CN104767449A - RBF Neural Network Adaptive Inverse Decoupling Control and Parameter Identification Method for Bearingless Induction Motor - Google Patents

RBF Neural Network Adaptive Inverse Decoupling Control and Parameter Identification Method for Bearingless Induction Motor Download PDF

Info

Publication number
CN104767449A
CN104767449A CN201510092881.9A CN201510092881A CN104767449A CN 104767449 A CN104767449 A CN 104767449A CN 201510092881 A CN201510092881 A CN 201510092881A CN 104767449 A CN104767449 A CN 104767449A
Authority
CN
China
Prior art keywords
neural network
asynchronous motor
rbf neural
control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510092881.9A
Other languages
Chinese (zh)
Other versions
CN104767449B (en
Inventor
孙宇新
钱忠波
朱熀秋
朱湘临
于焰均
乔薇
刘奕辰
杜怿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201510092881.9A priority Critical patent/CN104767449B/en
Publication of CN104767449A publication Critical patent/CN104767449A/en
Application granted granted Critical
Publication of CN104767449B publication Critical patent/CN104767449B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

The invention discloses a bearing-free asynchronous motor RBF neural network self-adaptive inverse decoupling control and parameter identification method. An SVPWM module, a voltage inverter, a bearing-free asynchronous motor and a load of the bearing-free asynchronous motor form a whole serving as a composite controlled object. Two radial basis function neural networks are adopted to achieve inverse control and parameter identification conducted on the composite controlled object. A self-adaptive inverse controller is formed by using an RBF neural network through learning, and is serially connected in front of the composite controlled object, errors of a feedback signal and a given signal are input into an inverse controller, and accordingly closed-loop control is formed, then a self-adaptive parameter identifier is formed by using one RBF neural network through learning and identifies output quantity speed and displacement of the composite controlled object, speed-less and displacement-free sensor control is achieved, online learning of an estimation signal is aided by means of a learning algorithm, and non-linear dynamic decoupling control of the bearing-free asynchronous motor is achieved. The bearing-free asynchronous motor RBF neural network self-adaptive inverse decoupling control and parameter identification method is high in control speed and higher in identification accuracy, and a control system is excellent.

Description

无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法RBF Neural Network Adaptive Inverse Decoupling Control and Parameter Identification Method for Bearingless Induction Motor

技术领域technical field

本发明是一种多变量非线性的无轴承异步电动机RBF神经网络自适应逆控制及参数辨识方法,适用于无轴承异步电动机的高性能控制。无轴承异步电动机继承了磁轴承电机优点,具有无摩擦、无磨损、不需润滑和密封、无菌、无污染、寿命长等特点,非常适合在注入高速精密数控机床、高压密封泵、特种机器人、高速陀螺、卫星飞轮、高速飞行器及控制装置、高速离心机、高速飞轮储能等高速驱动的高新技术领域,应用前景广泛,属于电力传动控制设备的技术领域。The invention is a multi-variable nonlinear bearingless asynchronous motor RBF neural network adaptive inverse control and parameter identification method, which is suitable for high-performance control of the bearingless asynchronous motor. Bearingless asynchronous motors inherit the advantages of magnetic bearing motors, and have the characteristics of no friction, no wear, no lubrication and sealing, sterility, no pollution, and long life. They are very suitable for injection into high-speed precision CNC machine tools, high-pressure sealed pumps, and special robots. , High-speed gyroscope, satellite flywheel, high-speed aircraft and control device, high-speed centrifuge, high-speed flywheel energy storage and other high-speed drive high-tech fields have broad application prospects and belong to the technical field of electric drive control equipment.

背景技术Background technique

无轴承异步电动机内部具有复杂的电磁关系,因此它是一类多变量、非线性、强耦合的被控对象,要实现对其径向位移、转速准确的控制非常困难。若要实现对无轴承异步电动机转子的稳定悬浮和跟随给定转速运行,就必须对电机的转矩力和悬浮力进行解耦控制。The bearingless asynchronous motor has complex electromagnetic relations inside, so it is a kind of multi-variable, nonlinear, and strongly coupled controlled object, and it is very difficult to achieve accurate control of its radial displacement and speed. In order to realize the stable levitation of the rotor of the bearingless asynchronous motor and the operation following the given speed, it is necessary to decouple the torque force and levitation force of the motor.

但是,动态解耦控制的控制策略一直是实现无轴承异步电动机稳定工作的难点。常见控制有气隙磁场定向和转子磁场定向控制,实验证明这两种方法都能对无轴承异步电动机实现较为稳定控制。气隙磁场定向控制方法虽然可以实现电磁转矩和径向悬浮力之间解耦控制,但这种算法受电机参数(如转子电阻、转子漏感等)的影响较大,且存在是稳转矩,适用范围受限;转子磁场定向控制方法,能做到转矩电流和励磁电流之间的解耦,但只有转子磁链达到稳定并保持恒定时才能实现电磁转矩和转子磁链解耦,属于稳态解耦并不能实现动态解耦。BP神经网络应用于无轴承异步电动机控制并取得较好的控制效果,但BP神经网络在函数逼近方面存在收敛速度慢、易陷入局部极小等缺点,且理论上与生物背景不相符。However, the control strategy of dynamic decoupling control has always been a difficult point in realizing the stable operation of bearingless asynchronous motors. Common controls include air-gap field-oriented control and rotor field-oriented control. Experiments have proved that these two methods can achieve relatively stable control of bearingless asynchronous motors. Although the air-gap field-oriented control method can achieve decoupling control between electromagnetic torque and radial levitation force, this algorithm is greatly affected by motor parameters (such as rotor resistance, rotor leakage inductance, etc.), and there is a problem of stable rotation torque, the scope of application is limited; the rotor field oriented control method can achieve the decoupling between the torque current and the excitation current, but only when the rotor flux linkage is stable and remains constant can the decoupling of the electromagnetic torque and the rotor flux linkage be realized , belonging to steady-state decoupling and cannot achieve dynamic decoupling. BP neural network is applied to the control of bearingless asynchronous motors and achieves good control results. However, BP neural network has shortcomings such as slow convergence speed and easy to fall into local minimum in function approximation, and it does not match the biological background theoretically.

为进一步提高无轴承异步电动机的动态工作性能,需要考虑无轴承异步电动机的动态解耦和多变量协调控制相结合,进而需要结构更加紧凑、性能更优良的无轴承异步电动机解耦控制器。In order to further improve the dynamic performance of bearingless asynchronous motors, it is necessary to consider the combination of dynamic decoupling and multivariable coordinated control of bearingless asynchronous motors, and then a decoupling controller for bearingless asynchronous motors with more compact structure and better performance is required.

国内现有得相关专利申请:1)专利申请号CN20061038711.3,名称为:无轴承交流异步电动机神经网络逆解耦控制器的控制方法,此发明专利针对无轴承交流异步电动机设计神经网络逆解耦控制器;2)专利申请号CN200510038099.5,名称为:无轴承开关磁阻电动机径向神经网络逆解耦控制器及构造方法,此发明针对磁悬浮开关磁阻电机设计径向神经网络逆解耦控制器;3)专利申请号CN200510040065.X,基于神经网络逆五自由度无轴承永磁同步电机控制系统及控制方法,此发明针对五自由度无轴承永磁同步电机设计的控制方法;4)文章编号0258-8013(2004)07-0117-05基于RBF神经网络的超声波电机参数辨识是针对超声波电机参数辨识的方法;以上三个发明所用神经网络逆控制器控制电机思想与本专利有一定的相关性,但是本文中神经网络采用的是RBF神经网络,与它们采用的BP网络不同;对比文章4本发明在电机的结构、数学模型、控制方法、控制难度和要求存在本质区别,对无轴承异步电动机的RBF神经网络自适应逆控制系统的设计目前无相关专利和文献资料。Related domestic patent applications: 1) Patent application number CN20061038711.3, titled: Control method of bearingless AC asynchronous motor neural network inverse decoupling controller, this invention patent is designed for bearingless AC asynchronous motor neural network inverse solution Coupling controller; 2) Patent application number CN200510038099.5, titled: Bearingless Switched Reluctance Motor Radial Neural Network Inverse Decoupling Controller and Construction Method, this invention designs radial neural network inverse solution for magnetic levitation switched reluctance motor Coupling controller; 3) Patent application number CN200510040065.X, based on neural network inverse five-degree-of-freedom bearingless permanent magnet synchronous motor control system and control method, this invention is a control method designed for five-degree-of-freedom bearingless permanent magnet synchronous motor; 4 ) Article number 0258-8013 (2004) 07-0117-05 RBF neural network-based ultrasonic motor parameter identification is a method for ultrasonic motor parameter identification; the idea of neural network inverse controller used in the above three inventions to control the motor is somewhat related to this patent However, what the neural network used in this paper is the RBF neural network, which is different from the BP network they adopt; compared with the article 4, the present invention has essential differences in the structure, mathematical model, control method, control difficulty and requirements of the motor. The design of the RBF neural network self-adaptive inverse control system for the bearing asynchronous motor has no related patents and documents at present.

发明内容Contents of the invention

本发明的目的是针对无轴承异步电动机的非线性、强耦合复杂系统,对悬浮力、转矩力以及转子磁链采用RBF神经网络自适应逆控制器进行非线性动态解耦控制,提供一种即可使无轴承异步电动机具有优良的动静态性能,而且具有抵抗电机参数变化以及抗负载扰动的强鲁棒性,又能有效地提高无轴承异步电动机的各项控制性能指标;此外采用RBF神经网络自适应辨识器实现在线辨识无轴承异步电动机的输出如径向位移、转速和磁链。The purpose of the present invention is to use RBF neural network self-adaptive inverse controller to carry out nonlinear dynamic decoupling control on levitation force, torque force and rotor flux linkage for the nonlinear and strongly coupled complex system of bearingless asynchronous motor, and to provide a It can make the bearingless asynchronous motor have excellent dynamic and static performance, and has strong robustness against motor parameter changes and load disturbance, and can effectively improve various control performance indicators of the bearingless asynchronous motor; in addition, the RBF neural network is adopted The network adaptive identifier realizes on-line identification of the output of the bearingless asynchronous motor, such as radial displacement, rotational speed and flux linkage.

本发明的技术方案为:一种无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,包括步骤:The technical solution of the present invention is: a bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method, including steps:

步骤1,用常用传感器检测电压、电流、转速信号,信号经过3s/2r坐标变换后送入磁链观测模型,来获得磁链闭环控制以及神经网络训练所需要的磁链信息;Step 1. Use commonly used sensors to detect voltage, current, and rotational speed signals. The signals are sent to the flux linkage observation model after 3s/2r coordinate transformation to obtain flux linkage information required for flux linkage closed-loop control and neural network training;

步骤2,将SVPWM算法模块一和电压型逆变器模块一串接组成扩展的SVPWM电压型逆变器模块一,将SVPWM算法模块二和电压型逆变器模块二串接组成扩展的SVPWM电压型逆变器模块二;Step 2, connect SVPWM algorithm module 1 and voltage inverter module 1 in series to form extended SVPWM voltage inverter module 1, connect SVPWM algorithm module 2 and voltage inverter module 2 in series to form extended SVPWM voltage type inverter module two;

步骤3,构建无轴承异步电动机及其负载模型,将扩展的SVPWM电压型逆变器模块一、扩展的SVPWM电压型逆变器模块二以及无轴承异步电动机及其负载模型作为一个整体组成复合被控对象;Step 3, construct the bearingless asynchronous motor and its load model, and combine the extended SVPWM voltage-type inverter module 1, the extended SVPWM voltage-type inverter module 2, and the bearingless asynchronous motor and its load model as a whole to form a composite control object;

步骤4,通过RBF神经网络RBFNNC构建复合被控对象的逆控制器,利用离线和在线相结合的方法训练并获得RBF神经网络RBFNNC的结构和参数,将训练好的RBF神经网络RBFNNC置于复合被控对象之前构成线性控制系统,从而实现对无轴承异步电动机的解耦控制;Step 4: Construct the inverse controller of the compound controlled object through the RBF neural network RBFNNC, use the method of combining offline and online to train and obtain the structure and parameters of the RBF neural network RBFNNC, and place the trained RBF neural network RBFNNC in the compound controlled object The linear control system is formed before the control object, so as to realize the decoupling control of the bearingless asynchronous motor;

步骤5,通过RBF神经网络RBFNNI构建复合被控对象的辨识器,利用离线和在线相结合的方法训练并获得RBF神经网络RBFNNI的结构和参数,在辨识精度达到设计要求后,用辨识信号代替传感器检测得到的信号,实现无传感器控制。Step 5: Construct the identifier of the compound controlled object through the RBF neural network RBFNNI, use the method of combining offline and online to train and obtain the structure and parameters of the RBF neural network RBFNNI, and replace the sensor with the identification signal after the identification accuracy meets the design requirements The detected signal realizes sensorless control.

进一步,所述步骤1中的3s/2r坐标变换可分为第一坐标变换和第二坐标变换,所述第一坐标变换是把由霍尔电流传感器检测到的无轴承异步电动机定子绕组相电流i1a、i1b、i1c通过Clark变换以及Park变换得到旋转坐标系下电流i1d、i1q;第二坐标变换是把由霍尔电压传感器检测到无轴承异步电动机定子绕组相电压U1a、U1b、U1c通过Clark变换以及Park变换得到旋转坐标系下电压U1d、U1qFurther, the 3s/2r coordinate transformation in the step 1 can be divided into the first coordinate transformation and the second coordinate transformation, the first coordinate transformation is to convert the phase current of the stator winding phase current of the bearingless asynchronous motor detected by the Hall current sensor to i 1a , i 1b , i 1c obtain the current i 1d , i 1q in the rotating coordinate system through Clark transformation and Park transformation; the second coordinate transformation is to transform the bearingless asynchronous motor stator winding phase voltage U 1a , phase voltage detected by the Hall voltage sensor U 1b and U 1c obtain voltages U 1d and U 1q in the rotating coordinate system through Clark transformation and Park transformation.

进一步,所述步骤1中的磁链观测模型包括定子磁链观测模型和转子磁链观测模型;Further, the flux observation model in the step 1 includes a stator flux observation model and a rotor flux observation model;

所述定子磁链观测模型是将旋转坐标系下电流i1d、i1q和电压U1d、U1q经函数变换得到旋转坐标系下定子磁链分量ψ1d、ψ1qThe stator flux linkage observation model is to transform the current i 1d , i 1q and voltage U 1d , U 1q in the rotating coordinate system through function transformation to obtain the stator flux linkage components ψ 1d , ψ 1q in the rotating coordinate system:

ψ1d=∫(U1d-Ri1d)dt-L1i1d ψ 1d =∫(U 1d -Ri 1d )dt-L 1 i 1d

ψ1q=∫(U1q-Ri1q)dt-L1i1q ψ 1q =∫(U 1q -Ri 1q )dt-L 1 i 1q

所述转子磁链观测模型是将旋转坐标系下电流i1d、i1q和旋转坐标系下定子磁链分量ψ1d、ψ1q经函数变换得到旋转坐标系下转子磁链分量ψdr、ψqrThe rotor flux observation model is to transform the current i 1d , i 1q in the rotating coordinate system and the stator flux components ψ 1d , ψ 1q in the rotating coordinate system through function transformation to obtain the rotor flux components ψ dr , ψ qr in the rotating coordinate system :

ψψ drdr == ii 11 dd LL mm 11 rr -- TT rr (( ωω rr ψψ 11 dd ++ dψdψ drdr dtdt )) ψψ qrqr == ii 11 qq LL mm 11 rr -- TT rr (( ωω rr ψψ 11 qq ++ dd ψψ qrqr dtdt )) ..

进一步,所述步骤2中,所述SVPWM算法模块一将给定电压信号Uα1s*、Uβ1s*转换为占空比信号Sa1s、Sb1s、Sc1s,将占空比信号输出到电压型逆变器一产生电压信号Ua1s、Ub1s、Uc1s来控制转矩绕组系统;Further, in the step 2, the SVPWM algorithm module 1 converts the given voltage signals U α1s *, U β1s * into duty ratio signals S a1s , S b1s , S c1s , and outputs the duty ratio signals to the voltage type Inverter 1 generates voltage signals U a1s , U b1s , U c1s to control the torque winding system;

所述SVPWM算法模块二将给定电压信号Uα2s*、Uβ2s*转换为占空比信号Sa2s、Sb2s、Sc2s,将占空比信号输出到电压型逆变器二产生电压信号Ua2s、Ub2s、Uc2s来控制悬浮绕组系统。The SVPWM algorithm module 2 converts the given voltage signals U α2s *, U β2s * into duty ratio signals S a2s , S b2s , S c2s , and outputs the duty ratio signals to the voltage-type inverter 2 to generate a voltage signal U a2s , U b2s , U c2s to control the suspension winding system.

进一步,所述步骤3中无轴承异步电动机及其负载模型的转矩绕组系统数学模型为常见笼型异步电动机数学模型;无轴承异步电动机及其负载模型的悬浮绕组系统悬浮力数学方程如下:Further, the mathematical model of the torque winding system of the bearingless asynchronous motor and its load model in step 3 is a common cage-type asynchronous motor mathematical model; the suspension force mathematical equation of the bearingless asynchronous motor and its load model of the suspension winding system is as follows:

Fx=M(-id1sid2s+iq1siq2s)F x =M(-i d1s i d2s +i q1s i q2s )

Fy=M(iq1sid2s+id1siq2s)F y =M(i q1s i d2s +i d1s i q2s )

式中M为转矩绕组和悬浮绕组之间互感系数;In the formula, M is the mutual inductance coefficient between the torque winding and the suspension winding;

无轴承异步电动机及其负载模型的悬浮绕组系统状态方程方程如下:The state equation of the suspension winding system of the bearingless asynchronous motor and its load model is as follows:

mm xx ·· ·· == Ff xx -- Ff sxsx mm ythe y ·&Center Dot; ·· == Ff ythe y -- Ff sysy

式中m为转子质量;Fsx、Fsy固有的麦克斯韦力,其表达式为:In the formula, m is the mass of the rotor; F sx , F sy inherent Maxwell force, its expression is:

Fsx=ksxF sx =k s x

Fsy=ksyF sy = k s y

式中为径向位移刚度;r为转子半径;l为转子轴长度;μ0为空气磁导率;δ为气隙长度;k为衰减因子,一般取0.3。In the formula r is the radius of the rotor; l is the length of the rotor shaft; μ 0 is the air permeability; δ is the length of the air gap; k is the attenuation factor, generally 0.3.

进一步,所述步骤4-5中,RBF神经网络RBFNNC和RBF神经网络RBFNNI结构和参数确定的离线训练方法为:Further, in the step 4-5, the off-line training method of RBF neural network RBFNNC and RBF neural network RBFNNI structure and parameter determination is:

通过离线训练确定隐层节点的个数及其中心和宽度,并计算出隐层与输出层之间的连接权的初始值,RBFNNC的输入样本为位移X、Y,转速ωr、磁链ψr的给定值与实际值的误差以及误差信号经过ec函数模块的输出值{e1,e2,e3,e4,ec1,ec2,ec3,ec4},输出样本为经过坐标变换的{U,U,U,U};RBFNNI的输入样本为经延时后的复合被控对象的输入和输出{U,U,U,U,X,Y,ωr,ψr},输出样本为辨识的复合被控对象输出{X′,Y′,ωr′,ψr′};Determine the number of hidden layer nodes and their center and width through offline training, and calculate the initial value of the connection weight between the hidden layer and the output layer. The input samples of RBFNNC are displacement X, Y, rotational speed ω r , flux linkage ψ The error between the given value and the actual value of r and the output value {e 1 , e 2 , e 3 , e 4 , e c1 , e c2 , e c3 , e c4 } of the error signal through the e c function module, the output sample is After coordinate transformation {U , U , U , U }; the input samples of RBFNNI are the input and output of the delayed compound controlled object {U , U , U , U , X , Y, ω r , ψ r }, the output sample is the identified compound plant output {X′, Y′, ω r ′, ψ r ′};

在训练过程中按照一定的规则自适应地增加节点数,并按照规则将对输出信号作用过小的隐层单元删除,用最少的隐层单元有效实现系统非线性映射。In the training process, the number of nodes is adaptively increased according to certain rules, and the hidden layer units that have too little effect on the output signal are deleted according to the rules, and the system nonlinear mapping is effectively realized with the least hidden layer units.

进一步,所述步骤4-5中,RBF神经网络RBFNNC和RBF神经网络RBFNNI结构和参数确定的在线训练方法上采用递推最小二乘法学习规则。Further, in the step 4-5, the online training method for determining the structure and parameters of the RBF neural network RBFNNC and RBF neural network RBFNNI adopts the recursive least square method learning rule.

本发明的优点在于:The advantages of the present invention are:

1.无轴承异步电动机既继承了磁轴承支承电机优点,解决了传统支承装置结构复杂、体积大、成本高、效率低、故障率高缺点,又比磁轴承电机更加合理,更加实用。1)大幅度缩短了轴向空间,提高轴向利用率,可突破大功率和超高转速限制;2)本无轴承异步电动机的径向悬浮控制系统中功率放大电路采用基于SVPWM算法的三相功率逆变电路,使得电机控制功耗低,转矩脉动小,提高相电流的正弦度,降低电流的THD。1. Bearingless asynchronous motor not only inherits the advantages of magnetic bearing support motor, but also solves the disadvantages of traditional support devices such as complex structure, large volume, high cost, low efficiency and high failure rate, and is more reasonable and practical than magnetic bearing motor. 1) The axial space is greatly shortened, the utilization rate of the axial direction is improved, and the limitation of high power and ultra-high speed can be broken through; 2) The power amplifier circuit in the radial suspension control system of the bearingless asynchronous motor adopts a three-phase motor based on the SVPWM algorithm. The power inverter circuit makes the motor control power consumption low, the torque ripple is small, the sine degree of the phase current is increased, and the THD of the current is reduced.

2.通过RBF神经网络自适应逆在对无轴承异步电动机进行转矩力和径向悬浮力之间的动态解耦从而实现位置系统、转子转速和磁链控制的同时,该方法相对于诸如BP神经网络逆有其独有的特点:RBF神经网络具有良好的生物背景和函数逼近能力,不仅结构简单、收敛速度快、泛化能力强,而且具有全局最优和最佳逼近性质,进一步简化控制器网络结构。2. Through the RBF neural network adaptive inversion, the dynamic decoupling between the torque force and the radial levitation force is performed on the bearingless asynchronous motor to realize the control of the position system, rotor speed and flux linkage. Neural network inverse has its unique characteristics: RBF neural network has good biological background and function approximation ability, not only has simple structure, fast convergence speed, strong generalization ability, but also has global optimal and best approximation properties, which further simplifies control device network structure.

3.本发明中突出的特点是采用RBF神经网络自适应辨识器,通过易检测的电压电流信号在无需知道电机精确参数情况下辨识无轴承异步电动机的径向位移、转速和磁链信息,而且辨识精度高,从而实现无传感器控制,降低系统成本,提高系统可靠性,特别适用于恶劣环境和系统要求较高场合。3. The prominent feature in the present invention is to adopt the RBF neural network self-adaptive identifier to identify the radial displacement, rotating speed and flux linkage information of the bearingless asynchronous motor without knowing the precise parameters of the motor by the easily detected voltage and current signals, and The recognition accuracy is high, so as to realize sensorless control, reduce system cost and improve system reliability, especially suitable for harsh environments and occasions with high system requirements.

4.本发明在训练过程中按照一定的规则自适应地增加节点数,并按照规则将对输出信号作用过小的隐层单元删除,以确保网络结构简单、紧凑,用最少的隐层单元有效实现系统非线性映射。采用递推最小二乘法学习具有通过在线训练按递推最小二乘法有监督地调节网络连接权,增强逆系统的鲁棒性的优点。4. In the training process, the present invention adaptively increases the number of nodes according to certain rules, and deletes hidden layer units that have too little effect on the output signal according to the rules, so as to ensure that the network structure is simple and compact, and is effective with the least hidden layer units Realize the nonlinear mapping of the system. Learning by recursive least squares method has the advantage of adjusting the network connection weight with supervision according to recursive least squares method through online training, and enhancing the robustness of the inverse system.

本发明基于RBF神经网络自适应逆构造的无轴承异步电动机RBF神经网络自适应逆控制系统,提高了无轴承异步电动机控制性能,而且同样适用于其他无轴承电机控制系统和磁轴承支承的各类型电机控制系统。所以,这种控制方法的应用前景十分广阔,对于其他无轴承电机来说也具有重要的应用价值。The RBF neural network adaptive inverse control system of the bearingless asynchronous motor based on the RBF neural network adaptive inverse structure of the present invention improves the control performance of the bearingless asynchronous motor, and is also applicable to other bearingless motor control systems and various types of magnetic bearing support motor control system. Therefore, the application prospect of this control method is very broad, and it also has important application value for other bearingless motors.

附图说明Description of drawings

图1是无轴承异步电动机转子磁链观测器的原理图;Fig. 1 is a schematic diagram of a rotor flux observer of a bearingless asynchronous motor;

图2是由扩展的SVPWM电压型逆变器模块一和扩展的SVPWM电压型逆变器模块二以及无轴承异步电动机及其负载模型作为一个整体组成复合被控对象的原理图;Figure 2 is a schematic diagram of a compound controlled object composed of the expanded SVPWM voltage-type inverter module 1, the expanded SVPWM voltage-type inverter module 2, and the bearingless asynchronous motor and its load model as a whole;

图3是RBF神经网络内部示意图及等效图;Fig. 3 is an internal schematic diagram and an equivalent diagram of the RBF neural network;

图4是RBF神经网络逆网络和RBF神经网络参数辨识网络共同构成复合输入输出学习样本示意图;Fig. 4 is a schematic diagram of composite input and output learning samples composed of the RBF neural network inverse network and the RBF neural network parameter identification network;

图5是无轴承异步电动机RBF神经网络自适应逆解耦控制系统框图;Fig. 5 is a block diagram of a bearingless asynchronous motor RBF neural network adaptive inverse decoupling control system;

图6是无轴承异步电动机RBF神经网络自适应逆控制及参数辨识系统框图。Figure 6 is a block diagram of the RBF neural network adaptive inverse control and parameter identification system for a bearingless asynchronous motor.

具体实施方式Detailed ways

本发明的实施方式是:首先采用常用的电流、电压、速度、磁链观测模型及Park变换与Clark变换组成的一个磁链观测器,来估算磁链闭环所需的无轴承异步电动机的转子磁链信息。将两个SVPWM和电压型逆变器模块,以及无轴承异步电动机及其负载模型一起作为一个整体组成复合被控对象,复合被控对象的被控量是无轴承异步电动机转子径向位移、转速和磁链;采用一个RBF神经网络构建复合被控对象的逆控制器,逆控制器输入为给定信号和反馈信号的误差信号构成闭环;另外采用一个RBF神经网络RBFNNI实现对被控对象的转速和位移信号辨识;两个RBF神经网络都采用三层前馈式网络,包括输入层(8个节点)、隐层和输出层(4个节点),其中隐层使用径向基函数,通过离线和在线学习相结合的方式实现网络结构初始化和权值优化;最后将RBF神经网络自适应逆系统和自适应参数辨识、两个SVPWM和电压型逆变器模块共同构成RBF神经网络自适应逆无轴承异步电动机自适应逆控制系统实现对无轴承异步电动机转矩力和径向悬浮力的独立控制,从而实现电机动态解耦及被控对象参数辨识。Embodiments of the present invention are as follows: first, a flux observer composed of a commonly used current, voltage, speed, flux observation model and Park transformation and Clark transformation is used to estimate the rotor flux of the bearingless asynchronous motor required for the flux linkage closed loop. chain information. The two SVPWM and voltage-type inverter modules, as well as the bearingless asynchronous motor and its load model are taken as a whole to form a composite controlled object. The controlled variables of the composite controlled object are the rotor radial displacement and rotational speed of the bearingless asynchronous motor and flux linkage; a RBF neural network is used to construct the inverse controller of the compound controlled object, and the input of the inverse controller is the error signal of the given signal and the feedback signal to form a closed loop; in addition, an RBF neural network RBFNNI is used to realize the speed control of the controlled object and displacement signal identification; both RBF neural networks use a three-layer feed-forward network, including an input layer (8 nodes), a hidden layer and an output layer (4 nodes). Combined with online learning to realize network structure initialization and weight optimization; finally, the RBF neural network adaptive inverse system and adaptive parameter identification, two SVPWM and voltage inverter modules together constitute the RBF neural network adaptive inverse The self-adaptive inverse control system of the bearing asynchronous motor realizes the independent control of the torque force and the radial suspension force of the bearingless asynchronous motor, so as to realize the dynamic decoupling of the motor and the parameter identification of the controlled object.

下面结合附图进一步说明本发明的具体实施方式。The specific implementation manner of the present invention will be further described below in conjunction with the accompanying drawings.

如图1所示,构造无轴承异步电动机磁链观测器:由两个坐标变换11、12,定子磁链观测模型13以及转子磁链辨识模型14组成;其中一个坐标变换是将无轴承异步电动机定子绕组相电流i1a、i1b、i1c通过3s/2r变换11来采集无轴承异步电动机的绕组相电流i1d、i1q;另一个3s/2r变换12坐标变换是把无轴承异步电动机定子绕组相电压U1a、U1b、U1c通过3s/2r变换12来采集无轴承异步电动机的绕组相电压U1d、U1q;然后通过相应的磁链辨识模块来获得所需的磁链值。所述定子磁链观测模型13是将旋转坐标系下电流i1d、i1q和电压U1d、U1q经函数变换得到旋转坐标系下定子磁链分量ψ1d、ψ1qAs shown in Figure 1, the flux observer of the bearingless asynchronous motor is constructed: it is composed of two coordinate transformations 11 and 12, the stator flux observation model 13 and the rotor flux identification model 14; one of the coordinate transformations is to convert the bearingless asynchronous motor Stator winding phase current i 1a , i 1b , i 1c collect the winding phase current i 1d , i 1q of the bearingless asynchronous motor through 3s/2r transformation 11; another 3s/2r transformation 12 coordinate transformation is to transform the bearingless asynchronous motor stator The winding phase voltages U 1a , U 1b , U 1c are collected through the 3s/2r transformation 12 to collect the winding phase voltages U 1d , U 1q of the bearingless asynchronous motor; then the required flux linkage value is obtained through the corresponding flux linkage identification module. The stator flux linkage observation model 13 obtains the stator flux linkage components ψ 1d and ψ 1q in the rotating coordinate system by transforming the current i 1d , i 1q and the voltages U 1d , U 1q through functions:

ψ1d=∫(U1d-Ri1d)dt-L1i1d ψ 1d =∫(U 1d -Ri 1d )dt-L 1 i 1d

ψ1q=∫(U1q-Ri1q)dt-L1i1q ψ 1q =∫(U 1q -Ri 1q )dt-L 1 i 1q

所述转子磁链观测模型14是将旋转坐标系下电流i1d、i1q和旋转坐标系下定子磁链分量ψ1d、ψ1q经函数变换得到旋转坐标系下转子磁链分量ψdr、ψqrThe rotor flux observation model 14 is to transform the current i 1d , i 1q in the rotating coordinate system and the stator flux components ψ 1d , ψ 1q in the rotating coordinate system through function transformation to obtain the rotor flux components ψ dr , ψ in the rotating coordinate system qr :

ψψ drdr == ii 11 dd LL mm 11 rr -- TT rr (( ωω rr ψψ 11 dd ++ dψdψ drdr dtdt )) ψψ qrqr == ii 11 qq LL mm 11 rr -- TT rr (( ωω rr ψψ 11 qq ++ dd ψψ qrqr dtdt )) ..

图2中,SVPWM算法模块一21和SVPWM算法模块二31为常用SVPWM算法;电压型逆变器一22和电压型逆变器二32为电压型功率逆变器IPM;给定电压信号Uα1s*、Uβ1s*经SVPWM算法模块一21得到占空比信号Sa1s、Sb1s、Sc1s、将占空比信号输出到电压型逆变器一22产生电压信号Ua1s、Ub1s、Uc1s来控制转矩系统;给定电压信号Uα2s*、Uβ2s*经SVPWM算法模块二31得到占空比信号Sa2s、Sb2s、Sc2s,将占空比信号输出到电压型逆变器二32产生电压信号Ua2s、Ub2s、Uc2s来控制悬浮系统。In Fig. 2, SVPWM algorithm module 1 21 and SVPWM algorithm module 2 31 are common SVPWM algorithms; voltage-type inverter 1 22 and voltage-type inverter 2 32 are voltage-type power inverter IPM; given voltage signal U α1s *, U β1s * Obtain duty cycle signals S a1s , S b1s , S c1s through SVPWM algorithm module 121, and output the duty cycle signals to voltage type inverter 122 to generate voltage signals U a1s , U b1s , U c1s to control the torque system; the given voltage signals U α2s *, U β2s * are obtained by the SVPWM algorithm module 2 31 to obtain the duty cycle signals S a2s , S b2s , S c2s , and output the duty cycle signals to the voltage source inverter 2 32 Generate voltage signals U a2s , U b2s , U c2s to control the suspension system.

如图2所示将两个SVPWM21、31和电压型逆变器模块22、32,以及无轴承异步电动机及其负载模型1一起作为一个整体组成复合被控对象4,复合被控对象的被控量输入为是{U,U,U,U}电压信号,无轴承异步电动机转子径向位移、转速和磁链作为输出。As shown in Figure 2, the two SVPWM21, 31 and voltage-type inverter modules 22, 32, as well as the bearingless asynchronous motor and its load model 1 form a composite controlled object 4 as a whole, and the controlled object of the composite controlled object The quantity input is {U , U , U , U } voltage signal, and the rotor radial displacement, speed and flux linkage of the bearingless asynchronous motor are output.

本发明的核心设计是RBF神经网络的设计和学习方法。首先建立如图3所示的RBF神经网络RBFNN 75,由图可知输入层71有8个节点,隐层72为径向基函数构成的节点,径向基函数采用高斯核函数,第i个隐层单元的输出为:The core design of the present invention is the design and learning method of the RBF neural network. First establish the RBF neural network RBFNN 75 as shown in Figure 3. It can be seen from the figure that the input layer 71 has 8 nodes, and the hidden layer 72 is a node composed of a radial basis function. The radial basis function adopts a Gaussian kernel function. The output of the layer unit is:

hh ii == expexp (( -- || || xx -- cc ii || || 22 )) ,, (( ii == 1,21,2 ,, .. .. .. ,, nno ))

式中hi为第i个隐层节点的输出;x为输入向量;Ci为第i个隐层节点的中心;bi为该隐层宽度;||*||为欧几里德范数;经过加法运算得到4个输出节点74;按照以上方法建立RBF神经网络RBFNNC 51和RBF神经网络RBFNNI 52。In the formula, h i is the output of the i-th hidden layer node; x is the input vector; C i is the center of the i-th hidden layer node; b i is the width of the hidden layer; ||*|| is the Euclidean norm 4 output nodes 74 are obtained through addition; RBF neural network RBFNNC 51 and RBF neural network RBFNNI 52 are established according to the above method.

RBF神经网络通过离线学习和在线学习相结合进行训练,训练样本如图4所示:RBFNNC 51的输入样本为位移X、Y,转速ωr、磁链ψr的给定值和反馈值误差信号及误差信号经ec函数:The RBF neural network is trained by combining offline learning and online learning. The training samples are shown in Figure 4: the input samples of RBFNNC 51 are displacement X, Y, rotational speed ω r , flux linkage ψ r given value and feedback value error signal And the error signal through the e c function:

eci(t)=ei(t)-ei(t-1)   (i=1,2,3,4)e ci (t)=e i (t)-e i (t-1) (i=1, 2, 3, 4)

的输出值{e1,e2,e3,e4,ec1,ec2,ec3,ec4},输出样本为经过坐标变换的{U,U,U,U};RBFNNI52的输入样本为延时的复合被控对象的输入和输出{U,U,U,U,X,Y,ωr,ψr},输出样本为辨识的复合被控对象输出{X′,Y′,ωr′,ψr′}。先进行离线训练,将RBF神经网络的隐层单元初始值设定为零,根据“新颖性”条件自适应添加隐层节点,采用一种删除策略,随着学习不断进行将那些对输出的贡献减小到一定程度已不活跃的节点删除,以确保网络结构简单、紧凑,用最少的隐层单元有效实现系统的非线性映射,离线训练确定网络结构并对隐层中心以及输出权值进行初始化;在经过在线学习,通过梯度下降法在线修正网络各项参数,使网络适应环境变化。The output value {e 1 , e 2 , e 3 , e 4 , e c1 , e c2 , e c3 , e c4 }, the output sample is {U , U , U , U } after coordinate transformation; The input samples of RBFNNI52 are the input and output of the delayed composite plant {U , U , U , U , X, Y, ω r , ψ r }, and the output samples are the output of the identified composite plant {X′, Y′, ωr ′, ψr ′}. Offline training is performed first, the initial value of the hidden layer unit of the RBF neural network is set to zero, and the hidden layer nodes are adaptively added according to the "novelty" condition, and a deletion strategy is adopted. As the learning continues, those contributions to the output Delete nodes that are no longer active to a certain extent to ensure a simple and compact network structure, effectively realize the nonlinear mapping of the system with the least hidden layer units, and perform offline training to determine the network structure and initialize the hidden layer center and output weights ; After online learning, the parameters of the network are corrected online through the gradient descent method, so that the network can adapt to environmental changes.

所述用最少的隐层单元有效实现系统非线性映射的具体算法如下:The specific algorithm for effectively realizing the nonlinear mapping of the system with the least number of hidden layer units is as follows:

对于第i个学习样本(x(i),Z(i)),For the i-th learning sample (x(i), Z(i)),

步骤7.1,初始化cj为任意实数,分别计算RBF神经网络的各个隐层单元输出和网络输出y(i):Step 7.1, initialize c j to any real number, and calculate the output of each hidden layer unit of the RBF neural network respectively and the network outputs y(i):

步骤7.2,计算误差||E(i)||=||Z(i)-y(i)||,式中Z(i)为目标输出,即系统经采样调理后的记录,y(i)为网络实际输出,并计算出样本与已存在的隐层的距离:Step 7.2, calculate the error ||E(i)||=||Z(i)-y(i)||, where Z(i) is the target output, that is, the record of the system after sampling and conditioning, y(i ) is the actual output of the network, and calculate the distance between the sample and the existing hidden layer:

dj=||x(i)-cj||,j=1,2,...,md j =||x(i)-c j ||, j=1, 2,..., m

式中m为已存在的隐层单元个数;In the formula, m is the number of existing hidden layer units;

令dmin=min(dj)Let d min =min(d j )

步骤7.3,若||Ei||>ε,dmin>λ(i),则:Step 7.3, if ||E i ||>ε, d min >λ(i), then:

λ(i)=max(λmaxγi,λmin)λ(i)=max(λ max γ i , λ min )

式中ε为网络期望的精度;λ(i)为第i个输入时网络的拟合精度,随着学习的进行λ(i)从λmax减小到λmin;γ为衰减因子,0<γ<1,则增加一个隐层单元,其参数:In the formula, ε is the expected accuracy of the network; λ(i) is the fitting accuracy of the network at the i-th input, and λ(i) decreases from λ max to λ min as the learning progresses; γ is the attenuation factor, 0<γ<1, then add a hidden layer unit, its parameters:

ck=xi c k = x i

&sigma;&sigma; kk == 11 pp (( &Sigma;&Sigma; jj == 11 pp || || xx ii -- cc jj || || 22 )) 11 22

式中cj为离输入样本最近的p个隐层单元的中心,这里取p=2;In the formula, c j is the center of the p hidden layer units closest to the input sample, here p=2;

步骤7.4,否则,就按递推最小二乘法调节网络连接权;Step 7.4, otherwise, adjust the network connection weight according to the recursive least squares method;

步骤7.5,若对于联系输入n个样本都满足:Step 7.5, if all n samples of contact input satisfy:

式中σ为预定义的常数,若式中条件在i=1,2同时满足时,当第j个隐层节点删除;In the formula, σ is a predefined constant. If the condition in the formula is satisfied at the same time when i=1 and 2, when the jth hidden layer node is deleted;

步骤7.6,输入第i+1组样本,重复上述过程。In step 7.6, input the i+1th group of samples, and repeat the above process.

所述步骤4-5中,RBF神经网络RBFNNC51和RBF神经网络RBFNNI52结构和参数确定的在线训练方法采用递推最小二乘法学习规则:In said steps 4-5, the online training method of RBF neural network RBFNNC51 and RBF neural network RBFNNI52 structure and parameter determination adopts the recursive least squares method learning rule:

步骤8.1,对第k组输入,重新建立网络输出方程:Step 8.1, for the kth group of inputs, re-establish the network output equation:

式中ω(k)、u(k)分别为权值矢量和径向基函数矢量,H代表共轭转置;In the formula, ω(k), u(k) are the weight vector and the radial basis function vector respectively, and H represents the conjugate transpose;

步骤8.2,令P(0)=δ-1I,ω(0)=0;Step 8.2, let P(0)=δ -1 I, ω(0)=0;

步骤8.3,计算 v ( k ) = &eta; - 1 P ( k - 1 ) u ( k ) 1 + &eta; - 1 u H ( k ) P ( k - 1 ) u ( k ) Step 8.3, Calculate v ( k ) = &eta; - 1 P ( k - 1 ) u ( k ) 1 + &eta; - 1 u h ( k ) P ( k - 1 ) u ( k )

ζ(k)=y(k)-ωH(k-1)u(k)ζ(k)=y(k)-ω H (k-1)u(k)

ω(k)=ω(k-1)+v(k)ζ*(k)ω(k)=ω(k-1)+v(k)ζ * (k)

P(k)=η-1P(k-1)-η-1v(k)uH(k)P(k-1)P(k)=η -1 P(k-1)-η -1 v(k)uH(k)P(k-1)

式中δ为正值小常数;η为遗忘因子,0≤η≤1;*表示复数共轭。In the formula, δ is a small positive constant; η is the forgetting factor, 0≤η≤1; * indicates complex conjugate.

如图5所示将建立好的RBF神经网络逆50与两个扩展的SVPWM电压型逆变器2、3结合构成RBF神经网络自适应逆控制器6,放置在无轴承异步电动机之前,实现解耦控制。As shown in Figure 5, the established RBF neural network inverse 50 is combined with two expanded SVPWM voltage-type inverters 2 and 3 to form an RBF neural network adaptive inverse controller 6, which is placed before the bearingless asynchronous motor to realize the solution coupling control.

如图6构成控制系统:将RBF神经网络RBFNNC51和RBF神经网络RBFNNI52、两个SVPWM 21、31和电压型逆变器模块22、32共同构成RBF神经网络自适应逆无轴承异步电动机自适应逆控制及参数辨识系统7。The control system is constituted as shown in Figure 6: RBF neural network RBFNNC51 and RBF neural network RBFNNI52, two SVPWM 21, 31 and voltage-type inverter modules 22, 32 together form RBF neural network adaptive inverse bearingless asynchronous motor adaptive inverse control And parameter identification system7.

根据上述附图及其相关步骤便可实现本发明。The present invention can be realized according to the above-mentioned drawings and related steps.

下面进一步对本发明的技术原理进行概括。The technical principle of the present invention is further summarized below.

本发明的原理是改变传统无轴承异步电动机采用转子磁场定向和气隙磁场定向解耦控制的策略,设计发明一种采用RBF神经网络自适应逆控制系统对无轴承异步电动机进行非线性动态解耦控制。The principle of the invention is to change the traditional bearingless asynchronous motor using rotor field orientation and air gap magnetic field orientation decoupling control strategy, design and invent a non-linear dynamic decoupling control for bearingless asynchronous motor using RBF neural network self-adaptive inverse control system .

本发明的RBF神经网络自适应逆系统控制及参数辨识方法使用RBF神经网络自适应逆控制器代替现有解耦控制方法中的队应逆系统模型,弥补了诸如气隙磁场定向、转子磁场定向和BP神经网络逆解耦的不足,该方法更好地实现了转矩力和悬浮力的动态解耦,在线辨识精度高,减少传感器使用降低成本,使调速系统可靠性增强,同时使无轴承异步电动机调速系统具有更强的抗干扰和鲁棒性。The RBF neural network adaptive inverse system control and parameter identification method of the present invention uses the RBF neural network adaptive inverse controller to replace the team response inverse system model in the existing decoupling control method, making up for such problems as air gap magnetic field orientation and rotor magnetic field orientation. Compared with the inverse decoupling of BP neural network, this method better realizes the dynamic decoupling of torque force and suspension force, has high online identification accuracy, reduces the use of sensors and reduces costs, and enhances the reliability of the speed control system. The bearing asynchronous motor speed control system has stronger anti-interference and robustness.

无轴承异步电动机的RBF神经网络自适应逆控制及参数辨识系统的控制方法为:首先采用常用的电流、电压、速度、磁链观测模型及Park变换与Clark变换组成的一个磁链观测器,来估算磁链闭环所需的无轴承异步电动机的转子磁链信息。将两个SVPWM和电压型逆变器模块,以及无轴承异步电动机及其负载模型一起作为一个整体组成复合被控对象,复合被控对象的被控量是无轴承异步电动机转子径向位移、转速和磁链;采用一个RBF神经网络构建复合被控对象的逆系统,逆系统输入为给定信号和反馈信号的误差信号构成闭环,实现转矩力和径向悬浮力之间解耦控制;另外采用一个RBF神经网络实现无速度和无位移传感器控制,实现对无轴承异步电动机非线性动态解耦控制;最后将RBF神经网络自适应逆控制器和自适应参数辨识器、两个SVPWM和电压型逆变器模块共同构成RBF神经网络自适应逆无轴承异步电动机自适应逆控制系统实现对无轴承异步电动机转矩力和径向悬浮力的独立控制,从而实现电机转子稳定悬浮和运行。The control method of the RBF neural network adaptive inverse control and parameter identification system of the bearingless asynchronous motor is as follows: firstly, the commonly used current, voltage, speed, flux linkage observation model and a flux linkage observer composed of Park transform and Clark transform are used to Rotor flux information of a bearingless asynchronous motor required for estimating flux closure. The two SVPWM and voltage-type inverter modules, as well as the bearingless asynchronous motor and its load model are taken as a whole to form a composite controlled object. The controlled variables of the composite controlled object are the rotor radial displacement and rotational speed of the bearingless asynchronous motor and flux linkage; a RBF neural network is used to construct the inverse system of the compound controlled object, and the input of the inverse system is the error signal of the given signal and the feedback signal to form a closed loop to realize the decoupling control between the torque force and the radial suspension force; in addition A RBF neural network is used to realize the sensorless control of speed and displacement, and realize the nonlinear dynamic decoupling control of the bearingless asynchronous motor; finally, the RBF neural network adaptive inverse controller and adaptive parameter identifier, two SVPWM and voltage type The inverter modules together constitute the RBF neural network adaptive inverse bearingless asynchronous motor adaptive inverse control system to realize the independent control of the torque force and radial suspension force of the bearingless asynchronous motor, so as to realize the stable suspension and operation of the motor rotor.

其中上述的磁链观测器是由两个坐标变换、定子磁链观测模型以及转子磁链辨识模型组成;其中一个坐标变换是将无轴承异步电动机定子绕组相电流i1a、i1b、i1c通过Clark变换以及Park变换来采集无轴承异步电动机的绕组相电流i1d、i1q;另一个坐标变换是把无轴承异步电动机定子绕组相电压U1a、U1b、U1c通过Clark变换以及Park变换来采集无轴承异步电动机的绕组相电压U1d、U1q;然后通过相应的磁链辨识模块来获得所需的磁链值。Among them, the flux observer mentioned above is composed of two coordinate transformations, stator flux observation model and rotor flux identification model; one of the coordinate transformations is to pass the phase currents i 1a , i 1b , i 1c of the stator windings of the bearingless asynchronous motor through Clark transformation and Park transformation to collect the winding phase current i 1d , i 1q of the bearingless asynchronous motor; another coordinate transformation is to use the bearingless asynchronous motor stator winding phase voltage U 1a , U 1b , U 1c through Clark transformation and Park transformation to obtain Collect the winding phase voltage U 1d , U 1q of the bearingless asynchronous motor; then obtain the required flux linkage value through the corresponding flux linkage identification module.

应理解上述施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。It should be understood that the above-mentioned embodiments are only used to illustrate the present invention and are not intended to limit the scope of the present invention. After reading the present invention, those skilled in the art all fall into the appended claims of the present application to the amendments of various equivalent forms of the present invention limited range.

Claims (7)

1.无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,包括步骤:1. The RBF neural network adaptive inverse decoupling control and parameter identification method of a bearingless asynchronous motor is characterized in that it comprises steps: 步骤1,用常用传感器检测电压、电流、转速信号,信号经过3s/2r坐标变换后送入磁链观测模型,来获得磁链闭环控制以及神经网络训练所需要的磁链信息;Step 1. Use commonly used sensors to detect voltage, current, and rotational speed signals. The signals are sent to the flux linkage observation model after 3s/2r coordinate transformation to obtain flux linkage information required for flux linkage closed-loop control and neural network training; 步骤2,将SVPWM算法模块一(21)和电压型逆变器模块一(22)串接组成扩展的SVPWM电压型逆变器模块一(2),将SVPWM算法模块二(31)和电压型逆变器模块二(32)串接组成扩展的SVPWM电压型逆变器模块二(3);Step 2, the SVPWM algorithm module one (21) and the voltage type inverter module one (22) are connected in series to form an expanded SVPWM voltage type inverter module one (2), and the SVPWM algorithm module two (31) and the voltage type inverter module two (31) are connected in series Inverter module two (32) are connected in series to form extended SVPWM voltage type inverter module two (3); 步骤3,构建无轴承异步电动机及其负载模型(1),将扩展的SVPWM电压型逆变器模块一(2)、扩展的SVPWM电压型逆变器模块二(3)以及无轴承异步电动机及其负载模型(1)作为一个整体组成复合被控对象(4);Step 3, constructing the bearingless asynchronous motor and its load model (1), the extended SVPWM voltage-type inverter module one (2), the extended SVPWM voltage-type inverter module two (3) and the bearingless asynchronous motor and Its load model (1) forms a compound controlled object (4) as a whole; 步骤4,通过RBF神经网络RBFNNC(51)构建复合被控对象(4)的逆控制器,利用离线和在线相结合的方法训练并获得RBF神经网络RBFNNC(51)的结构和参数,将训练好的RBF神经网络RBFNNC(51)置于复合被控对象(4)之前构成线性控制系统,从而实现对无轴承异步电动机的解耦控制;Step 4, construct the inverse controller of the compound controlled object (4) through the RBF neural network RBFNNC (51), use the method of combining offline and online to train and obtain the structure and parameters of the RBF neural network RBFNNC (51), and train the The RBF neural network RBFNNC (51) is placed before the compound controlled object (4) to form a linear control system, thereby realizing the decoupling control of the bearingless asynchronous motor; 步骤5,通过RBF神经网络RBFNNI(52)构建复合被控对象(4)的辨识器,利用离线和在线相结合的方法训练并获得RBF神经网络RBFNNI(52)的结构和参数,在辨识精度达到设计要求后,用辨识信号代替传感器检测得到的信号,实现无传感器控制。Step 5, construct the identifier of the compound plant (4) through the RBF neural network RBFNNI (52), use the method of combining offline and online to train and obtain the structure and parameters of the RBF neural network RBFNNI (52), when the identification accuracy reaches After the design requirements, the identification signal is used to replace the signal detected by the sensor to realize sensorless control. 2.根据权利要求1所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤1中的3s/2r坐标变换可分为第一坐标变换(11)和第二坐标变换(12),所述第一坐标变换(11)是把由霍尔电流传感器检测到的无轴承异步电动机定子绕组相电流i1a、i1b、i1c通过Clark变换以及Park变换得到旋转坐标系下电流i1d、i1q;第二坐标变换(12)是把由霍尔电压传感器检测到无轴承异步电动机定子绕组相电压U1a、U1b、U1c通过Clark变换以及Park变换得到旋转坐标系下电压U1d、U1q2. bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method according to claim 1, is characterized in that, the 3s/2r coordinate transformation in the described step 1 can be divided into the first coordinate transformation ( 11) and the second coordinate transformation (12), the first coordinate transformation (11) is to pass the phase current i 1a , i 1b , i 1c of the stator winding phase current i 1a , i 1b , i 1c of the bearingless asynchronous motor detected by the Hall current sensor through the Clark transformation and The current i 1d and i 1q in the rotating coordinate system are obtained by Park transformation; the second coordinate transformation (12) is to transform the phase voltage U 1a , U 1b , U 1c of the stator winding of the bearingless asynchronous motor detected by the Hall voltage sensor through the Clark transformation and The voltages U 1d and U 1q in the rotating coordinate system are obtained through Park transformation. 3.根据权利要求2所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤1中的磁链观测模型包括定子磁链观测模型(13)和转子磁链观测模型(14);3. the bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method according to claim 2, is characterized in that, the flux observation model in the described step 1 comprises stator flux observation model (13) and rotor flux observation model (14); 所述定子磁链观测模型(13)是将旋转坐标系下电流i1d、i1q和电压U1d、U1q经函数变换得到旋转坐标系下定子磁链分量ψ1d、ψ1qThe stator flux linkage observation model (13) is to transform the current i 1d , i 1q and voltages U 1d , U 1q in the rotating coordinate system to obtain the stator flux linkage components ψ 1d , ψ 1q in the rotating coordinate system: ψ1d=∫(U1d-Ri1d)dt-L1i1d ψ 1d =∫(U 1d -Ri 1d )dt-L 1 i 1d ψ1q=∫(U1q-Ri1q)dt-L1i1q ψ 1q =∫(U 1q -Ri 1q )dt-L 1 i 1q 所述转子磁链观测模型(14)是将旋转坐标系下电流i1d、i1q和旋转坐标系下定子磁链分量ψ1d、ψ1q经函数变换得到旋转坐标系下转子磁链分量ψdr、ψqrThe rotor flux observation model (14) is to transform the current i 1d , i 1q in the rotating coordinate system and the stator flux components ψ 1d , ψ 1q in the rotating coordinate system through function transformation to obtain the rotor flux component ψ dr in the rotating coordinate system , ψ qr : &psi;&psi; drdr == ii 11 dd LL mm 11 rr -- TT rr (( &omega;&omega; rr &psi;&psi; 11 dd ++ dd &psi;&psi; drdr dtdt )) &psi;&psi; qrqr == ii 11 qq LL mm 11 rr -- TT rr (( &psi;&psi; rr &psi;&psi; 11 qq ++ dd &psi;&psi; qrqr dtdt )) .. 4.根据权利要求1所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤2中,4. The bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method according to claim 1, characterized in that, in the step 2, 所述SVPWM算法模块一(21)将给定电压信号Uα1s*、Uβ1s*转换为占空比信号Sa1s、Sb1s、Sc1s,将占空比信号输出到电压型逆变器一(22)产生电压信号Ua1s、Ub1s、Uc1s来控制转矩绕组系统;The SVPWM algorithm module one (21) converts the given voltage signals U α1s *, U β1s * into duty cycle signals S a1s , S b1s , S c1s , and outputs the duty cycle signals to the voltage type inverter one ( 22) Generate voltage signals U a1s , U b1s , U c1s to control the torque winding system; 所述SVPWM算法模块二(31)将给定电压信号Uα2s*、Uβ2s*转换为占空比信号Sa2s、Sb2s、Sc2s,将占空比信号输出到电压型逆变器二(32)产生电压信号Ua2s、Ub2s、Uc2s来控制悬浮绕组系统。The SVPWM algorithm module two (31) converts the given voltage signals U α2s *, U β2s * into duty cycle signals S a2s , S b2s , S c2s , and outputs the duty cycle signals to the voltage type inverter two ( 32) Generate voltage signals U a2s , U b2s , U c2s to control the suspension winding system. 5.根据权利要求1所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤3中无轴承异步电动机及其负载模型(1)的转矩绕组系统数学模型为常见笼型异步电动机数学模型;无轴承异步电动机及其负载模型(1)的悬浮绕组系统悬浮力数学方程如下:5. bearingless asynchronous motor RBF neural network self-adaptive inverse decoupling control and parameter identification method according to claim 1, is characterized in that, in the described step 3, the torque of bearingless asynchronous motor and its load model (1) The mathematical model of the winding system is a common cage-type asynchronous motor; the mathematical equation of the suspension force of the suspension winding system of the bearingless asynchronous motor and its load model (1) is as follows: Fx=M(-id1sid2s+iq1siq2s)F x =M(-i d1s i d2s +i q1s i q2s ) Fy=M(iq1sid2s+id1siq2s)F y =M(i q1s i d2s +i d1s i q2s ) 式中M为转矩绕组和悬浮绕组之间互感系数;In the formula, M is the mutual inductance coefficient between the torque winding and the suspension winding; 无轴承异步电动机及其负载模型(1)的悬浮绕组系统状态方程方程如下:The state equation of the suspension winding system of the bearingless asynchronous motor and its load model (1) is as follows: mm xx .. .. == Ff xx -- Ff sxsx mm ythe y .. .. == Ff ythe y -- Ff sysy 式中m为转子质量;Fsx、Fsy固有的麦克斯韦力,其表达式为:In the formula, m is the mass of the rotor; F sx , F sy inherent Maxwell force, its expression is: Fsx=ksxF sx =k s x Fsy=ksyF sy = k s y 式中为径向位移刚度;r为转子半径;l为转子轴长度;μ0为空气磁导率;δ为气隙长度;k为衰减因子,一般取0.3。In the formula r is the radius of the rotor; l is the length of the rotor shaft; μ 0 is the air permeability; δ is the length of the air gap; k is the attenuation factor, generally 0.3. 6.根据权利要求1所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤4-5中,RBF神经网络RBFNNC(51)和RBF神经网络RBFNNI(52)结构和参数确定的离线训练方法为:6. The bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method according to claim 1, is characterized in that, in the described step 4-5, RBF neural network RBFNNC (51) and RBF neural network The off-line training method of RBFNNI(52) structure and parameter determination is: 通过离线训练确定隐层节点的个数及其中心和宽度,并计算出隐层与输出层之间的连接权的初始值,RBFNNC(51)的输入样本为位移X、Y,转速ωr、磁链ψr的给定值与实际值的误差以及误差信号经过ec函数模块的输出值{e1,e2,e3,e4,ec1,ec2,ec3,ec4},输出样本为经过坐标变换的{U,U,U,U};RBFNNI(52)的输入样本为经延时后的复合被控对象的输入和输出{U,U,U,U,X,Y,ωr,ψr},输出样本为辨识的复合被控对象输出{X′,Y′,ωr′,ψr′};Determine the number of hidden layer nodes and their center and width through offline training, and calculate the initial value of the connection weight between the hidden layer and the output layer. The input samples of RBFNNC(51) are displacement X, Y, rotation speed ω r , The error between the given value and the actual value of the flux linkage ψ r and the output value {e 1 , e 2 , e 3 , e 4 , e c1 , e c2 , e c3 , e c4 } of the error signal through the e c function module, The output sample is {U , U , U , U } after coordinate transformation; the input sample of RBFNNI(52) is the input and output of the compound controlled object after delay {U , U , U , U , X, Y, ω r , ψ r }, the output sample is the identified compound controlled object output {X′, Y′, ω r ′, ψ r ′}; 在训练过程中按照一定的规则自适应地增加节点数,并按照规则将对输出信号作用过小的隐层单元删除,用最少的隐层单元有效实现系统非线性映射。In the training process, the number of nodes is adaptively increased according to certain rules, and the hidden layer units that have too little effect on the output signal are deleted according to the rules, and the system nonlinear mapping is effectively realized with the least hidden layer units. 7.根据权利要求1所述的无轴承异步电动机RBF神经网络自适应逆解耦控制及参数辨识方法,其特征在于,所述步骤4-5中,RBF神经网络RBFNNC(51)和RBF神经网络RBFNNI(52)结构和参数确定的在线训练方法上采用递推最小二乘法学习规则。7. The bearingless asynchronous motor RBF neural network adaptive inverse decoupling control and parameter identification method according to claim 1, is characterized in that, in the described step 4-5, RBF neural network RBFNNC (51) and RBF neural network The RBFNNI(52) structure and parameters determine the online training method using the recursive least squares method to learn the rules.
CN201510092881.9A 2015-03-02 2015-03-02 Self-bearings motors RBF neural adaptive inversion decoupling control and parameter identification method Expired - Fee Related CN104767449B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510092881.9A CN104767449B (en) 2015-03-02 2015-03-02 Self-bearings motors RBF neural adaptive inversion decoupling control and parameter identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510092881.9A CN104767449B (en) 2015-03-02 2015-03-02 Self-bearings motors RBF neural adaptive inversion decoupling control and parameter identification method

Publications (2)

Publication Number Publication Date
CN104767449A true CN104767449A (en) 2015-07-08
CN104767449B CN104767449B (en) 2018-04-24

Family

ID=53649112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510092881.9A Expired - Fee Related CN104767449B (en) 2015-03-02 2015-03-02 Self-bearings motors RBF neural adaptive inversion decoupling control and parameter identification method

Country Status (1)

Country Link
CN (1) CN104767449B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227024A (en) * 2015-10-28 2016-01-06 广东美的制冷设备有限公司 A kind of rotor flux on-line identification method and system of permagnetic synchronous motor
CN106788028A (en) * 2016-12-20 2017-05-31 江苏大学 Bearing-free permanent magnet synchronous motor intensified learning controller and its building method
CN106788051A (en) * 2016-11-23 2017-05-31 江苏大学 A kind of induction-type bearingless motor method for estimating rotating speed
CN106950822A (en) * 2017-03-22 2017-07-14 北京化工大学 The discrimination method of multivariable Hammerstein model under complicated heavy-tailed influence of noise
CN107370429A (en) * 2017-06-29 2017-11-21 江苏大学 Bearing-free permanent magnet synchronous motor fuzzy neural network inverse decoupling controller
WO2018120000A1 (en) * 2016-12-30 2018-07-05 Nokia Technologies Oy Artificial neural network
CN108646571A (en) * 2018-07-12 2018-10-12 北京航空航天大学 A kind of gyro frame servo system high precision position discrimination method
CN108828941A (en) * 2018-06-15 2018-11-16 北京空天技术研究所 Separation control method based on parameter identification
CN109327178A (en) * 2018-10-29 2019-02-12 江苏大学 A Construction Method of Multi-step Predictive Controller for Switched Reluctance Motor
CN109617463A (en) * 2018-12-20 2019-04-12 东南大学 Rotor position observer at low speed of PMSM based on BP neural network
CN109672380A (en) * 2018-11-19 2019-04-23 江苏大学 Permanent-magnet synchronous motor with five degrees of freedom without bearing suspending power subsystem decoupled controller
CN109687798A (en) * 2019-01-08 2019-04-26 江苏大学 High-order sliding mode control method for hybrid stator magnetic levitation switched reluctance motor suspension system
CN110061676A (en) * 2019-03-04 2019-07-26 江苏大学 A kind of bearing-free permanent magnet synchronous motor controller based on flux observer
CN110071675A (en) * 2019-04-17 2019-07-30 清华大学 The design method and system of Amorphous Metal Motor electric and magnetic oscillation control
CN110504878A (en) * 2019-07-12 2019-11-26 杭州洲钜电子科技有限公司 A kind of bearing-free permanent magnet synchronous motor rotor speed and displacement flexible measurement method
CN111245318A (en) * 2020-01-18 2020-06-05 浙江大学 Radial force accurate compensation decoupling control method for bearingless permanent magnet synchronous motor
CN112152529A (en) * 2020-09-28 2020-12-29 长沙贝士德电气科技有限公司 Maximum thrust control method and system for permanent magnet linear motor
CN112865657A (en) * 2021-01-11 2021-05-28 山东中环联科机电科技有限公司 Control method of disk type switched reluctance motor
CN115085627A (en) * 2022-08-22 2022-09-20 成都微精电机股份公司 Motor parameter dynamic identification method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345013B (en) * 2019-07-24 2020-11-03 曲阜师范大学 Magnetic suspension vertical axis wind turbine generator control method based on neural network model predictive control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505506A1 (en) * 1995-02-10 1996-08-22 Daimler Benz Ag Use of observer model for induction motor torque estimation
CN1655438A (en) * 2005-03-11 2005-08-17 江苏大学 Radial Neural Network Inverse Decoupling Controller and Construction Method for Magnetic Suspension Switched Reluctance Motor
CN1845449A (en) * 2006-03-08 2006-10-11 江苏大学 Control Method of Neural Network Inverse Decoupling Controller for Bearingless AC Induction Motor
CN102739150A (en) * 2012-06-20 2012-10-17 哈尔滨工业大学 Parameter identification control device and control method of sensorless permanent magnet synchronous motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19505506A1 (en) * 1995-02-10 1996-08-22 Daimler Benz Ag Use of observer model for induction motor torque estimation
CN1655438A (en) * 2005-03-11 2005-08-17 江苏大学 Radial Neural Network Inverse Decoupling Controller and Construction Method for Magnetic Suspension Switched Reluctance Motor
CN1845449A (en) * 2006-03-08 2006-10-11 江苏大学 Control Method of Neural Network Inverse Decoupling Controller for Bearingless AC Induction Motor
CN102739150A (en) * 2012-06-20 2012-10-17 哈尔滨工业大学 Parameter identification control device and control method of sensorless permanent magnet synchronous motor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
焦竹青等: "基于RBF神经网络的多变量系统PID解耦控制", 《系统仿真学报》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105227024A (en) * 2015-10-28 2016-01-06 广东美的制冷设备有限公司 A kind of rotor flux on-line identification method and system of permagnetic synchronous motor
CN105227024B (en) * 2015-10-28 2017-11-10 广东美的制冷设备有限公司 A kind of rotor flux on-line identification method and system of permagnetic synchronous motor
CN106788051A (en) * 2016-11-23 2017-05-31 江苏大学 A kind of induction-type bearingless motor method for estimating rotating speed
CN106788051B (en) * 2016-11-23 2019-02-05 江苏大学 A method for estimating the rotational speed of a bearingless asynchronous motor
CN106788028A (en) * 2016-12-20 2017-05-31 江苏大学 Bearing-free permanent magnet synchronous motor intensified learning controller and its building method
CN106788028B (en) * 2016-12-20 2018-12-14 江苏大学 Bearing-free permanent magnet synchronous motor intensified learning controller and its building method
WO2018120000A1 (en) * 2016-12-30 2018-07-05 Nokia Technologies Oy Artificial neural network
US11042722B2 (en) 2016-12-30 2021-06-22 Nokia Technologies Oy Artificial neural network
CN106950822A (en) * 2017-03-22 2017-07-14 北京化工大学 The discrimination method of multivariable Hammerstein model under complicated heavy-tailed influence of noise
CN107370429A (en) * 2017-06-29 2017-11-21 江苏大学 Bearing-free permanent magnet synchronous motor fuzzy neural network inverse decoupling controller
CN107370429B (en) * 2017-06-29 2020-03-31 江苏大学 Fuzzy neural network inverse decoupling controller for bearingless permanent magnet synchronous motor
CN108828941A (en) * 2018-06-15 2018-11-16 北京空天技术研究所 Separation control method based on parameter identification
CN108828941B (en) * 2018-06-15 2021-11-12 北京空天技术研究所 Separation control method based on parameter identification
CN108646571A (en) * 2018-07-12 2018-10-12 北京航空航天大学 A kind of gyro frame servo system high precision position discrimination method
CN109327178A (en) * 2018-10-29 2019-02-12 江苏大学 A Construction Method of Multi-step Predictive Controller for Switched Reluctance Motor
CN109672380A (en) * 2018-11-19 2019-04-23 江苏大学 Permanent-magnet synchronous motor with five degrees of freedom without bearing suspending power subsystem decoupled controller
CN109672380B (en) * 2018-11-19 2021-11-23 江苏大学 Five-freedom-degree bearingless permanent magnet synchronous motor suspension force subsystem decoupling controller
CN109617463A (en) * 2018-12-20 2019-04-12 东南大学 Rotor position observer at low speed of PMSM based on BP neural network
CN109687798A (en) * 2019-01-08 2019-04-26 江苏大学 High-order sliding mode control method for hybrid stator magnetic levitation switched reluctance motor suspension system
CN110061676A (en) * 2019-03-04 2019-07-26 江苏大学 A kind of bearing-free permanent magnet synchronous motor controller based on flux observer
CN110071675A (en) * 2019-04-17 2019-07-30 清华大学 The design method and system of Amorphous Metal Motor electric and magnetic oscillation control
CN110504878A (en) * 2019-07-12 2019-11-26 杭州洲钜电子科技有限公司 A kind of bearing-free permanent magnet synchronous motor rotor speed and displacement flexible measurement method
CN110504878B (en) * 2019-07-12 2022-03-01 杭州洲钜电子科技有限公司 Soft measurement method for rotor speed and displacement of bearingless permanent magnet synchronous motor
CN111245318A (en) * 2020-01-18 2020-06-05 浙江大学 Radial force accurate compensation decoupling control method for bearingless permanent magnet synchronous motor
CN111245318B (en) * 2020-01-18 2021-11-02 浙江大学 Decoupling control method for precise compensation of radial force of bearingless permanent magnet synchronous motor
CN112152529A (en) * 2020-09-28 2020-12-29 长沙贝士德电气科技有限公司 Maximum thrust control method and system for permanent magnet linear motor
CN112152529B (en) * 2020-09-28 2022-08-12 长沙贝士德电气科技有限公司 Maximum thrust control method and system for permanent magnet linear motor
CN112865657A (en) * 2021-01-11 2021-05-28 山东中环联科机电科技有限公司 Control method of disk type switched reluctance motor
CN115085627A (en) * 2022-08-22 2022-09-20 成都微精电机股份公司 Motor parameter dynamic identification method

Also Published As

Publication number Publication date
CN104767449B (en) 2018-04-24

Similar Documents

Publication Publication Date Title
CN104767449B (en) Self-bearings motors RBF neural adaptive inversion decoupling control and parameter identification method
CN100536311C (en) Neural network generalized inverse permanent magnetism synchronous machine decoupling controller structure method without bearing
CN100433537C (en) Method for controlling bearing-less AC asynchronous motor neural network inverse decoupling controller
CN101795105B (en) Suspension rotor equivalent disturbance current compensation control device for bearing-free permanent magnet synchronous motor
CN106788052B (en) Observer-based fuzzy control method for asynchronous motor command filtering error compensation
CN105406784B (en) The torque of simplex winding bearing-free motor and suspending power self-operated controller and building method
CN108964545A (en) A kind of synchronous motor neural network contragradience Discrete Control Method based on command filtering
CN102510253B (en) Sensorless controller of bearingless synchronous reluctance motor and method for controlling sensorless controller
Zhang et al. Sliding mode observer for speed sensorless linear induction motor drives
CN111245318A (en) Radial force accurate compensation decoupling control method for bearingless permanent magnet synchronous motor
CN110401390B (en) Permanent magnet synchronous motor random command filtering fuzzy control method based on observer
Zhao et al. Minimum‐copper‐loss control of hybrid excited axial field flux‐switching machine
Tseng et al. Implementation of online maximum efficiency tracking control for a dual‐motor drive system
CN110061676B (en) Bearingless permanent magnet synchronous motor controller based on flux linkage observer
CN109873583B (en) Fuzzy Position Tracking Control Method for Permanent Magnet Synchronous Motor Based on State Constraints
CN103986381B (en) The microgrid of sea wave power generation system builds optimized power factor composite control method
CN205509912U (en) Simplex winding does not have bearing motor torque and suspending power direct control ware
CN103647481B (en) Bearing-free permanent magnet synchronous motor radial position neural Network Adaptive Inversion Control device building method
CN116488521B (en) Novel model-free rapid integral terminal sliding mode control method for permanent magnet synchronous motor
CN109150045B (en) Independent Inverse System Decoupling Method for Bearingless Asynchronous Motors
CN106788053A (en) Electric motor car permagnetic synchronous motor systematic error compensation control method based on observer
Tabrez et al. A comparative simulation study of different sensorless permanent magnet synchronous motor drives using neural network and fuzzy logic
CN102790579B (en) Constructing method for decoupling controller of bearingless permanent magnet synchronous motor with five degrees of freedom
Che et al. A New SMO for Speed Estimation of Sensorless Induction Motor Drives at Zero and Low Speed
CN111293941B (en) Permanent magnet synchronous motor finite time dynamic surface control method considering iron loss

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180424

Termination date: 20200302

CF01 Termination of patent right due to non-payment of annual fee