE连续监视从周围环境接收到的在全部频谱子集上的干扰并且将接收到的干扰回报给服务SBS[10],在服务SBS中对子载波和/或功率的自调节进行计算以获得干扰负荷最小化和利用率最大化[11]。由于存在具有大量毫微微小区的可能性,所以与功率调节方法相比较,调节子载波分配是Hetnet系统的较优方法[12]。分布式RRM中的高效频谱分配在[13]中给出,其中,基于反馈信息改变子载波分配以使得干扰功率最小化。各毫微微小区通过向其用户分配一半的可用频谱以获得该效果。为此,自组织RRM可以要求在最佳子载波配置之前进行多次迭代,这导致能够实现最小干扰。因为在任何SBS中仅使用一半的子载波,在不考虑各UE处的干扰的情况下,该RRM可以导致资源的低效使用。
包括自配置、自优化和自修复的SON功能是适用于当前环境的优良技术[14]。这允许BS与相邻BS连续通信并且不断监视UE处的信号资源[15]。使用该功能的RRM,简称为SON-RRM占优接受具有相对较佳的效率。相邻毫微微小区之间使用SON获得的固定频率模式分配在[6][7]中进行了说明。该频率分配保持固定,直到检测到新的相邻毫微微接入点(femtoaccess point,FAP)。如果UE从相邻FAP接收到强干扰,则服务FAP要求其邻近FAP重新配置发射功率和/或子载波分配[6][15]。然而,当附近FAP不发射时,固定频率分配可以浪费频谱。此外,使用简单请求来重新配置邻近FAP的频谱和功率分配在实际中并不总是可用,这是因为FAP的优先权是其自己的用户的QoS,因此这样的方案能够导致毫微微小区之间的不可调和的冲突。
本论文提出了一种混合RRM和路由技术,该技术使用对每个子载波的下行信道状态进行编码的新方法,以识别出可能的干扰冲突。在此被称为冲突矩阵(matrix ofconflicts,MoC)的该矩阵描绘出BS链路对特定UE的影响并且凸显了每用户每子载波的可能干扰情况。当不存在可能的干扰时,BS以分布式方式分配其UE。否则,调用集中式RRM路由算法来解决干扰问题。一般来说,集中式方法仅当一组BS内的MoC改变时应用。提出的技术使用SON功能以便于该混合方法的成功应用。为此,提出的方案被归类为SON-RRM。通过数学分析和计算机仿真示出了,该方法在能效与QoS方面提供了显著改善。
本论文的其余部分的结构如下。章节II说明了贯穿本论文使用的系统模型和假设。章节III讨论并检验了所提出的方法。在章节IV和V中分别给出了性能分析和系统评估。最后,在章节VI中做出总结。
II.系统模型
在此考虑具有与宏小区相连的微小区、皮小区和毫微微小区的、基于下行N子载波OFDMA的蜂窝网络。另外,全部BS和下行信号传输假设为同步的。此外,全部的小型小区(微小区、皮小区和毫微微小区)使用的频率复用为1,同时宏小区使用FFR[1]。微小区和皮小区通过无线网络控制器(Radio Network Controller,RNC)与宏小区相连。另一方面,一组毫微微接入点(FAP)通过互联网服务提供商(ISP)返程被连接到有运营商管理系统(OperatorManagement System,OMS)控制的毫微微管理系统(FMS)上。这在图1中示出。当FMS向毫微微小区网络提供操作和管理(OAM)功能时,OMS向宏小区、微小区和皮小区以及FMS提供OAM功能[16]。OAM包括RRM辅助、用户验证、验证和核算、以及网络中的数据调度优化。因而,OMS和FMS向Hetnet提供中枢控制器功能。
对诸如宏基站(MBS)和SBS之类的全部BS所具有的SON功能进行考虑。通过使用该能力,各BS能够自动建立其邻近BS链接。因而,MBS已知相同小区中的SBS的标识,并且各SBS和UE在其存储器中寄存邻近单元列表。所有的UE使用LTE中的测量报告(measurementreport,MR)能力能够测量来自各个BS的功率并且识别其标识(ID)[17]。另外,所有的BS和UE假设能够克服小型蜂窝系统中的多重切换问题,包括基于用户移动性选择速度阈值[18]。如果UE以高于所述阈值的速度移动,小型小区BS(SBS)向该UE发送扫描请求,以便该UE了解从邻近BS接受的信号功率[19][20]。通常,LTE和WiMAX中的功率测量能力仅用于决定到具有更高接收信号的邻近毫微微小区的切换要求。该信息可以在本方法中利用。
在所考虑的系统中,存在(M-1)个SBS和1个MBS以及对应的用户,(M-1)个SBS和1个MBS在终端组中表示,其中,Tm表示MBS并且T1至TM-1表示SBS,并且对应的用户在用户组中表示,其中,Z为用户总数。该组由FMS拥有。进一步假设,发射器m,Tm,拥有其自己的邻近BS组其中,Cm<M为指数为cm的邻近的数量,并且作为FMS用后的组的指针。
III.冲突矩阵范式SON RRM
图2中示出了所提出的技术的流程图。该算法将FMS用作中枢控制器,这是因为末终端用户安装的毫微微小区引起的对周围网络的干扰大于微小区和皮小区。在电源接通ON时,BS创建其用于映射网络的干扰的冲突矩阵(MoC),并且在冲突矩阵改变或者FMS请求冲突矩阵时,将冲突矩阵报告给FMS。当BS提交其矩阵时,FMS将使用简单的路径算法来计算冲突BS的资源分配。该路由策略以与距离矢量路由协议(distance vector routingprotocol,DVRP)相似的方式工作,其中,各节点基于一定的排队标准相继构建其路由表,并随后与其邻近节点共享路由表[21]。类似地,FMS相继将子载波分配给BS的UE,并且这些BS之间共享公共信息,从而实现最小干扰和最大资源利用率。
A.初步要求
1)创建MoC
当UE需要接入BS时,该UE需要在享受服务之前提交其MR。此外,当从该UE到其服务BS的上行信号功率减小到低于一定的阈值时,或者如果该UE高于阈值速率移动,则同样需要来自UE的MR。为了获得MR,BS将无线资源控制信息(Radio Resource Control,RRC)连接重置消息发送到UE。当接收到该消息后,UE搜索邻近BS,识别物理层小区标识(PhysicalLayer Cell Identities,PCI)并且测量邻近BS的参考信号接收功率(Reference SignalReceived Power,RSRP)和/或参考信号接收质量(Reference Signal Received Quality,RSRQ)。MR将包含PCI信息以及邻近BS的平均接收功率[17]。如果由uz到其服务BS,Tm,的MR指出来自的接收功率其中,为从至uz的信号功率为信号干扰比阈值,并且cm≠m,Tm检测到uz受到的干扰为。基于该信息,Tm由下式给出:
其中,Zm为Tm的全部UE,cm为Tm得到的邻近BS指数,并且wc为任何大于零的正整数。wc的值不影响所提出的技术的性能,这是因为wc仅用于区别干扰BS和非干扰BS。简单起见,wc能够由1代替。每当Tm更新ζm时,使用之前的测量值对结果进行检查。假设之前测量值为,则当以下条件成立时报告给FMS:
该MoC通过使用图3所述的消息结构回程发送到FMS。该信息通过发送头消息和尾消息来开始和结束,从而将MoC信息交换与其他数据传输区分开。随后,通过相继发送干扰BS和相关联的MoC的IP地址来包含MoC。
在接收到来自Tm的ζm更新后,在对FMS的进行更新之前,FMS等待组内的其他BS以一定周期发送各自的MoC,该周期可以是微秒级的,为:
ζ(z,m)=wm,如果Tm是uz的BS
ζ(z,c)=wc,如果TC干扰uz
ζ(z,c)=0,其他情况 (3)
2)FMS到BS中断标准
在任何BS更新ζ之后,FMS计算Tm检测到的全部用户Sm,Sm由下式给出:
其中,意味着:如果a不等于b,则x=1;否则x=0。随后,FMS对需要频率更新的全部BS进行检查。如果ζ和Sm的之前测量值分别给定为ζ′和S′m,则任何Tm将从FMS接收中断以提交其MoC,已知该Tm最近没有更新其测量值,如果以下条件中的至少一个得到满足:
第一:对于c≠m,有
第二:
其中,Λ表示AND(与)逻辑运算。
最后,如果下列条件成立,则包括Tm
其中,x={a~b}意味着:如果a等于b,则x=1;否则,x=0。
在全部BS都被评估之后,FMS在特定时间构建一组发射器,该组发射器需要解决冲突,该组给定为指数为b的其中,B≤M为全部冲突BS并且作为FMS存储器中的T组的指针。如果MBS在需要频率更新的BS中,则HB还表示MBS。假设的UE由指数为q的给出,其中,ZB≤Z为冲突BS的全部UE。随后,FMS将ζ信息传递到的冲突矩阵ζB中。
B.基于路由算法的资源分配
当BS向FMS报告时,FMS通过调用资源分配来解决冲突。FMS可以应用人恶化基础资源分配,诸如经典的频率复用模式。如果BS被准确放置在例如宏小区和微小区中,其中的干扰可能性远小于在更小的蜂窝网络中,则基础资源分配是合适的。然而,对于微小区和皮小区,则需要更加智能且适应的干扰规避。
如果由Tm提供服务的UE uz受到的发射器Tc的干扰被标记为Tc→Tm,并且Tm和Tc对彼此UE的干扰被标记为由于全部的冲突BS能够及定位虚拟连接节点,所以提出一种新的频率分配组,该频率分配组使用距离矢量路由协议(DVRP)。凭借这一思路,所提出的方法按照以下步骤工作,这些步骤随后进行详细说明:
1)对小型小区分组
2)传递完整的网络参数
3)测量排队标准
4)初始频率分配
5)内部用户最大化
6)隐藏频谱分配
与DVRP原理相似,FMS相继将子载波分配给BS的用户,同时相连的发射器之间共享公共信息。在该算法中,以三个二进制矩阵,即网络禁止子载波网络优先子载波和分配子载波对公共信息编码。Θ被用于指示由于特定UE与相同BS中或其他BS中的两个或更多UE具有正交性导致的该特定UE无法分配的子载波。此外,需要P以便能够更加高效地将子载波分配到各UE,从而实现最大资源分配。另外,A为指出分配给这些UE的子载波的矩阵。这些矩阵由下式给出:
如之前所述,在HB组中在特定时刻需要冲突解决的BS数量为B。在此情况下,冲突禁止子载波冲突优先子载波和冲突分配子载波被用于公共信息以解决冲突BS。在解决了的冲突之后,ΘB、PB和AB的新值分别变为Θ、P和A。
1)对小型小区分组
因为需要资源更新的B个BS可以包括每个宏小区的大量BS,则组织虚拟连接以便FMS能够完成并行计算更好。这能够通过将小型小区分配到如图4中所示的相同分组中来完成。从本示例中能够看出,存在三个独立的SBS分组。这些分组的资源分配也能够独立完成。
使用算法1(Algorithm 1)来进行分组,之后得到K个SBS分组,其中Vk为第k个SBS分组的组,Mk为Mk<B的第k分组内的BS的数量。与类似,在FMS存储器中拥有w的ID。
2)传递完整的网络参数
因为B≤M,所以在BS被分组之后,P、Θ、A中包含的公共信息需要转移到PB、ΘB和AB。这通过算法2(Algorithm 2)来实现。
3)测量排队标准
通过使用ζB,HbBS检测到的用户总数Sb被定义为:
通过使用Sb,BS HB的每个用户的子载波初始数量由下式给出:
其中,N为每OFDM符号的全部可用子载波,且为小于x的最大整数值。该值随后被复制到一组用于全部冲突BS的子载波初始数量,NB=[N1…NB],指数为NbNB则被用作每用户的该组子载波初始数量的基础,指数为由下式给出:
其中,由下式给出:
ξq(b)={ζB(q,b)>0}Nb,b=1,...,B (14)
在计算出全部需要的参数之后,FMS基于NB从最小值到最大值对该组更新发射器进行排列。如果组包括MBS,则NB成为NB内的最小值,这是因为MBS的用户比SBS多,MBS具有第一优先级。另一方面,组内剩余的BS在其各自BS分组内局部排列。
的排列后版本给定为其中,为组的指针。为ΘB、PB和AB设定零元素。这些矩阵根据网络的占优条件的不同而填充1或0。
4)初始频率分配
基于组,相继将q=1,…,ZB个用户分配NU(q),在任何处将频谱伪随机分配到AB(z,n)中,并且在任意n=1,…,N|ΘB(q,n)=0处分配优先权。则在每个用户的初始分配之后,使用算法3(Algorithm 3)更新禁止子载波矩阵ΘB和优先子载波矩阵PB。应当注意,∧和∨分别表示按位AND(与)和OR(或)逻辑运算。
5)内部用户最大化
在初始频率分配之后,通过将更新后的矩阵考虑在内重复分配步骤能够对未分配的子载波进行分配。然而,为了使分配高效,空子载波能够被分配给发射器的内部用户,发射器由注册为Hb的任何a用户限定,其中,对于c≠b有子载波被分配到具有任何子载波n=1,…,N且ΘB(a,n)=0的AB(a,n)中。该操作能够对于全部内部用户并行完成。在分配完成后,使用算法3更新ΘB和PB
6)隐藏频谱分配
在子载波分配指示符Saloc等于NZB之前,重复算法3。Saloc由下式给出:
备注1:在从BS接收到MoC信息之后,FMS计算冲突BS的资源分配。当整个网络被充满时出现最坏场景,这通常要求完全中枢处理以管理整个网络的SBS。因为在现实中网络中的小型小区偶然密集,则意味着这些BS可以被聚集为独立的分组并且被并行处理。有鉴于此,在所提出的技术中,FMS首先使用算法1对BS分组。因为并非所有的BS都在集中式资源分配中,所以需要算法2在不影响非冲突BS的情况下应用集中式方法。最后,路由算法支持集中式方法每次对一个剩余子载波进行分配。该方法使用三个分配矩阵,即分配子载波矩阵、优先子载波矩阵和禁止子载波矩阵。在将某些子载波分配给UE之后,算法3被用于更新优先矩阵和禁止矩阵,从而确保不出现干扰并使子载波分配最大化。
IV.性能分析
A.接收SINR模型
为了更加清楚,首先考虑仅包含ad hoc皮小区和毫微微小区网络的异构蜂窝网络,随后扩展到Hetnets。假设在BS中不实用适配功率控制,则能够很容易看出,使用由Tm提供服务的UE,uz和nth(第n个)载波下使用提出的算法的接收信噪干扰比(SINR)由下式给出:
其中,N0为附加的白高斯噪声(AWGN),为从Tc到uz的干扰功率,并且为从Tm接收的功率。为(16)中所需的二进制乘数,这是因为如章节III中所述,用户uz是BS Tc检测到的用户之一并因而,如果则被禁止与该BS中的任何其他用户共享相同的子载波。这意味着,如果来自该BS的干扰小于阈值,那么BS Tc仅在nth子载波上引起对uz的干扰。这很简单,因为在此情况下,全局MoC允许Tc使用与用户uz相同的子载波。因而,由下式给出:
如果Tm和uz之间的距离的最大距离为dMAX,则Tc和uz之间的距离为并且假设室内环境的路径损失为η,则Tm和uz之间的路径损失由下式给出:
其中,并且在Tc和uz之间,由下式给出:
如果假设Tm和Tc发射相同的功率水平Pt,且这意味着仅当时并且能够被简化为如果进一步假设uz到Tm 和Tc之间的相对距离为则能够被简化为:
B.相对距离分析
如上所示,UE与其邻近BS之间的相对距离rmc对接收的SINR以及BS Tm检测到的用于的数量造成影响。在此对rmc的PDF进行分析并将其用在章节IV-D和IV-E的分析中。
假设1:假设SBS在l×l的区域上均匀分布,并且用户在最大半径dMAX<<1的圆内均匀分布。
引理1:rmc基于假设1的PDF为:
证明:SBS在x或y方向上的位置的基于假设1的概率密度函数(PDF)为:
此外,如果假设(X1,Y1)和(X2,Y2)为PDF为(22)的第一和第二随机SBS的位置,则ΔX和ΔY分别给定为ΔX=X1-X2且ΔY=Y1-Y2,并且两个SBS之间的距离G为:
ΔX和ΔY还可以写作ΔX=X1+X2-和ΔY=Y1+Y2-,其中,X2-为-X2且Y2-为-Y2。基于假设1,则Tm和uz之间的距离dcu等于G,且的PDF为:
并且,UE与其邻近BS之间的相对距离rmc为:
X2-的PDF f2-(x)为:
并且X1的PDF f1(x)等于fF(x)。因而,ΔX的PDF fΔX(x)为:
如果假设u(x)为x上的阶跃函数:
展开(27)得到:
并因而有:
因为(ΔX)2等于(|ΔX|)2,所以|ΔX|的PDF为:
并且,|ΔX|和|ΔY|的联合概率f|ΔX|,|ΔY|(x,y)为
使用式(32),则G的PDF fG(g)为:
能够很容易看到,fG(g)具有以下解:
其中,fG1(g)和fG2(g)为:
并且能够证明:
如等式(25)中所述,相对距离rmc的PDF由下式给出:
其中,和G的联合PDF,由下式给出:
将(39)加入(38)得到:
其中,由下式给出:
因为fG1(g)和fG2(g)的CDF基于(37)相关,所以能够看出:
而且,很容易看出具有以下解:
C.每用户的子载波数量的分析
假设2:假设SBS的数量为Ma,这些SBS具有相同数量Zm的UE。
引理2:使用引理1,Tm的每用户的子载波数量的下限为:
证明:Tm的UE的每用户子载波数量为Nfm=N/Sm。因为当时,任何用户将被Tm检测到,基于假设2的Sm的上限为:
上式能够重写为:
其中,为引理1中示出的的累积分布函数。
D.最小容量分析
毫微微小区在l×l区域内的用户的最小容量能够使用每用户子载波数量Nfm的下限进行分析。
如果假设AWGN信道和香农(Shannon)容量,则Tm的UE的数据速率的下限为:
其中,Wf为梅子载波的带宽,为uz的SINR。基于(48),最小数据速率的UE具有Nfm的最低限制值,该值近似为并且接收的最小可能SINR值被标为ψmin。所以,最小数据速率近似为:
如果则为:
其中,Im为uz接收的总干扰功率并且由下式给出:
通过使用总干扰SBS,为:
如果考虑到来自一个BS的最大干扰为Imax,则有:
并且来自一个BS的最小有意义干扰Imin为:
为:
当全部的的BS对uz的干扰功率量相同时,出现最小SINR。因而,并且基于(49)将最小数据速率近似为:
E.复杂度分
所提出的技术的复杂度包括BS和FMS之间的MoC信息交换,以及FMS解决干扰的计算工作。
1)BS和FMS之间的信息交换
BS Tm与FMS之间的总信息交换为:
其中,为Tm基于之前图3所述将MoC转发到FMS所需的总比特数,并且为FMS反馈分配的矩阵信息所需的总比特数。该反馈包含在每个子载波上编码为比特的分配给用户的信息, 如果在特定子载波上没有分配用户,则比特为零。
如果假设BS Tm具有Zm个用户以及Cm个邻近BS,则基于图3的为:
其中,DMoC为各BS对局部MoC进行编码的比特数,DIP为IP地址的比特数,并且Dhe和Dt分别为用于将MoC信息交换与其他数据传输进行区分的头比特和尾比特。为了进行简化,MoC能够被编码为二进制数。因此,DMoC=1。另一方面,由下式给出:
例如,在系统具有Zm=4和Cm=6的情况下,可用的子载波数量N为1000,Dhe=DF=64bits,并且在IPv6标准中,DIP=128bits,并且因而,该BS与FMS之间的总比特交换为4.048kbits。该信息仅需要在平均接收功率改变由所选阈值确定的一定量时偶尔更新。与之相比,在常规的集中式方案中,BS和中枢节点之间需要比特的交换,其中:
并且为对各子载波的SINR信息进行编码所需的比特数,该SINR信息的典型值为4比特,故BS与中枢节点之间的总比特交换为16.128kbits。与所提出的技术相比,该信息需要频繁更新,这是因为主要影响每用户SINR的小尺度衰落可以在没半波长的很小距离上迅速改变。该示例示出,所提出的技术需要的与FMS的信息交换总量相对来说可以忽略。
2)计算工作分析
因为所提出的技术包括对并未在第一次迭代中分配的子载波进行使用的迭代过程,所以复杂度随着迭代次数而增大。为了对其进行评估,作出以下考虑。Tm的UE在各BS中分配有Nm个子载波。利用假设2和引理2,Nm=NfmZm,并且下限为:
如果假设Ma个SBS随机存在于l×l区域内形成分组则优先子载波矩阵PB将确保将相同子载波分配到不同BS的多于一个UE上。在最佳场景中,在每次迭代中,全部Ma个SBS的UE分配相同子组的子载波。有鉴于此,所提出的技术的性能收敛于第O次迭代,能够近似为:
其中,为Nm的最下限,近似为并且o为所提出的技术用于内部用户最大化的一次重复而需要的常数。
V.性能评估
A.SIR阈值影响
如以上分析所示,SIR阈值γth对UE的保证容量和同构网络内的复杂度造成影响。为此,本章节关注的是在60平方米区域内的仅包含皮小区和毫微微小区的具有可变γth值的同构网络的性能。其余的仿真参数在不具有小尺度衰落信道的表1中示出,其中,EIRP为等效各向同性辐射功率。香农容量公式被用于代替适应调制,从而计算下限容量。基于保证容量实验对γth进行评估。此后,对关于迭代次数的复杂度进行估计。
表I同构网络仿真参数
图5示出,仿真和分析结果的匹配支持上文中所述的分析的正确性。该图指出,γth的增大导致蜂窝网络的QoS的改善。图5(a)和(b)也示出,随着SBS数量的增加,γth对保证容量的影响减小。因为如等式(45)所示,Tm的每个用户分配的子载波数量Nfm成反比,所以γth的增大减小了每个用户的整体频谱使用率以及能效。因此,高γth值无法同时实现高QoS系统和良好的能效。为此,使用介于20和30dB之间的γth中间值以获得QoS和能效的满意折中是可取的。
在发现γth实现QoS和能效的良好折中之后,能够对对提出的技术的复杂度进行估计。复杂度通过使用总速率比率和子载波分配比率来改变最大迭代次数进行估计。总速率比率被定义为在无限迭代次数下可获得的总速率。类似地,子载波分配比率为给定迭代次数下的总的分配子载波与分配子载波的最大可能数量之比。简单起见,将γth选择为20dB和25dB,并且对6个BS和11个BS的情况进行估计。表II中示出了收敛点的分析近似,并且图6中示出了仿真结果。
图6示出,所提出的技术需要少量迭代。即便仅进行一次迭代,所提出的技术能够分配88%的子载波并且提供93%的可实现总速率。此外,表II和图6示出,γth值的增大使收敛点增大,从而表示复杂度增大。分析值被示出为接近仿真情况的99%的比率值。尽管图6(b)示出,在一次迭代中实现在γth=20dB下6个BS的99%,这是因为等式(62)需要至少一次迭代,但是这意味着在此情况下的收敛点为2次迭代。因而,如图中和表II中所示,随着在少量迭代中实现快速收敛,由于迭代过程造成的整体复杂度增大受到限制。
表II收敛点的分析值
收敛点 γth=20dB γth=25dB
O(Ma=6) 2 3
O(Ma=11) 4 6
B.同构蜂窝网路仿真
在本章节中,SBS密度的各种值在可能是FFR系统的不存在MBS的情况下对QoS和能效的影响得到估计。系统的能效和QoS通过分别对能耗比率(energy comsumption ratio,ECR)和每用户的保证数据速率进行估计来检验。该仿真考虑包含FAP和皮BS的60平方米区域,皮BS表示SBS,并且每个BS具有四个用户。因为在现实中,UE以想能的概率存在于其BS周围,每个小型小区的四个UE以均匀随机分布的方式放置在SBS周围,并且在此仿真中将半径选为10m。室内遮蔽路径损失模型由下式给出:
其中,路径损失指数η为3,并且对数正态遮蔽Xσ为8dB,被假设为表示来自FAP和用户的信号传播。d为FAP与用户之间的距离,并且PL(d0)由给出PL(d0)=20log10(4πd0/λ),其中,λ为信号波长且d0为给定值为1的参考距离。
在nth子载波处进行适应MQAM调制,以使得使用小于10-6的比特误差率(BER)来测量nth子载波上可获得的数据速率。因而,nth子载波上的离散容量Cdis(n)为:
Cdis(n)=k(n)-∈q(Ps(n)) (65)
其中,k(n)和Ps(n)分别为nth子载波上的比特数和符号误差率[22]。Ps(n)由下式给出:
Ps(n)=k(n)Pb(n) (66)
并且εq(Ps(n))为在给定Ps(n)下的符号的条件信息量总平均值,由[22]有:
为了测量系统的ECR,需要进行下行传输的第m个SBS的功耗模型能够被建模为:
PDLm=(PTXmPA+PSP)/μPS (68)
其中,μPA为射频(RF)组件的功率放大效率,并且μPS为电源效率。两者分别假设为20%和85%。PTXm为第m个SBS发射的信号功率,并且PSP为SBS硬件用于计算下行信号传输的信号处理功率[23]。[24]示出了被用于计算下行和上行传输的SBS硬件的总功耗近似于皮BS,大约为6.7V。因为下行和上行的信号处理功率几乎相同,在本仿真中为PSP=3.35W。因而,第m个SBS的ECR,ECRm与第m个SBS的总数据速率Rm有关,即:
ECRm=PDLm/Rm (69)
因为冲突BS基本上由γth值确定,所以在本仿真中观察到三个γth值,即22、25、28dB。为了便于参考,将结果与随机分配和使用自组织RRM的分布式RRM[13]进行比较,这是因为这些RRM不需要频繁的、随时间变化的CSI更新并且不会导致不同BS之间的不可调和的冲突。因为自组织网络在实现全部用户的最小干扰之前可能需要数次迭代,该仿真考虑两次和十次迭代以进行比较。剩余的仿真参数在表I中示出。
图7和8示出相比于其他技术,所提出的方案与同级传输更加适配。图7示出,所提出的算法是改善同构蜂窝网络的QoS的最佳方案。另一方面,图8示出,随着SBS数量的增加,相比于其他子载波分配技术,能效间隔改善。这说明随着SBS数量的增加,提出的技术维持数据速率提升以及能效提升,而其他频率分配技术的数据速率减小并且发射功率增加,这是因为随着SBS数量的增加,各用户接收的干扰能量增大。
如之前所证,图7示出QoS随着γth的增大而改善。另一方面,由于Nfm与γth之间存在正比关系,根据图8中ECR值的增大,能效降低。
C.异构蜂窝网络仿真
表III异构网络仿真参数
从(68)能够看出,PSP对整个能效性能非常有用。因为对于冷却系统的需求导致MBS的PSP远高于PTX[23]。为此,越级干扰的能效估计主要是平均数据速率性能。因而,本部分将平均数据速率性能和QoS结果当作性能比较。
该仿真关注的是靠近MBS的面积为60平方米的建筑物内的毫微微网络,该MBS配备有双发射天线时空分组码,发射天线的天线增益为12dBi并且使用部分频率复用(FFR)[1],FFR将传输分为用于MBS的内部和外部UE的两个时段。在该仿真中,如果在第一时段接收到的信号比噪声功率大20dB,则将UE归类为内部用户。否则,该UE被归类为外部用户。在第一时段为内部用户分配全部可用的NFFR个子载波,并且在第二时段为外部用户分配NFFR/F个子载波。
本观察考虑建筑物内的5个毫微微小区和20个UE。除了这20个UE之外,在这些UE和MBS之间的100m的最小距离的宏小区中存在80个注册为内部用户的UE和20个注册为外部用户的UE。这在图9中示出。此外,使用STBC且能够监听MBS信号的具有双发射天线系统的FAP被加入该仿真。用于地域类型C25的斯坦福大学过渡(Stanford university interim,SUI)路径损失模型被用于对从MBS到全部UE的信号传播建模,并且路径损失指数η为3且对数正态遮蔽Xσ为7dB的室内遮蔽路径损失模型被用于表示从FAP到全部UE的信号传播。因此,以dB表示的FAP Tm和UE uz之间的路径损失模型由给出,以及以dB表示的MBS和UE uz之间的路径损失模型由下式给出:
其中,PLin(d)在等式(64)中示出,为uz分别与MBS和FAP之间的距离,为uz与MBS之间的墙壁损失。在等式(22)中,A=PL(d0=100), 并且s=χb(8.2+χc1.6),其中,χa、χb和χc为平均数为零的高斯随机变量。
与同构网络仿真类似,本章节考虑了适配调制以及用于数据速率估计的等式(65)。此外,在该仿真中看到三个γth值,即22、25、28dB。为了便于参考,将结果与随机分配、应用了2次和10次迭代的使用自组织RRM的分布式RRM进行比较。剩余的仿真参数在表III中示出。
图10示出,与其他无线资源管理(RRM)方案相比,所提出的技术提供了大幅的QoS改进。按照图7和8中所示的趋势,图10和11示出了,更高的γth值导致保证数据速率的提升,但是代价是平均数据速率和能效的降低。然而,这些结果得到的结论为,该方案不仅有益于避免异构SBS中ad-hoc位置处的干扰,而且能够与整个异构蜂窝网络完全整合。
VI.结论
在本论文中提出了一种包含新的冲突范式的新颖混合RRM算法,从而改善异构蜂窝网络中的能效和QoS。一个BS与周围UE之间的冲突使用唯一的干扰映射冲突矩阵表示。该矩阵被示为在一定区域内的各种BS密度上应用RRM的有效方式。通过与DVRP路由算法相结合示出了,所提出的技术能够在各种场景中提升保证数据速率以及能效,这使得所提出的技术成为未来绿色蜂窝网络的强有力的候选者。另外,已经证明,该技术还能够满足室内环境中日益增长的每用户的QoS需求。
参考文献
[1]T.Novlan,R.Ganti,A.Ghosh,and J.Andrews,“Analytical evaluation offractional frequency reuse for heterogeneous cellular networks,"Communications,IEEE Transactions on,vol.60,no.7,pp.2029-2039,july 2012.
[2]D.Lopez-Perez,A.Valcarce,G.de la Roche,and J.Zhang,“Ofdraafemtocells:A roadmap on interference avoidance,”Communications Magazine,IEEE,vol.47,no.9,pp.41-48,September 2009.
[3]R.Kim,J.S.Kwak,and K.Etemad,“Wimax femtocell:requirements,challenges,and solutions,”Communications Magazine,IEEE,vol.47,no.9,pp.84-91,September 2009.
[4]J.Andrews,“Interference cancellation for cellular systems:aoverview,”Wireless Communications,IEEE,vol.12,no.2,pp.19_29,april2005.
[5]J.Kim and D.-H.Cho,“A joint power and subchannel allocation schememaximizing system capacity in indoor dense mobile communication systems,”Vehicular Technology,IEEE Transactions on,vol.59,no.9,pp.4340-4353,nov.2010.
[6]M.Z.Chowdhury,Y.M.Jang,and Z.J.Haas,"Interference mitigation usingdynamic frequency re-use for dense femtocell network,'*inUbiquitous and Future Networks(ICUFN),2010 Second International Conferenceon,june 2010,pp.256-261.
[7]H.-C.Lee,D.-C.Oh,and Y.-H.Lee,“Mitigation of inter-femtocellwith adaptive fractional frequency reuse,”in Communications(ICC),2010 IEEE International Conference on,may 2010,pp.1-5.
[8]V.Chandrasekhar and J.Andrews,“Spectrum allocation in tieredcellular networks,”Communications,IEEE Transactions on,vol.57,no.10,pp.3059-3068,october 2009.
[9]F.Pantisano,K.Ghaboosi,M.Bennis,and R.Verdone,"Asolution for interference avoidance in tdd underlay femto-cells,”in Signals,Systems and Computers(ASILOMAR),2010Record of the Forty FourthAsilomar Conference on,nov.2010,pp.492-495.
[10]A.Stolyar and H.Viswanathan,“Self-organizing dynamic fractionalfrequency reuse for best-effort traffic through distributed inter-cellcoordination,”in INFOCOM 2009,IEEE,2009,pp.1287-1295.
[11]L.Zheng and C.W.Tan,“Cognitive radio network duality andfor utility maximization,”Selected Areas in Communications,IEEE Journal on,vol.31,no.3,pp.500-513,2013.
[12]F.Pantisano,K.Ghaboosi,M.Bennis,and M.Latva-Aho,“Interferenceavoidance via resource scheduling in tdd underlay femtocells,”inIndoor and Mobile Radio Communications Workshops(PIMRC Workshops),2010 IEEE21st International Symposium on,sept.2010,pp.175-179.
[13]D.Lopez-Perez,A.Ladariyi,A.Juttner,and J.Zhang,“OfdmaAself-organizing approach for frequency assignment,”in Personal,Indoor andMobile Radio Communications,2009 IEEE 20thSymposium on,sept.2009,pp.2202-2207.
[14]K.Kordybach,S.Hamalainen,C.Sartori,and I.Veering,LTEfor UMTS.JohnWiley and Sons,Ltd,2011.
[15]C.G.Gerlach,I.Karla,A.Weber,L.Ewe,H.Bakker,E.Kuehn,and A.Rao,“Icic in dl and ul with network distributed and self-organized resourceassignment algorithms in lte,”Bell Labs Technical Journal,vol.15,no.3,pp.43-62,2010.[Online].Available:http://dx.doi.org/10.1002/bltj.20456
[16]S.R.Saunders,S.Carlaw,A.Giustina,R.R.Bhat,V.S.Rao,and R.Siegberg,Femtocells:Opportunities and Challenges for Business and Technology,S.R.Saunders’Ed.West Sussex:Wiley-Blackwell,2009.
[17]S.-F.Chou,H.-L.Chao,and C.-L.Liu,“An efficient measurement reportmechanism for long term evolution networks,”in Personal Indoor and MobileRadio Communications(PIMRC),2011 IEEE 22nd International Symposium on,sept.2011,pp.197-201.
[18]K.Yeung and S.Nanda,“Channel management in microcell/macrocellcellular radio systems,”Vehicular Technology,IEEE Transactions on,vol.45,no.4,pp.601-612,nov 1996.
[19]J.G.Andrews,A.Ghosh,and R.Muhamed,Fundamentals of WiMAX:Understanding Broadband Wireless Networking.Prentice Hall,2007.
[20]Y.J.Sang,H.G.Hwang,and K.S.Kim,“A self-organized femtocell forieee.802.16e system,”in Global Telecommunications Conference,2009.GLOBECOM2009.IEEE,2009,pp.1-5.
[21]J.Garcia-Luna-Aceves and S.Murthy,“A path-finding algorithm forloop-free routing,”Networking,IEEE/ACM Transactions on,vol.5,no.1,pp.148-160,1997.
[22]B.Sklar,Digital Communications:Fundamentals and Applications,2nded.Prentice Hall,2008.
[23]O.Arnold,F.Richter,G.Fettweis,and O.Blume,“Power consumptionmodeling of different base station types in heterogeneous cellular networks,”in Future Network and Mobile Summit,2010,june 2010,pp.1-8.
[24]I.Ashraf,L.Ho,and H.Claussen,“Improving energy efficiency offemtocell base stations via user activity detection,”in Wirelessand Networking Conference(WCNC),2010 IEEE,april 2010,pp.1-5.
[25]S.-S.Jeng,J.-M.Chen,C.-W.Tsung,and Y.-F.Lu,“Coverageanalysis of ieee 802.16 system with smart antenna system over Stanforduniversity interim fading channels,”Communications,IET vol.4,no.1,pp.91-101,52010.

Claims (14)

1.一种用于在网络中分配无线资源的装置,所述网络包括被设置为使用所述无线资源与多个用户进行通信的多个通信实体;所述无线资源包括多个载波;所述装置包括处理器,该处理器适于:
根据与所述载波的多个用户相关联的测量报告,确定至少潜在干扰无线资源集合;所述测量报告提供关于无线资源的所述载波的干扰或其他方面的指示;所述处理器适于确定至少潜在干扰无线资源集合包括:所述处理器适于,针对所述多个通信实体中的每一个通信实体,构建第一数据结构,给定通信实体的所述第一数据结构包括标记,该标记指示出所述多个用户中该给定通信实体的用户与该给定通信实体的相邻通信实体之间是否存在干扰;
根据所述第一数据结构形成冲突矩阵;所述冲突矩阵包括指示出所述多个用户与所述多个通信实体的通信实体之间是否存在干扰的标记;
根据第一标准执行对所述通信实体的排序;所述排序与所确定的至少潜在干扰无线资源集合相关联;所述处理器适于执行对所述通信实体的排序包括所述处理器适于基于所述通信实体对彼此的用户的干扰对所述通信实体进行分组以及所述处理器适于在每个分组内根据用户密度对通信实体进行排序,其中,给定通信实体的用户密度是该给定通信实体的服务区内所检测到的用户的数量;以及
建立给所述多个通信实体中的通信实体的用户分配的分配无线资源集合;所述分配无线资源集合选自所述无线资源中的可用无线资源集合以至少减小干扰;所述处理器适于建立所述分配无线资源集合包括:
所述处理器适于针对每个分组根据给定分组内的通信实体的排序将来自所述可用无线资源集合的无线资源分配给所述通信实体的用户,所述用户对所分配资源的使用不会引起干扰,并且所述处理器适于根据所分配的无线资源来更新所述可用无线资源集合。
2.根据权利要求1所述的装置,其中,所述处理器适于建立与所述分配无线资源集合相关联的第二数据结构;所述第二数据结构包括根据所述分配无线资源集合与无法被所述多个通信实体中的一个或更多通信实体所使用的无线资源相关联的数据。
3.根据权利要求1或2所述的装置,其中,所述处理器适于建立与所述分配无线资源集合相关联的第三数据结构;所述第三数据结构包括与能被所述多个通信实体中的一个或更多其他通信实体所使用的无线资源相关联的数据,这样的使用不会引起干扰。
4.根据权利要求1或2所述的装置,其中,所述处理器适于建立与所述分配无线资源集合相关联的第四数据结构;所述第四数据结构包括与暂时无法被所述多个通信实体中的一个或更多其他通信实体所使用的无线资源相关联的数据,这样的使用不会引起干扰。
5.根据权利要求1或2所述的装置,其中,所述处理器适于将未分配无线资源分配给所述多个通信实体中的一个或更多其他通信实体;所述一个或更多通信实体不具有至少潜在干扰无线资源集合。
6.根据权利要求1所述的装置,其中,所述处理器适于确定至少潜在干扰无线资源集合包括:所述处理器适于处理与所述测量报告相关联的数据。
7.根据权利要求6所述的装置,其中,与所述测量报告相关联的数据包括所述多个通信实体中的一个或更多通信实体之间的干扰或其他方面的指示。
8.根据权利要求1或2所述的装置,其中,所述处理器适于根据所述排序将无线资源分配给所述多个通信实体中的一个或更多包括:所述处理器适于分配特定无线资源供所述多个通信实体中的特定通信实体所使用。
9.根据权利要求1或2所述的装置,其中,所述处理器适于根据所述排序将无线资源分配给所述多个通信实体中的一个或更多包括:所述处理器适于分配特定无线资源供所述多个通信实体的一个或更多通信实体所使用。
10.根据权利要求9所述的装置,其中,所述特定无线资源包括待分配给多个所述通信实体的多个无线资源。
11.根据权利要求1或2所述的装置,其中,所述处理器适于确定至少潜在干扰无线资源集合包括:所述处理器适于确定干扰无线资源集合。
12.根据权利要求1或2所述的装置,其中,所述多个通信实体的一个或更多通信实体是服务于一个或更多用户设备的基站。
13.根据权利要求1或2所述的装置,其中,所述多个通信实体的一个或更多通信实体是与各自基站相关联的用户设备。
14.根据权利要求1或2所述的装置,进一步包括:所述处理器适于响应于所述根据所述排序将无线资源分配给所述多个通信实体中的一个或更多通信实体,将无线资源的分配传送到所述多个通信实体中各自的一个或更多通信实体。
CN201380054159.5A 2012-08-16 2013-08-15 一种通信系统和方法 Expired - Fee Related CN104770004B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1214642.9 2012-08-16
GB1214642.9A GB2504985A (en) 2012-08-16 2012-08-16 Managing interference between a plurality of sub-carriers on the basis of interference indications contained in measurement reports
PCT/GB2013/000344 WO2014027171A2 (en) 2012-08-16 2013-08-15 Communication system and method

Publications (2)

Publication Number Publication Date
CN104770004A CN104770004A (zh) 2015-07-08
CN104770004B true CN104770004B (zh) 2018-11-16

Family

ID=47016893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380054159.5A Expired - Fee Related CN104770004B (zh) 2012-08-16 2013-08-15 一种通信系统和方法

Country Status (5)

Country Link
US (2) US10015799B2 (zh)
EP (1) EP2885942A2 (zh)
CN (1) CN104770004B (zh)
GB (1) GB2504985A (zh)
WO (2) WO2014027170A2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165750A1 (en) * 2015-04-14 2016-10-20 Huawei Technologies Co., Ltd. Wireless communication device and method
CN106973438A (zh) * 2016-01-14 2017-07-21 索尼公司 网络管理侧和用户设备侧的装置及方法、中央管理装置
KR101956133B1 (ko) * 2018-01-08 2019-03-08 연세대학교 산학협력단 바이폴라 플레이트, 바이폴라 플레이트를 포함하는 바이폴라 스택 및 이를 이용한 레독스 흐름 전지
US11147046B2 (en) * 2019-03-05 2021-10-12 Apple Inc. Forbidden-resource-unit indication for coexisting communication
CN111769894B (zh) * 2020-06-14 2022-05-24 中国舰船研究设计中心 一种交错式频谱分配方法
CN112367679B (zh) * 2020-11-27 2023-05-26 中国联合网络通信集团有限公司 一种可接入用户数的评估方法和装置
CN112333753B (zh) * 2020-11-27 2023-05-26 中国联合网络通信集团有限公司 一种可接入用户数的评估方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732338A1 (en) * 2004-03-05 2006-12-13 NTT DoCoMo INC. Frequency channel assigning system, base station, control station, inter-system common control apparatus, frequency channel assigning method and control method
EP2312880A1 (en) * 2009-10-13 2011-04-20 Alcatel Lucent Method for allocating radio resources in a wireless cellular network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
KR100965338B1 (ko) * 2003-08-18 2010-06-22 엘지전자 주식회사 Ofdm 셀룰러 환경에서 셀간 간섭 저감을 위한부반송파 할당방법
US7548752B2 (en) * 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
US8340060B2 (en) * 2008-03-03 2012-12-25 Ntt Docomo, Inc. OFDMA-based co-channel femtocell
US8374135B2 (en) * 2008-11-13 2013-02-12 Nec Laboratories America, Inc. Methods and systems for location-based allocation of macro cell resources
WO2010081696A1 (en) * 2009-01-14 2010-07-22 Nec Europe Ltd. Method for interference mitigation for femtocell base stations of a wimax network
CN102595414B (zh) * 2011-01-12 2015-07-22 富士通株式会社 用于在无线网络中调整带宽分配的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732338A1 (en) * 2004-03-05 2006-12-13 NTT DoCoMo INC. Frequency channel assigning system, base station, control station, inter-system common control apparatus, frequency channel assigning method and control method
EP2312880A1 (en) * 2009-10-13 2011-04-20 Alcatel Lucent Method for allocating radio resources in a wireless cellular network

Also Published As

Publication number Publication date
WO2014027170A3 (en) 2014-04-10
WO2014027170A2 (en) 2014-02-20
WO2014027171A2 (en) 2014-02-20
EP2885942A2 (en) 2015-06-24
GB2504985A (en) 2014-02-19
US20180343658A1 (en) 2018-11-29
WO2014027171A3 (en) 2014-06-05
US20150215948A1 (en) 2015-07-30
GB201214642D0 (en) 2012-10-03
US10015799B2 (en) 2018-07-03
CN104770004A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
CN104770004B (zh) 一种通信系统和方法
Hasan et al. A novel HGBBDSA-CTI approach for subcarrier allocation in heterogeneous network
Sadr et al. Partially-distributed resource allocation in small-cell networks
Muñoz et al. Self-dimensioning and planning of small cell capacity in multitenant 5G networks
Zhou et al. Joint mode selection, MCS assignment, resource allocation and power control for D2D communication underlaying cellular networks
Hajisami et al. Dynamic joint processing: Achieving high spectral efficiency in uplink 5G cellular networks
Saha et al. A tractable analytical model for interference characterization and minimum distance enforcement to reuse resources in three‐dimensional in‐building dense small cell networks
Mollahasani et al. Density-aware, energy-and spectrum-efficient small cell scheduling
Pramudito et al. A hybrid resource management technique for energy and QoS optimization in fractional frequency reuse based cellular networks
JP5558551B2 (ja) 分散セルラシステムのための無線通信リソース管理
Lan et al. Resource allocation and performance study for LTE networks integrated with femtocells
Kalbkhani et al. Resource allocation in integrated femto–macrocell networks based on location awareness
Wang et al. QoS-aware channel assignment for weighted sum-rate maximization in D2D communications
Su et al. Channel allocation and power control schemes for cross-tier 3GPP LTE networks to support multimedia applications
Ghosh Interrelationship between energy efficiency and spectral efficiency in cognitive femtocell networks: A survey
Ye et al. Hybrid-clustering game Algorithm for resource allocation in macro-femto hetnet
Sathya et al. Handover and SINR optimized deployment of LTE femto base stations in enterprise environments
Thakur et al. An energy efficient cell selection scheme for femtocell network with spreading
Li et al. Radio resource management for public femtocell networks
Marshoud et al. Realistic framework for resource allocation in macro–femtocell networks based on genetic algorithm
Estrada et al. A novel cluster based resource sharing model for femtocell networks
Sharma et al. Improving energy efficiency of femtocell network by joint estimation of downlink throughput and uplink power
Varade et al. Quality constrained multi‐attribute energy‐efficient resource allocation for heterogeneous cognitive radio networks
Ratheesh et al. Traffic based power consumption and node deployment in green LTE-A cellular networks
Ma et al. Bandwidth allocation with minimum rate constraints in cluster-based femtocell networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181116

Termination date: 20190815

CF01 Termination of patent right due to non-payment of annual fee