CN104765368B - A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm - Google Patents

A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm Download PDF

Info

Publication number
CN104765368B
CN104765368B CN201510169286.0A CN201510169286A CN104765368B CN 104765368 B CN104765368 B CN 104765368B CN 201510169286 A CN201510169286 A CN 201510169286A CN 104765368 B CN104765368 B CN 104765368B
Authority
CN
China
Prior art keywords
mrow
msub
mtr
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510169286.0A
Other languages
Chinese (zh)
Other versions
CN104765368A (en
Inventor
陈于涛
曹诗杰
陈林根
曾凡明
刘永葆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naval University of Engineering PLA
Original Assignee
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval University of Engineering PLA filed Critical Naval University of Engineering PLA
Priority to CN201510169286.0A priority Critical patent/CN104765368B/en
Publication of CN104765368A publication Critical patent/CN104765368A/en
Application granted granted Critical
Publication of CN104765368B publication Critical patent/CN104765368B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • External Artificial Organs (AREA)

Abstract

The invention discloses a kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm, for the more difficult accurate determination of motion model in conventional control methods, the problems such as dynamic response is undesirable, antijamming capability is weaker, fitness of the USV control methods under uncertain water conditions is improved using FUZZY ALGORITHMS FOR CONTROL, avoids the ship motion modeling problem in conventional method;Propose the improved output USV FUZZY ALGORITHMS FOR CONTROLs of two input two, add range ambiguity domain function to input as algorithm, and course and the speed of a ship or plane are all included into autonomous control scope, carry out Collaborative Control, the convergence rate of USV motion controls is improved, enhances the robustness of control;Using heading angle deviation rate as the uncertain measurement with running status extent of deviation of running environment, auto-adjustment control spacing parameter, enable change of the control algolithm according to control environment, adaptive adjustment control parameter, further enhancing the intelligent of self-control system.

Description

A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm
Technical field
The invention belongs to ship autokinetic movement control technology field, in particular to a kind of nothing based on fuzzy adaptive algorithm People's ship coursespeed cooperative control method.
Background technology
Autokinetic movement control is that unmanned boat (Unmanned Surface Vehicle, abbreviation USV) is different from someone's manipulation One of core technology of ship.In autokinetic movement control problem, practical and effective coursespeed control algolithm is that USV platforms exist The key of complicated navigational duty is completed in various uncertain aquatic environments.
Current USV coursespeed control methods mainly include:(1) course is kept as target is automatically controlled, makes ship Oceangoing ship can follow given course automatically, but course is given not in the range of autonomous control.Corresponding control algolithm is main Including:The conventional control algorithms such as the PID control based on precise motion model, Lyapunov controls, Backstepping controls, base In the adaptive control algorithms such as the variable-structure control of on-line identification model parameter, the FUZZY ALGORITHMS FOR CONTROL based on fuzzy rule etc.. (2) on the basis of being kept in course, by the given scope for including autonomous control in course, by ship carry computer by control algolithm from It is main to draw course set-point, closed-loop control is carried out, but the speed of a ship or plane gives and is not included in the range of autonomous control.
Problems be present in above control method:(1) in terms of control algolithm, the conventional control based on mathematical models is calculated In method, the more difficult accurate determination of ship motion model, and in uncertain and strong nonlinearity aquatic environment, LTI Motion model parameters are difficult to the change of real-time and accurate description ship motion state;In adaptive control algorithm, adaptively Function and the more difficult determination of accurate interference model;In FUZZY ALGORITHMS FOR CONTROL, algorithm structure, the fuzzy field of input/output variable, mould The determination of paste rule needs abundant engineering experience.(2) in terms of control strategy, the Collaborative Control degree of coursespeed compared with Weak, the scope of autonomous control algorithm is only included course in the main contribution for considering course to motion control results, and less consideration The speed of a ship or plane is to motion control rapidity, the influence of robustness and independence.
The content of the invention
The main object of the present invention is in view of the shortcomings of the prior art, there is provided a kind of nobody based on fuzzy adaptive algorithm Ship coursespeed Collaborative Control algorithm, avoids the ship motion modeling problem in conventional method, improves fuzzy control strategy And algorithm, adaptive factor has been incorporated, has improved adaptability and robustness of the control method in uncertain aquatic environment.
To achieve the above object, a kind of unmanned boat coursespeed association based on fuzzy adaptive algorithm designed by the present invention Same control method, comprises the following steps:
Comprise the following steps:
Step 1:Obtain and set unmanned boat autonomous navigation target point latitude and longitude coordinates;
Step 2:Gather longitude and latitude, the course angle of unmanned boat:
Step 3:Whether identical compare longitude and latitude and the unmanned boat autonomous navigation target point longitude and latitude of the collection, phase Same then return to step 1, differs, continues next step;
Step 4:According to the longitude and latitude of the collection and course angle calculate unmanned boat and target point heading angle deviation amount P and Air line distance departure D;
Step 5:The solution of fuzzy adaptivecontroller algorithm is carried out to the heading angle deviation amount P and air line distance departure D Calculate, obtain the membership function of the heading angle deviation amount P and air line distance departure D in fuzzy set;
Step 6:By the membership function meter of the heading angle deviation amount P and air line distance departure D in fuzzy set Calculate and export rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V, the rudder angle deflects controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V Correspond respectively to the course of unmanned boat and speed of a ship or plane control;
Step 7:By some cycles time circulate operation step 2 to 6.
Preferably, the specific steps of the step 4 include:
Step 4.1:Range deviation the amount X, Yi Dongwei in longitudinal are obtained according to the longitude and latitude course angle of the collection Positive direction, the range deviation amount Y on latitude direction, to the north of be positive direction, course angle θ, using real north as reference;
Step 4.2:It is obtained by the following formula the heading angle deviation amount P and air line distance departure D:
Preferably, the specific steps of the step 5 include:
Step 5.1:Heading angle deviation amount membership function is introduced to the heading angle deviation amount P
Pj
The membership function of heading angle deviation amount described in formula PjBe an identification number be j fuzzy set, j ∈ integers,Belong to the membership function of each fuzzy set for departure;
Step 5.2:Air line distance departure degree of membership is introduced to the air line distance departure D
Function Dj
The membership function of air line distance departure described in formula DjBe an identification number be j fuzzy set, j ∈ integers,Belong to the membership function of each fuzzy set for departure.
Preferably, the heading angle deviation amount membership function P of the step 5.1jIn, j=-2 is made, -1,0,1,2 generation respectively The big NB of table negative sense, negative sense small NS, zero-deviation ZE, positive small PS, positive big PB, PjMembership function clusterFor:
The air line distance departure membership function D of the step 5.2jIn, j=0 is made, 1,2 represents zero-deviation Z respectively, Little deviation S, large deviation B, DjMembership function clusterFor:
Preferably, the specific steps of the step 6 include:
Step 6.1:Rudder angle deflection controlled quentity controlled variable membership function is introduced to rudder angle deflection controlled quentity controlled variable U
The deflection controlled quentity controlled variable membership function of rudder angle described in formula UjBe an identification number be j fuzzy set, j ∈ integers,Belong to the membership function of each fuzzy set for departure, make j=-2, -1,0,1,2 to represent negative sense respectively big NB, negative sense small NS, zero-deviation ZE, positive small PS, positive big PB, UjMembership function clusterFor:
Step 6.2:Accelerator open degree controlled quentity controlled variable membership function V is introduced to the accelerator open degree controlled quentity controlled variable Vj,
The membership function of accelerator open degree controlled quentity controlled variable described in formula VjIt is the fuzzy set that an identification number is j, j ∈ are from whole Number,Belong to the membership function of each fuzzy set for departure, make j=0,1,2 represents zero throttle Z, small oil respectively Door S, large throttle B, VjMembership function clusterFor:
Step 6.3:Introduce intermediate variable ωi、ωk, i ∈ integers, k ∈ integers, calculation formula is:
Wherein symbol " ∧ ", which refers to, takes small, that is, takes common factor;
Step 6.4:According to the intermediate variable ωi、ωkRudder angle deflection controlled quentity controlled variable U is calculated, calculation formula is:
Step 6.5:According to the intermediate variable ωi、ωkCalculation of throttle aperture controlled quentity controlled variable V, calculation formula are:
Preferably, also include after the step 6.5:
Step 6.6:Unit of account time heading angle deviation rate Pt=P/t, unit take angle degrees second;
Step 6.7:As the heading angle deviation rate PtDuring 30 jiaos of degrees seconds of >, the control interval is 1 second;As 30 jiaos of degrees second > The heading angle deviation rate PtDuring 5 jiaos of degrees seconds of >, the control interval is 2 seconds;As the heading angle deviation rate Pt<During 5 jiaos of degrees seconds, Control interval is 5 seconds.
For the more difficult accurate determination of motion model in conventional control methods, dynamic response is undesirable, antijamming capability is weaker; Auto-adaptive function and the more difficult determination of accurate interference model in adaptive control algorithm;Algorithm structure in FUZZY ALGORITHMS FOR CONTROL, input The fuzzy field of output variable, the more difficult determination of fuzzy rule and optimization;The problems such as coursespeed collaboration degree is weaker.The present invention proposes A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm.
The present invention the advantage is that compared with prior art:(1) USV control methods are improved using FUZZY ALGORITHMS FOR CONTROL to exist Fitness under uncertain water conditions, avoids the ship motion modeling problem in conventional method;(2) with classical fuzzy control Based on, it is proposed that the improved output USV FUZZY ALGORITHMS FOR CONTROLs of two input two, it is defeated as algorithm to add range ambiguity domain function Enter, and course and the speed of a ship or plane all included into autonomous control scope, carry out Collaborative Control, improve the convergence rate of USV motion controls, Enhance the robustness of control;(3) control auto-adjustment control spacing parameter, is made as independent variable using heading angle deviation rate Algorithm adaptive adjustment control parameter, can further enhancing the intelligence of self-control system according to the change of control effect Can property.
Brief description of the drawings
Fig. 1 unmanned boat fuzzy self-adaption coursespeed Collaborative Control algorithm flow charts;
Fig. 2 heading angle deviation amount P membership function curves;
Fig. 3 air line distance departure D membership function curves;
Fig. 4 rudder angles deflect controlled quentity controlled variable U membership function curves;
Fig. 5 accelerator open degree controlled quentity controlled variable V membership function curves;
Fig. 6 rudder angles deflect controlled quentity controlled variable fuzzy inference rule;
Fig. 7 accelerator open degree controlled quentity controlled variable fuzzy inference rules;
Fig. 8 testcraft sea trial result curves.
Embodiment
Below in conjunction with the drawings and specific embodiments, the invention will be described in further detail.Unmanned boat fuzzy self-adaption course Speed of a ship or plane Collaborative Control algorithm flow chart is as shown in figure 1, comprise the following steps:
Step 1:Obtain and set unmanned boat autonomous navigation target point latitude and longitude coordinates;
Step 2:Gather longitude and latitude, the course angle of unmanned boat:
Step 3:Whether identical compare longitude and latitude and the unmanned boat autonomous navigation target point longitude and latitude of collection, it is identical, return Step 1, differ, continue next step;
Step 4:The heading angle deviation amount P and straight line of unmanned boat and target point are calculated according to the longitude and latitude of collection and course angle Range deviation amount D;Specific steps include:
Step 4.1:According to the longitude and latitude of collection and course angle obtain in longitudinal range deviation amount X (to the east of be just Direction), range deviation amount Y on latitude direction (to the north of be positive direction), target course θ (using real north as reference);
Step 4.2:It is obtained by the following formula heading angle deviation amount P and air line distance departure D:
Step 5:The resolving of fuzzy adaptivecontroller algorithm is carried out to heading angle deviation amount P and air line distance departure D, is obtained Obtain the membership function of heading angle deviation amount P and air line distance departure D in fuzzy set;Specific steps include:
Step 5.1:Heading angle deviation amount membership function P is introduced to heading angle deviation amount Pj
Heading angle deviation amount membership function P in formulajBe an identification number be j fuzzy set, j ∈ integers,For Departure belongs to the membership function of each fuzzy set;
In heading angle deviation amount membership function PjIn, j=-2 is made, -1,0,1,2 represents NB (negative sense is big), NS respectively (negative sense is small), ZE (zero-deviation), PS (positive small), PB (positive big), PjMembership function clusterFor:
Membership function clusterAs shown in Fig. 2 design parameter is drawn by experiment and expertise.
Step 5.2:Air line distance departure membership function is introduced to air line distance departure D
Dj
Formula cathetus range deviation amount membership function DjBe an identification number be j fuzzy set, j ∈ integers, Belong to the membership function of each fuzzy set for departure.
In air line distance departure membership function DjIn, j=0 is made, 1,2 represents Z (zero-deviation) respectively, and S is (small partially Difference), B (large deviation), DjMembership function clusterFor:
Membership function clusterAs shown in figure 3, design parameter is drawn by experiment and expertise.
Step 6:Calculated simultaneously by the membership function of heading angle deviation amount P and air line distance departure D in fuzzy set Rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V is exported, rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V is corresponded to respectively In to the course of unmanned boat and speed of a ship or plane control.Specific steps include:
Step 6.1:Rudder angle deflection controlled quentity controlled variable membership function U is introduced to rudder angle deflection controlled quentity controlled variable Uj,
Formula centered rudder angular deflection controlled quentity controlled variable membership function UjThe fuzzy set that an identification number is j, j ∈ from integer,As departure belongs to the membership function of each fuzzy set, and rudder angle deflection controlled quentity controlled variable U fuzzy inference rule is such as Shown in Fig. 6.J=-2 is made, -1,0,1,2 represents NB (negative sense is big), NS (negative sense is small) respectively, ZE (zero-deviation), PS (positive small), PB (positive big), UjMembership function clusterFor:
Step 6.2:Accelerator open degree controlled quentity controlled variable membership function V is introduced to accelerator open degree controlled quentity controlled variable Vj,
Accelerator open degree controlled quentity controlled variable membership function V in formulajBe an identification number be j fuzzy set, j ∈ integers, Belong to the membership function of each fuzzy set for departure.Accelerator open degree controlled quentity controlled variable V fuzzy inference rule is as shown in Figure 7.j =0,1,2 represents Z (zero throttle), S (small throttle), B (large throttle), V respectivelyjMembership function clusterFor:
Fuzzy inference rule table is formulated, as shown in Figure 6 and Figure 7, is counted by heading angle deviation amount P and air line distance departure D Calculate output rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V, U and V correspond to the control of unmanned boat angular velocity of satellite motion and linear velocity Amount processed, wherein Fig. 6 are the fuzzy inference rule that rudder angle deflects controlled quentity controlled variable U, and the fuzzy reasoning that Fig. 7 is accelerator open degree controlled quentity controlled variable V is advised Then, last controlled quentity controlled variable U and V de-fuzzy specific steps include:
Step 6.3:Introduce intermediate variable ωi、ωk, i ∈ integers, k ∈ integers, calculation formula is:
Wherein symbol " ∧ ", which refers to, takes small, that is, takes common factor;
Step 6.4:According to intermediate variable ωi、ωkRudder angle deflection controlled quentity controlled variable U is calculated, calculation formula is:
Step 6.5:According to intermediate variable ωi、ωkCalculation of throttle aperture controlled quentity controlled variable V, calculation formula are:
The specific steps that control interval adaptively adjusts include:
Step 6.6:Unit of account time heading angle deviation rate Pt=P/t, unit take angle degrees second (°/S);
Step 6.7:By heading angle deviation rate PtDrawn according to the extent of deviation of the uncertainty of running environment and running status It is divided into 3 grades.As heading angle deviation rate PtDuring 30 jiaos of degrees seconds of >, large deviation state is represented, frequency, control interval are controlled using height For 1 second;As 30 jiaos of degrees second > heading angle deviation rates PtDuring 5 jiaos of degrees seconds of >, general bias state is represented, frequency is controlled in Rate, control interval are 2 seconds;As deviation ratio Pt<During 5 jiaos of degrees seconds, little deviation state is represented, using low control frequency, control interval For 5 seconds.Design parameter is drawn by experiment and expertise.
Step 7:By some cycles time circulate operation step 2 to 6.
Measurement result is analyzed
In order to verify the validity of unmanned boat fuzzy self-adaption coursespeed Collaborative Control algorithm proposed by the present invention and Shandong Rod, carried out on actual unmanned boat test platform under wind, unrestrained disturbed condition, the autonomous navigation experiment of static target tracking, Part of test results is as shown in Figure 8 obtained.
As a result show, the algorithm can not carry out the complicated and unknown situation of unmanned boat motion modeling, disturbed condition Under, driving testcraft independently tracks target, and flight path is smooth, strong interference immunity.During the navigation that horizontal stormy waves interference be present, Mesh, can fast and accurately be arrived at autonomous Adjustment Tests ship course and the speed of a ship or plane according to real-time course deviation and range deviation Punctuate.

Claims (4)

1. a kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm, it is characterised in that including as follows Step:
Step 1:Obtain and set unmanned boat autonomous navigation target point latitude and longitude coordinates;
Step 2:Gather longitude and latitude, the course angle of unmanned boat:
Step 3:Whether identical compare longitude and latitude and the unmanned boat autonomous navigation target point longitude and latitude of the collection, it is identical then Return to step 1, is differed, and continues next step;
Step 4:The heading angle deviation amount P and air line distance of unmanned boat and target point are calculated according to the longitude and latitude of collection and course angle Departure D;
Step 5:The resolving of fuzzy adaptivecontroller algorithm is carried out to the heading angle deviation amount P and air line distance departure D, is obtained Obtain the membership function of the heading angle deviation amount P and air line distance departure D in fuzzy set;
Step 6:Calculated simultaneously by the membership function of the heading angle deviation amount P and air line distance departure D in fuzzy set Rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V is exported, rudder angle deflection controlled quentity controlled variable U and accelerator open degree controlled quentity controlled variable V is corresponded to respectively In to the course of unmanned boat and speed of a ship or plane control;
Step 7:By some cycles time circulate operation step 2 to 6;
The specific steps of the step 6 include:
Step 6.1:Rudder angle deflection controlled quentity controlled variable membership function is introduced to rudder angle deflection controlled quentity controlled variable U
<mrow> <msub> <mi>U</mi> <mi>j</mi> </msub> <mo>,</mo> <msub> <mi>U</mi> <mi>j</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>25</mn> <mo>,</mo> <mn>25</mn> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
Formula centered rudder angular deflection controlled quentity controlled variable membership function UjBe an identification number be j fuzzy set, j ∈ integers,To be inclined Residual quantity belongs to the membership function of each fuzzy set, makes j=-2, and -1,0,1,2 represents the big NB of negative sense, the small NS of negative sense respectively, Zero-deviation ZE, positive small PS, positive big PB, UjMembership function clusterFor:
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mn>20</mn> </mrow> <mn>5</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>+</mo> <mn>20</mn> <mo>|</mo> <mo>&lt;</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>+</mo> <mn>20</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>5</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mn>10</mn> </mrow> <mn>10</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>+</mo> <mn>10</mn> <mo>|</mo> <mo>&lt;</mo> <mn>10</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>+</mo> <mn>10</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>10</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mn>0</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mi>x</mi> <mn>5</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&lt;</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>5</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>10</mn> </mrow> <mn>10</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>10</mn> <mo>|</mo> <mo>&lt;</mo> <mn>10</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>10</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>10</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>U</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>20</mn> </mrow> <mn>5</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>20</mn> <mo>|</mo> <mo>&lt;</mo> <mn>5</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>20</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>5</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Step 6.2:Accelerator open degree controlled quentity controlled variable membership function V is introduced to the accelerator open degree controlled quentity controlled variable Vj,
<mrow> <msub> <mi>V</mi> <mi>j</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <msub> <mi>V</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>60</mn> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
The membership function of accelerator open degree controlled quentity controlled variable described in formula VjBe an identification number be j fuzzy set, j ∈ integers, Belong to the membership function of each fuzzy set for departure, make j=0,1,2 represents zero throttle Z, small throttle S, large throttle respectively B, VjMembership function clusterFor:
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>V</mi> <mn>0</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mfrac> <mi>x</mi> <mn>10</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>10</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>&gt;</mo> <mn>10</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>V</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>30</mn> </mrow> <mn>30</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>30</mn> <mo>|</mo> <mo>&lt;</mo> <mn>30</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>30</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>30</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>V</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>30</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>30</mn> </mrow> <mn>30</mn> </mfrac> <mo>,</mo> <mn>30</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>60</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> <mi>x</mi> <mo>&gt;</mo> <mn>60</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Step 6.3:Introduce intermediate variable ωi、ωk, i ∈ integers, k ∈ integers, calculation formula is:
Wherein symbol " ∧ ", which refers to, takes small, that is, takes common factor;For PiMembership function cluster,For PkDegree of membership letter Number cluster,For DiMembership function cluster,For DkMembership function cluster;
Step 6.4:According to the intermediate variable ωi、ωkRudder angle deflection controlled quentity controlled variable U is calculated, calculation formula is:
μU(x)=[ωi∧μUi(x)]∪[ωk∧μUk(x)]
<mrow> <mi>U</mi> <mo>=</mo> <mfrac> <mrow> <mo>&amp;Integral;</mo> <msub> <mi>x&amp;mu;</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <msub> <mi>&amp;mu;</mi> <mi>U</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
Step 6.5:According to the intermediate variable ωi、ωkCalculation of throttle aperture controlled quentity controlled variable V, calculation formula are:
μV(x)=[ωi∧μVi(x)]∪[ωk∧μVk(x)]
<mrow> <mi>V</mi> <mo>=</mo> <mfrac> <mrow> <mo>&amp;Integral;</mo> <msub> <mi>x&amp;mu;</mi> <mi>V</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> </mrow> <mrow> <mo>&amp;Integral;</mo> <msub> <mi>&amp;mu;</mi> <mi>V</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
Step 6.6:Unit of account time heading angle deviation rate Pt=P/t, unit take angle degrees second;
Step 6.7:As the heading angle deviation rate PtDuring 30 jiaos of degrees seconds of >, the control interval is 1 second;When described in 30 jiaos of degrees second > Heading angle deviation rate PtDuring 5 jiaos of degrees seconds of >, the control interval is 2 seconds;As the heading angle deviation rate Pt<During 5 jiaos of degrees seconds, control At intervals of 5 seconds.
2. a kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm according to claim 1, It is characterized in that:The specific steps of the step 4 include:
Step 4.1:The range deviation amount X in longitudinal is obtained according to the longitude and latitude of the collection and course angle, to the east of be just Direction, the range deviation amount Y on latitude direction, to the north of be positive direction, course angle θ, using real north as reference;
Step 4.2:It is obtained by the following formula the heading angle deviation amount P and air line distance departure D:
<mrow> <mi>P</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>&amp;theta;</mi> <mo>+</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>Y</mi> <mi>X</mi> </mfrac> <mo>)</mo> <mo>+</mo> <mn>90</mn> <mo>...</mo> <mo>...</mo> <mi>X</mi> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>&amp;theta;</mi> <mo>+</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mo>(</mo> <mfrac> <mi>Y</mi> <mi>X</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>90</mn> <mo>...</mo> <mo>...</mo> <mi>X</mi> <mo>&gt;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <mi>D</mi> <mo>=</mo> <msqrt> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>Y</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </msqrt> <mo>.</mo> </mrow>
3. a kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm according to claim 1, It is characterized in that:The specific steps of the step 5 include:
Step 5.1:Heading angle deviation amount membership function is introduced to the heading angle deviation amount P
Pj
<mrow> <msub> <mi>P</mi> <mi>j</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mn>360</mn> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow>
The membership function of heading angle deviation amount described in formula PjBe an identification number be j fuzzy set, j ∈ integers,For Departure belongs to the membership function of each fuzzy set;
Step 5.2:Air line distance departure degree of membership is introduced to the air line distance departure D
Function Dj
<mrow> <msub> <mi>D</mi> <mi>j</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>&amp;mu;</mi> <msub> <mi>D</mi> <mi>j</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>x</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <mn>0</mn> <mo>,</mo> <mi>&amp;infin;</mi> <mo>)</mo> <mo>}</mo> </mrow>
The membership function of air line distance departure described in formula DjBe an identification number be j fuzzy set, j ∈ integers, Belong to the membership function of each fuzzy set for departure.
4. a kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm according to claim 3, It is characterized in that:The heading angle deviation amount membership function P of the step 5.1jIn, make j=-2, -1,0,1,2 represent respectively it is negative To big NB, negative sense small NS, zero-deviation ZE, positive small PS, positive big PB, PjMembership function clusterFor:
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>50</mn> </mrow> <mn>50</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>50</mn> <mo>|</mo> <mo>&lt;</mo> <mn>50</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>50</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>50</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>120</mn> </mrow> <mn>60</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>120</mn> <mo>|</mo> <mo>&lt;</mo> <mn>60</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>120</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>60</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mn>0</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>180</mn> </mrow> <mn>30</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>180</mn> <mo>|</mo> <mo>&lt;</mo> <mn>30</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>180</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>30</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>240</mn> </mrow> <mn>60</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>240</mn> <mo>|</mo> <mo>&lt;</mo> <mn>60</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>240</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>60</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> 3
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>P</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>310</mn> </mrow> <mn>50</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>310</mn> <mo>|</mo> <mo>&lt;</mo> <mn>50</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>310</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>50</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
The air line distance departure membership function D of the step 5.2jIn, j=0 is made, 1,2 represents zero-deviation Z, little deviation respectively S, large deviation B, DjMembership function clusterFor:
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>D</mi> <mn>0</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mfrac> <mi>x</mi> <mn>50</mn> </mfrac> <mo>,</mo> <mn>0</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>50</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>&gt;</mo> <mn>50</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>D</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> <mo>-</mo> <mo>|</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>50</mn> </mrow> <mn>50</mn> </mfrac> <mo>|</mo> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>50</mn> <mo>|</mo> <mo>&lt;</mo> <mn>50</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <mn>50</mn> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <mn>50</mn> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <msub> <mi>&amp;mu;</mi> <msub> <mi>D</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>0</mn> <mo>,</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>50</mn> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mn>50</mn> </mrow> <mn>50</mn> </mfrac> <mo>,</mo> <mn>50</mn> <mo>&lt;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>100</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> <mi>x</mi> <mo>&gt;</mo> <mn>100</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> 4
CN201510169286.0A 2015-04-10 2015-04-10 A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm Expired - Fee Related CN104765368B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510169286.0A CN104765368B (en) 2015-04-10 2015-04-10 A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510169286.0A CN104765368B (en) 2015-04-10 2015-04-10 A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm

Publications (2)

Publication Number Publication Date
CN104765368A CN104765368A (en) 2015-07-08
CN104765368B true CN104765368B (en) 2017-11-28

Family

ID=53647274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510169286.0A Expired - Fee Related CN104765368B (en) 2015-04-10 2015-04-10 A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm

Country Status (1)

Country Link
CN (1) CN104765368B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105775092A (en) * 2016-01-25 2016-07-20 武汉尼维智能科技有限公司 Course control system and method for unmanned surface vehicle
CN105785974B (en) * 2016-01-27 2018-08-24 中国船舶重工集团公司第七一〇研究所 A kind of course fault-tolerant control system towards drive lacking Autonomous Underwater Vehicle
CN107255923B (en) * 2017-06-14 2020-04-03 哈尔滨工程大学 RBF identification-based under-actuated unmanned ship track tracking control method of ICA-CMAC neural network
GR20180100033A (en) * 2018-01-25 2019-09-06 Δημητριος Νικολαος Βοσκακης Artificial-intelligence craft's navigation system
CN108303982B (en) * 2018-01-31 2021-11-30 深圳力子机器人有限公司 Automatic guide transport vehicle, and control method and control system thereof
CN108445877A (en) * 2018-02-06 2018-08-24 武汉理工大学 Based on the bionic movement control system and control method under mobile 3G/4G network environments
CN108459503B (en) * 2018-02-28 2021-03-30 哈尔滨工程大学 Unmanned surface vehicle track planning method based on quantum ant colony algorithm
CN109164701A (en) * 2018-07-17 2019-01-08 袁乐铮 A kind of course heading control method and system based on fuzzy control
CN109283842B (en) * 2018-08-02 2022-01-07 哈尔滨工程大学 Unmanned ship track tracking intelligent learning control method
CN109808853A (en) * 2019-03-05 2019-05-28 上海大学 A kind of unmanned boat bow is to speed of a ship or plane multi-level control system and its control method
CN110398963A (en) * 2019-07-13 2019-11-01 珠海格力智能装备有限公司 Trackless navigation correction control method, device, storage medium and controller
CN111338410B (en) * 2020-04-22 2021-05-04 智慧航海(青岛)科技有限公司 Intelligent ship course and speed integrated control method
CN111443611B (en) * 2020-05-25 2021-05-04 上海大学 Multi-model switching-based high-speed unmanned ship speed controller determination method and system
CN116520863B (en) * 2022-09-05 2024-05-24 中国人民解放军国防科技大学 Carrier rocket attitude control method and system based on fuzzy rule dynamic switching

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100568144C (en) * 2008-09-04 2009-12-09 湖南大学 Mobile robot's multirow is for merging automatic navigation method under a kind of circumstances not known
CN103309244B (en) * 2013-05-29 2016-05-04 哈尔滨工程大学 One owes to drive unmanned boat semi-physical system and dedicated emulated method thereof
CN103760902B (en) * 2014-01-14 2016-06-08 上海海事大学 A kind of unmanned water surface ship straight line path tracking based on fuzzy control
CN103777522B (en) * 2014-01-21 2016-09-28 上海海事大学 Unmanned water surface ship line tracking method based on fuzzy

Also Published As

Publication number Publication date
CN104765368A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
CN104765368B (en) A kind of unmanned boat coursespeed cooperative control method based on fuzzy adaptive algorithm
Chen et al. Path planning and obstacle avoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning
CN105138001B (en) A kind of quadrotor attitude control method
Liang et al. A novel distributed and self-organized swarm control framework for underactuated unmanned marine vehicles
CN103777522B (en) Unmanned water surface ship line tracking method based on fuzzy
CN110362089A (en) A method of the unmanned boat independent navigation based on deeply study and genetic algorithm
CN106227223A (en) A kind of UUV trace tracking method based on dynamic sliding mode control
CN106444796B (en) A kind of drive lacking UUV depth adaptive total-sliding-mode control method of uncertain Time-varying time-delays
CN106845716A (en) A kind of unmanned surface vehicle local delamination paths planning method based on navigation error constraint
CN107168324A (en) A kind of robot path planning method based on ANFIS fuzzy neural networks
CN105717923A (en) Unmanned surface vessel ocean dynamic obstacle avoiding control algorithm based on ellipse clustering-collision awl deduction
CN108710372B (en) A kind of autonomous collision avoidance system and method for group&#39;s unmanned surface vehicle
CN106444838A (en) Precise path tracking control method for autonomous underwater vehicle
CN114199248B (en) AUV co-location method for optimizing ANFIS based on mixed element heuristic algorithm
CN108415245A (en) The fault tolerant control method of autonomous fleet operations under the conditions of a kind of heterogeneous car networking
CN106708068A (en) Bionic undulating fin-propelled underwater vehicle path tracking control method
CN105807789A (en) UUV control method based on T-S fuzzy observer compensation
CN107563044A (en) The four rotor wing unmanned aerial vehicle path tracking control methods based on safety on line study
Zheng et al. A Decision‐Making Method for Ship Collision Avoidance Based on Improved Cultural Particle Swarm
CN109976189A (en) A kind of intelligence naval vessels automatic cruising analog simulation method
CN102176119B (en) Information-fusion-mechanism-based multi-robot dangerous odor source positioning method
CN116225055A (en) Unmanned aerial vehicle autonomous flight path planning algorithm based on state decomposition in complex environment
CN107450311A (en) Inversion model modeling method and device and adaptive inverse control and device
Meng et al. A Fully-Autonomous Framework of Unmanned Surface Vehicles in Maritime Environments Using Gaussian Process Motion Planning
CN115903820A (en) Multi-unmanned-boat pursuit and escape game control method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171128

CF01 Termination of patent right due to non-payment of annual fee