CN104751175A - 基于增量支持向量机的sar图像多类标场景分类方法 - Google Patents

基于增量支持向量机的sar图像多类标场景分类方法 Download PDF

Info

Publication number
CN104751175A
CN104751175A CN201510109062.0A CN201510109062A CN104751175A CN 104751175 A CN104751175 A CN 104751175A CN 201510109062 A CN201510109062 A CN 201510109062A CN 104751175 A CN104751175 A CN 104751175A
Authority
CN
China
Prior art keywords
support vector
vector
label
test sample
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510109062.0A
Other languages
English (en)
Other versions
CN104751175B (zh
Inventor
焦李成
马文萍
张曼
屈嵘
刘红英
杨淑媛
侯彪
王爽
马晶晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510109062.0A priority Critical patent/CN104751175B/zh
Publication of CN104751175A publication Critical patent/CN104751175A/zh
Application granted granted Critical
Publication of CN104751175B publication Critical patent/CN104751175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明公开了一种基于增量支持向量机的SAR图像多类标场景分类方法,主要解决如何更加准确高速的处理多标签SAR图像的场景分类问题。其实现步骤为:首先,将SAR大图切割为大小相同的小图像块,选出信息清晰完整的图像块进行多标签标记;然后提取基于contourlet的形状、纹理特征,再随机选取训练样本和测试样本;而后,将多类标分解成多个单类标,依次采用增量学习的方法训练支持向量机的模型;最后,根据学到的模型计算测试样本输出值,进而预测出标签,得到分类结果,本发明具有分类精度更高,分类时间更短的优点,可用于快速准确地处理海量多类标SAR图像。

Description

基于增量支持向量机的SAR图像多类标场景分类方法
技术领域
本发明属于图像处理技术领域,特别涉及一种图像场景分类方法,可快速准确地处理海量多类标SAR图像。
背景技术
在机器学习领域中,针对多类标学习的研究对于多义性对象学习建模具有十分重要的意义,现在已经逐渐成为国际机器学习界一个新的研究热点。由于客观事物本身的复杂性,一个事物对象可以用单个实例来表示,并且该实例属于多个类别标签,即单实例多类标。单实例多标签的学习方法对图像分类的问题具有重要的意义,但是该方法却很少被应用到SAR图像的场景分类当中。
随着合成孔径雷达SAR技术的发展,SAR图像在分辨率、图像内容和数量上都达到了一定的高度,其应用也越来越广泛。SAR图像的场景分类不同于传统的SAR图像分类技术,场景分类中并不严格追求同类图像间的内容相似性,而是关注于通过某种学习方法挖掘图像内在的语义信息。近年来,学者们针对该问题也做出了一些研究。
武汉大学的殷慧在其博士学位论文“基于局部特征表达的高分辫率SAR图像城区场景分类方法”中研究了高分辨率SAR图像的城区场景解译应用。该论文涉及到局部特征表达和分类技术,中间表达和主题提取技术。主要提出了两种分类算法,分别是:1.基于多维金字塔表达算法和AdaBoost的高分辨率SAR图像的城区场景分类算法;2.基于多维金字塔匹配核和支持向量机的高分辨率SAR图像城区场景分类算法。还提出了两种分类框架,分别是:1.基于两级地物语义的高分辨率SAR图像的城区场景分类框架;2.基于中间表达式和线性判别分析法的高分辨率SAR图像城区场景分类框架。从分类结果看,其研究结果存在的不足是各算法的分类准确率较低,分类时间较长。
发明内容
本发明的目的是针对上述已有技术的不足,提出一种基于增量支持向量机的SAR图像多类标场景分类方法以缩短分类时间,提高分类精度。
实现本发明目的的技术方案是:采用多标签的标记方式,使单幅图像描述内容更加丰富具体,能够通过学习挖掘出图像内部语义信息,提高分类精度,采用增量支持向量机作为分类器,缩短分类时间。其实现步骤包括如下:
(1)将四幅给定的SAR图像分别切割成无重叠的小图像块,每个小图像块的大小均为256*256像素,从这些小图像块形成的图像库中选取肉眼能够清晰识别且信息完整的图像块组成一个数据库,该数据库包括山脉,水域,城市,建筑,池塘和平原这六个类别;
(2)在上述数据库中提取每一幅图像基于contourlet变换的纹理特征和形状特征作为一个特征集,并将该特征集当中的每一个特征向量归一化到0-1之间;
(3)将上述特征集中图像的地物标签矩阵表示为y,当第i幅图像属于第j个类别时,则地物标签矩阵y中的元素y(i,j)=1,否则,y(i,j)=-1,并规定特征集中任意一幅图像至少属于一个类别,其中i=1,…,n,n表示特征集中图像张数,j=1,…,6,表示一共有6个类别;
(4)将上述地物标签矩阵y中的每一列向量作为一个类别的地物标签,得到六组地物标签y(j),j=1,2…6;
(5)从步骤(2)的特征集中随机选取训练样本和测试样本,构成训练样本集和测试样本集其中,xk是第k个训练特征样本,用一个行向量表示,是与xk相对应的第j个类别的地物标签,n是训练样本个数,txk是第k个测试特征样本,用一个行向量表示,是与txk相对应的第j个类别的地物标签,tn是测试样本个数;
(6)对训练样本集采用增量学习的方法进行迭代训练,得到支持向量集合以及该集合中所有支持向量所对应的拉格朗日乘子向量和偏斜量b,其中ps为当前支持向量集合中第s个支持向量,yPs为当前支持向量集合中第s个支持向量所对应的类别标签,αPs是当前支持向量集合中第s个支持向量所对应的拉格朗日乘子,b是一个标量;
(7)根据上述训练得到的支持向量集合Pm、拉格朗日乘子向量α和偏斜量b,用分类决策函数对测试样本进行识别,得到测试样本的输出矩阵T,其中第k个测试样本对应的输出向量Tk是输出矩阵T中第k个行向量;
(8)判断测试样本的标签:
8a)当测试样本的输出向量Tk中每一个值都小于0时,则第k个测试样本的类别向量为:
8b)当测试样本的输出向量Tk中至少有一个值大于0时,则第k个测试样本的类别向量为:
其中j=1,2…6,j表示类别数,k=1,2…tn,tn表示测试样本数;
8c)根据步骤8a)-8b)的判别结果得到测试样本的标签向量tyk,再由向量tyk构成测试样本的标签矩阵该矩阵对应测试样本的类别,即分类结果。
本发明与现有的技术相比具有以下优点:
1.本发明根据SAR图像特点选取基于contourlet变换的纹理、形状特征,更加全面地反映了SAR图像的特性信息;
2.本发明采用多标签的标记方式,单幅图像描述内容更加丰富具体,能够通过学习挖掘出图像内部语义信息,提高了分类精度;
3.本发明采用增量支持向量机作为分类器,缩短了分类时间。
附图说明
图1是本发明的实现流程图;
图2是本发明仿真使用的四幅切割前的SAR图像;
图3是用本发明对图2切割标注后的图像块。
具体实施方式
以下参照附图,对本发明的具体实现方式及效果作进一步详细描述。
参照图1,本发明的具体实现步骤如下:
步骤1,对SAR图像进行分块,组成一个数据库。
将如图2所示的四幅SAR图像分别切割成无重叠的小图像块,每个小图像块的大小均为256*256像素;
从这些小图像块形成的图像库中选取肉眼能够清晰识别且信息完整的图像块组成一个数据库,该数据库包括山脉,水域,城市,建筑,池塘和平原这六个类别;如图3所示,其中图3(a)是山脉的一组样图,图3(b)是水域的一组样图,图3(c)是城市的一组样图,图3(d)是建筑的一组样图,图3(e)是池塘的一组样图,图3(f)是平原的一组样图。
步骤2,提取图像特征并归一化。
2a)提取基于contourlet变换的纹理特征:对数据库中的每一幅图像进行Contourlet变换后,提取出属于不同尺度不同方向上的系数Ci=(x,y),以Ci=(x,y)的均值μi和标准方差σi作为图像的纹理特征,则特征向量表示为 s = ( μ 1 , μ 2 , . . , μ i , . . , μ 2 n , σ 1 , σ 2 , . . , σ i , . . , σ 2 n ) , 其中i=1,…,2n
对均值μi和方差σi分别采用主分量分析法,按照参数从小到大重新排列,得到新的特征向量f1,排列以后的各分量所在位置记做i,其中n表示分解的尺度数;
2b)提取基于contourlet变换的形状特征:对数据库中的每一幅图像运用Canny算子提取边缘,在此基础上再进行Contourlet变换,提取出属于不同尺度不同方向上的系数C′i(x,y),以C′i(x,y)的均值μ′i和标准方差σ′i作为图像的形状特征,则特征向量表示为其中均值μ′0和方差σ′0为低频特征分量,其它为各个方向子带上的特征分量,其中n表示分解的尺度数;
2c)将2a),2b)中提取出的特征向量f1和f2合并成一个特征向量fk,用fk构成特征集并将其归一化到0-1之间,其中fk表示特征集当中的第k幅图像的特征向量,k=1,…,n,n表示数据库中图像张数。
步骤3,将上述特征集中图像的地物标签矩阵表示为y,当第k幅图像属于第j个类别时,则地物标签矩阵y中的元素y(k,j)=1,否则,y(k,j)=-1,并规定该特征集中任意一幅图像至少属于一个类别,其中k=1,…,n,n表示特征集中图像张数,j=1,…,6,表示一共有6个类别;
步骤4,将上述地物标签矩阵y中的每一列向量作为一个类别的地物标签,得到六组地物标签y(j),j=1,2…6。
步骤5,从步骤2的特征集中随机选取训练样本和测试样本,构成训练样本集和测试样本集其中,xk是第k个训练特征样本,用一个行向量表示,是与xk相对应的第j个类别的地物标签,n是训练样本个数,txk是第k个测试特征样本,用一个行向量表示,是与txk相对应的第j个类别的地物标签,tn是测试样本个数。
步骤6,对上述训练样本集采用增量支持向量机的学习方法进行迭代训练。
6a)把第一个训练样本x1作为支持向量,得到一个初始的支持向量集合Pm={x1,y1},其中m=1,y1是支持向量x1所对应的标签;
6b)由上述初始支持向量集合中的支持向量x1及其所对应的标签y1计算核相关矩阵 R m + 1 - 1 = 0 y 1 y 1 y 1 y 1 K ( x 1 , x 1 ) + γ - 1 - 1 , 其中是一个大小为(m+1)×(m+1)的矩阵,γ是正则参数,通过网格搜索法求出,K是一个核函数,该核函数K为:x,y是两个不同的样本向量,σ2是和核函数的宽度,通过网格搜索法求出;
6c)通过求出的核相关矩阵计算支持向量集合Pm所对应的拉格朗日乘子向量和偏斜量bm b m α P m = R m + 1 - 1 0 1 , 由Pm和bm构成一个初始的分类器:
6d)用得到的分类器对未被挑选为支持向量的训练样本进行分类,得到对应的类别标签然后计算分类标签和实际地物标签的乘积函数的值,其中是与相对应的实际地物标签,找出最小值对应的标号v所对应的训练样本及其实际地物标签
6e)由支持向量集合Pm和6b)中求出的核相关矩阵计算大小为(m+2)×(m+2)的核相关矩阵
R m + 2 - 1 = R m + 1 - 1 0 0 0 + τ θ θ T - θ - θ T 1 , 其中,θ是一个列向量, θ = R m + 1 - 1 y ^ v c , c也是一个列向量, c = [ Ω P 1 , v ; Ω P 2 , v ; . . . Ω Pm , v ] , Ω Pi , v = y Pi y ^ v K ( x Pi , x ^ v ) , i = 1 , . . . , m , xPi是支持向量集合Pm中的第i个支持向量,yPi是支持向量集合Pm中的第i个支持向量对应的标签,τ是一个标量, τ = ( d - y ^ v c T θ ) - 1 , d也是一个标量,d=Ωv,v-1γ是正则参数,通过网格搜索法求出,K是一个核函数,该核函数K为:x,y是两个不同的样本向量,σ2是和核函数的宽度,通过网格搜索法求出;
6f)更新支持向量集合根据6e)中得到的核函数矩阵计算支持向量集合Pm+1所对应的拉格朗日乘子向量和偏斜量bm+1,表示如下:
b m + 1 α P m + 1 = R m + 2 - 1 0 E = R m + 1 - 1 0 0 0 0 E + τ θθ T - θ - θ T 1 0 E = b m α P m 0 + τ θθ T 0 E - θ 1 - θ T 0 E ,
其中E=[1,1,…,1]T,得到新的分类器:
6g)更新变量m=m+1;
6h)重复过程6b)和6g)L次,其中L≥30,得到一次更新后的分类器:
6i)找出拉个朗日乘子向量中具有最小|α′Ps|,s=1,…,m所对应的拉格朗日乘子的标号u,并删除其所对应的支持向量更新 表示支持向量所对应的标签,通过计算核函数相关矩阵
R m - 1 = S - s 1 s 2 / r ^ uu ,
其中是由6e)求得的核相关矩阵,a,b=1,…,m+1,S是一个大小为m×m的矩阵,a,b≠u,s1是一个m维的列向量, s 1 = [ r ^ 1 u ; . . . ; r ^ ( u + 1 ) u ; . . . ; r ^ ( m + 1 ) u ] , s2是一个行向量, s 2 = s 1 T , []T表示转置;
6j)由求得的计算列向量和标量bm-1
b m - 1 α P m - 1 = R m - 1 - 1 0 e , 其中e是一个m-1维的列向量,e=[1,1,…,1]T,得到删减后的分类器:
6k)更新变量m=m-1;
6l)循环步骤第6d)到6k)直到满足停止迭代条件为止,停止条件为:h的最大值大于0.5,得到最终的支持向量集合P″m以及该集合对应的拉格朗日乘子向量和偏斜量b″m,其中α″Ps是支持向量集合P″m中第s个支持向量所对应的拉格朗日乘子。
步骤7,根据训练得到的支持向量集合Pm、拉格朗日乘子向量α和偏斜量b,用分类决策函数对测试样本进行识别,得到测试样本的输出值其中Tk表示第k个测试样本对应的输出值;
分类决策函数为:其中tx是测试样本,αPs是支持向量集合中第s个支持向量所对应的拉格朗日乘子,Ps是支持向量集合中第s个支持向量,yPs是支持向量集合中第s个支持向量所对应的类别标签,K是一个核函数,该核函数K为:x,y分别是一个样本向量,σ2是和核函数的参数,通过网格搜索法求出。
步骤8,判断测试样本的标签,得到分类结果。
8a)当测试样本的输出向量Tk中每一个值都小于0时,则第k个测试样本的类别向量为:
8b)当测试样本的输出向量Tk中至少有一个值大于0时,则第k个测试样本的类别向量为:
其中j=1,2…6,j表示类别数,k=1,2…tn,tn表示测试样本数;
8c)根据步骤8a)-8b)的判别结果得到测试样本的标签向量tyk,再由向量tyk构成测试样本的标签矩阵该矩阵对应测试样本的类别,即得到分类结果。
本发明的效果可以通过下面的实验仿真进一步说明:
1、仿真实验条件与方法
硬件平台为:Intel(R)Xeon(R)CPU E56062.13GHZ、7.98GB RAM;
软件平台为:MATLAB R2013a;
实验方法:分别为本发明方法和现有的七种方法,其中:
第一种是用实例分化结合多实例多标签推进的方法;
第二种是用实例分化结合多实例多标签支持向量机的方法;
第三种是用实例分化结合多实例多标签最大边缘的方法;
第四种是基于实例分化的方法;
第五种是基于单实例多标签的标签集传播的方法;
第六种是基于快速稀疏支持向量机的多标签分类方法。
现有的这六种对比方法都是国际引用较多的经典方法。
仿真实验所使用的SAR图像如图2所示,其中图2(a)所示地点是香港机场,图像大小为21946*22406,图2(b)所示地点是日本东京,图像大小为22005*22535,图2(c)所示地点是香港北部,图像大小为19035*7330,图2(d)所示地点是香港南部,图像大小为22005*22535,这四幅图像均为RadarSAT-2,C波段,HH单极化方式,StripMap成像方式,3m分辨率。
2、实验内容及结果分析
将四幅大图无重叠地切割成256*256的小图块,在小图像块形成的图库中,肉眼挑选出信息清晰完整的数据库,将其分为六类,分别是山脉、水域、城市、池塘、建筑、平原。对数据库中的每一幅图像进行多标签标记,其中每幅图像最少属于一个种类。随机选取数据库中10%的图像作为训练样本,剩下90%的图像作为测试样本,使用增量SVM训练分类模型,再对其测试样本进行标签预测。
用本发明和所述的现有七种方法对上述训练样本集和测试样本集进行仿真,采用海明损失、单一错误率、覆盖率、排列损失、平均精度、平均召回率、平均F1值,这七个指标来评价算法的性能。实验30次,分别取各个指标的平均值,结果见表1。
表1中ex1是第一种分类方法;ex2是第二种分类方法;ex3是第三种分类方法;ex4是第四种分类方法;ex5是第五种分类方法;ex6是第六种分类方法。A1是海明损失;A2是单一错误率;A3是排列损失;A4是覆盖率;A5是平均精度;A6是平均召回;A7是平均F1值;T(s)是平均分类时间。其中A1-A4越大表示分类性能越好,A5-A7越小表示分类性能越好,T(s)越小表示分类性能越好。
表1本发明与对比方法的分类结果
A1 A2 A3 A4 A5 A6 A7 T(s)
ex1 0.0756 0.1475 0.0544 0.4733 0.9081 0.7807 0.8396 >24hour
ex2 0.0761 0.1425 0.0583 0.4942 0.9101 0.8030 0.8531 289.0651
ex3 0.1291 0.0393 0.5700 2.0532 0.8747 0.4322 0.5658 27455.0769
ex4 0.0590 0.1076 0.0407 0.4130 0.9311 0.8488 0.8880 609.7781
ex5 0.2301 0.5592 0.6272 2.8633 0.3980 0.3873 0.3925 52.4006
ex6 0.1386 0.3373 0.1296 0.8519 0.7930 0.6038 0.6856 23.6376
本发明 0.0727 0.1366 0.0563 0.4854 0.9117 0.8067 0.8560 45.8347
从表1中可以看出:ex1-ex4将单实例数据转换为多实例数据的过程耗费了大量的时间,虽然部分指标要比单实例多标签的学习方法的好,但是分类时间太长;ex5-ex6虽然分类时间短,但是分类准确性低;而本发明将增量支持向量机用到单实例多标签的分类问题中时,既保证了一定的准确性,又节约了大量的时间,得到了一个很好的权衡。

Claims (3)

1.一种基于增量支持向量机的SAR图像多类标场景分类方法,包括如下步骤:
(1)将四幅给定的SAR图像分别切割成无重叠的小图像块,每个小图像块的大小均为256*256像素,从这些小图像块形成的图像库中选取肉眼能够清晰识别且信息完整的图像块组成一个数据库,该数据库包括山脉,水域,城市,建筑,池塘和平原这六个类别;
(2)在上述数据库中提取每一幅图像基于contourlet变换的纹理特征和形状特征作为一个特征集,并将该特征集当中的每一个特征向量归一化到0-1之间;
(3)将上述特征集中图像的地物标签矩阵表示为y,当第i幅图像属于第j个类别时,则地物标签矩阵y中的元素y(i,j)=1,否则,y(i,j)=-1,并规定特征集中任意一幅图像至少属于一个类别,其中i=1,…,n,n表示特征集中图像张数,j=1,…,6,表示一共有6个类别;
(4)将上述地物标签矩阵y中的每一列向量作为一个类别的地物标签,得到六组地物标签y(j),j=1,2…6;
(5)从步骤(2)的特征集中随机选取训练样本和测试样本,构成训练样本集和测试样本集其中,xk是第k个训练特征样本,用一个行向量表示,是与xk相对应的第j个类别的地物标签,n是训练样本个数,txk是第k个测试特征样本,用一个行向量表示,是与txk相对应的第j个类别的地物标签,tn是测试样本个数;
(6)对训练样本集采用增量支持向量机的学习方法进行迭代训练,得到支持向量集合以及该集合中所有支持向量所对应的拉格朗日乘子向量和偏斜量b,其中ps为当前支持向量集合中第s个支持向量,yPs为当前支持向量集合中第s个支持向量所对应的类别标签,αPs是当前支持向量集合中第s个支持向量所对应的拉格朗日乘子,b是一个标量;
(7)根据上述训练得到的支持向量集合Pm、拉格朗日乘子向量α和偏斜量b,用分类决策函数对测试样本进行识别,得到测试样本的输出矩阵T,其中第k个测试样本对应的输出向量Tk是输出矩阵T中第k个行向量;
(8)判断测试样本的标签:
8a)当测试样本的输出向量Tk中每一个值都小于0时,则第k个测试样本的类别向量为:
8b)当测试样本的输出向量Tk中至少有一个值大于0时,则第k个测试样本的类别向量为:
其中j=1,2…6,j表示类别数,k=1,2…tn,tn表示测试样本数;
8c)根据步骤8a)-8b)的判别结果得到测试样本的标签向量tyk,再由向量tyk构成测试样本的标签矩阵该矩阵对应测试样本的类别,即分类结果。
2.根据权利要求1所述的方法,其中步骤6所述的采用增量学习的方法进行迭代训练,按如下步骤进行:
2a)选择第一个训练样本x1作为支持向量,得到一个初始的向量集Pm={x1,y1},,其中m=1,y1是x1对应的地物标签;通过最小二乘支持向量机的求解线性方程组的方法得到该支持向量集相应的拉格朗日乘子向量和偏斜量bm,由Pm和bm构成一个初始的分类器:
2b)用初始的分类器对剩下的训练样本进行分类,即每次从错分的样本和离类边界比较近的样本中选择一个样本作为新的支持向量,把这个样本和其相对应的标签加到支持向量所对应的拉格朗日乘子向量和偏斜量bm+1中,得到一个新的分类器: { P m + 1 , α P m + 1 , b m + 1 } ;
2c)更新变量m=m+1;
2d)重复过程2b)和2c)共L次,其中L≥30,得到一次更新后的分类器: { P m ′ , α P m ′ , b m ′ } ;
2e)找出拉个朗日乘子向量中绝对值最小的拉格朗日乘子,并删除掉其所对应的那个支持向量,通过最小二乘支持向量机求解线性方程组的方法得到该支持向量集相应的拉格朗日乘子向量和偏斜量b′m-1,得到一个新的分类器:
{ P m - 1 ′ , α P m - 1 ′ , b m - 1 ′ } ;
2f)更新变量m=m-1;
2g)循环步骤2b)到2f)直到满足停止的条件,得到支持向量集合P″m,并通过最小二乘支持向量机的求解线性方程组的方法计算得到更新后的支持向量集合的拉格朗日乘子向量和偏斜量b″m,其中α″Ps是更新后的支持向量集合中第s个支持向量所对应的拉格朗日乘子,b″m是一个标量。
3.根据权利要求1所述的方法,其中所述步骤(7)中的分类决策函数,表示如下:
f ( tx ) = Σ α Ps y Ps K ( P s , tx ) s = 1 m + b ;
其中tx是测试样本,αPs是支持向量集合中第s个支持向量所对应的拉格朗日乘子,Ps是支持向量集合中第s个支持向量,yPs是支持向量集合中第s个支持向量所对应的类别标签,b是支持向量集合中第s个支持向量所对应的偏移量,K是一个核函数,其表示为:x,y是两个不同的样本向量,σ2是和核函数的宽度,通过网格搜索法求出。
CN201510109062.0A 2015-03-12 2015-03-12 基于增量支持向量机的sar图像多类标场景分类方法 Active CN104751175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510109062.0A CN104751175B (zh) 2015-03-12 2015-03-12 基于增量支持向量机的sar图像多类标场景分类方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510109062.0A CN104751175B (zh) 2015-03-12 2015-03-12 基于增量支持向量机的sar图像多类标场景分类方法

Publications (2)

Publication Number Publication Date
CN104751175A true CN104751175A (zh) 2015-07-01
CN104751175B CN104751175B (zh) 2018-12-14

Family

ID=53590828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510109062.0A Active CN104751175B (zh) 2015-03-12 2015-03-12 基于增量支持向量机的sar图像多类标场景分类方法

Country Status (1)

Country Link
CN (1) CN104751175B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117734A (zh) * 2015-07-28 2015-12-02 江南大学 基于模型在线更新的玉米种子高光谱图像分类识别方法
CN105138963A (zh) * 2015-07-31 2015-12-09 小米科技有限责任公司 图片场景判定方法、装置以及服务器
CN105608690A (zh) * 2015-12-05 2016-05-25 陕西师范大学 一种基于图论和半监督学习相结合的图像分割方法
CN107451604A (zh) * 2017-07-12 2017-12-08 河海大学 一种基于K‑means的图像分类方法
CN110427542A (zh) * 2018-04-26 2019-11-08 北京市商汤科技开发有限公司 分类网络训练及数据标注方法和装置、设备、介质
CN111131852A (zh) * 2019-12-31 2020-05-08 歌尔科技有限公司 视频直播方法、系统及计算机可读存储介质
CN114660605A (zh) * 2022-05-17 2022-06-24 湖南师范大学 一种机器学习的sar成像处理方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101551856A (zh) * 2009-05-22 2009-10-07 西安电子科技大学 基于稀疏最小二乘支撑向量机的sar目标识别方法
US7860818B2 (en) * 2006-06-29 2010-12-28 Siemens Corporation System and method for case-based multilabel classification and ranking
US8249366B2 (en) * 2008-06-16 2012-08-21 Microsoft Corporation Multi-label multi-instance learning for image classification
CN102651073A (zh) * 2012-04-07 2012-08-29 西安电子科技大学 基于稀疏动态集成选择的sar图像地物分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7860818B2 (en) * 2006-06-29 2010-12-28 Siemens Corporation System and method for case-based multilabel classification and ranking
US8249366B2 (en) * 2008-06-16 2012-08-21 Microsoft Corporation Multi-label multi-instance learning for image classification
CN101551856A (zh) * 2009-05-22 2009-10-07 西安电子科技大学 基于稀疏最小二乘支撑向量机的sar目标识别方法
CN102651073A (zh) * 2012-04-07 2012-08-29 西安电子科技大学 基于稀疏动态集成选择的sar图像地物分类方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105117734A (zh) * 2015-07-28 2015-12-02 江南大学 基于模型在线更新的玉米种子高光谱图像分类识别方法
CN105117734B (zh) * 2015-07-28 2018-04-13 江南大学 基于模型在线更新的玉米种子高光谱图像分类识别方法
CN105138963A (zh) * 2015-07-31 2015-12-09 小米科技有限责任公司 图片场景判定方法、装置以及服务器
CN105608690A (zh) * 2015-12-05 2016-05-25 陕西师范大学 一种基于图论和半监督学习相结合的图像分割方法
CN105608690B (zh) * 2015-12-05 2018-06-08 陕西师范大学 一种基于图论和半监督学习相结合的图像分割方法
CN107451604A (zh) * 2017-07-12 2017-12-08 河海大学 一种基于K‑means的图像分类方法
CN110427542A (zh) * 2018-04-26 2019-11-08 北京市商汤科技开发有限公司 分类网络训练及数据标注方法和装置、设备、介质
CN111131852A (zh) * 2019-12-31 2020-05-08 歌尔科技有限公司 视频直播方法、系统及计算机可读存储介质
CN114660605A (zh) * 2022-05-17 2022-06-24 湖南师范大学 一种机器学习的sar成像处理方法、装置及可读存储介质

Also Published As

Publication number Publication date
CN104751175B (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN104751175A (zh) 基于增量支持向量机的sar图像多类标场景分类方法
CN103116762B (zh) 一种基于自调制字典学习的图像分类方法
CN101944174B (zh) 车牌字符的识别方法
CN105574534A (zh) 基于稀疏子空间聚类和低秩表示的显著性目标检测方法
CN105808752B (zh) 一种基于cca和2pknn的自动图像标注方法
CN105095902B (zh) 图片特征提取方法及装置
CN102831427B (zh) 一种融合视觉显著性和灰度共生矩的纹理特征提取方法
CN103400154B (zh) 一种基于有监督等距映射的人体动作识别方法
CN101551855B (zh) 自适应核匹配追踪辅助诊断系统及其辅助诊断方法
CN103514456A (zh) 基于压缩感知多核学习的图像分类方法及其装置
CN104966105A (zh) 一种鲁棒机器错误检索方法与系统
CN102129568B (zh) 利用改进的高斯混合模型分类器检测图像垃圾邮件的方法
CN105205449A (zh) 基于深度学习的手语识别方法
CN104361313A (zh) 一种基于多核学习异构特征融合的手势识别方法
CN104392241A (zh) 一种基于混合回归的头部姿态估计方法
CN105678261B (zh) 基于有监督图的直推式数据降维方法
CN107451545A (zh) 基于软标签下多通道判别非负矩阵分解的人脸识别方法
CN105069478A (zh) 基于超像素张量稀疏编码的高光谱遥感地物分类方法
CN104809475A (zh) 基于增量线性判别分析的多类标场景分类方法
CN110807485B (zh) 基于高分遥感影像二分类语义分割图融合成多分类语义图的方法
CN103077555A (zh) 一种三维模型构成的自动标注方法
CN103295032A (zh) 基于空间Fisher向量的图像分类方法
CN103617413A (zh) 一种在图像中识别物体的方法
CN104951791A (zh) 数据分类方法和装置
CN103745201A (zh) 一种节目识别方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant