CN104743138B - 航天器用高精度微变形姿控仪器安装结构 - Google Patents

航天器用高精度微变形姿控仪器安装结构 Download PDF

Info

Publication number
CN104743138B
CN104743138B CN201510079961.0A CN201510079961A CN104743138B CN 104743138 B CN104743138 B CN 104743138B CN 201510079961 A CN201510079961 A CN 201510079961A CN 104743138 B CN104743138 B CN 104743138B
Authority
CN
China
Prior art keywords
plate
attitude control
wing plate
control instrument
mounting structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510079961.0A
Other languages
English (en)
Other versions
CN104743138A (zh
Inventor
王志国
周徐斌
任友良
杨金军
江世臣
胡炳亭
满孝颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201510079961.0A priority Critical patent/CN104743138B/zh
Publication of CN104743138A publication Critical patent/CN104743138A/zh
Application granted granted Critical
Publication of CN104743138B publication Critical patent/CN104743138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermal Insulation (AREA)
  • Connection Of Plates (AREA)

Abstract

本发明公开了一种航天器用高精度微变形姿控仪器安装结构,仪器安装板包括第一翼板、第二翼板和腹板,第一翼板固定在薄壁壳体结构的外表面,第二翼板设置在薄壁壳体结构的内部,并与导热体的平面对接法兰连接,第一翼板和第二翼板之间通过腹板连接,并通过腹板进行热交换;导热体的安装面连接到封盖板上;封盖板与薄壁壳体结构连接,形成安装结构头部;支撑杆组件的一端与安装结构头部连接,支撑杆组件的另一端安装在航天器光学成像有效载荷结构本体上。本发明解决了姿控仪器安装结构苛刻的热变形技术难题,具有传热性能优与热变形隔离两种特性,从而满足了航天器高精度姿态确定以及图像导航配准要求,同时具有结构形式新颖,质量轻等优点。

Description

航天器用高精度微变形姿控仪器安装结构
技术领域
本发明涉及航天器结构设计技术领域,具体为一种航天器用高精度微变形姿控仪器安装结构。
背景技术
航天器用姿控仪器安装一般不直接安装航天器本体结构上,往往需要专用安装结构转接,安装结构上提供仪器安装面以及与航天器结构本体的安装面。常规的这种结构一般要求具有轻量化、高刚度、良好的电导通及传热特性,同时具有足够的强度,因此往往采用轻质铝合金或者镁合金材料整体机加工而成。航天器在轨运行时,这些安装结构处于反复交变的恶劣热环境中,安装结构由于金属材料的高热膨胀率将导致热变形极大,姿控仪器指向将发生很大变化,这样必将导致航天器定姿精度差,拍摄图像模糊,航天器功能大为降低,甚至丧失。
随着我国对航天器高精度、高分辨率成像的需求,特别是高轨航天器对姿控仪器安装结构在轨热变形提出了苛刻要求,目前传统的设计形式几乎不可能满足高轨航天器高精度姿态确定以及图像导航配准要求。
发明内容
本发明针对采用传统设计的姿控仪器安装结构不能满足高轨道航天器高精度姿态确定以及图像导航配准要求不足,提出了一种航天器用高精度微变形姿控仪器安装结构,其中仪器安装板的第一翼板与导热体的对接法兰通过柔性装置连接,使其兼顾具有导热性能良好和热变形隔离的两种特性,同时薄壁腔体结构和杆件组件采用碳纤维复合材料确保了该装置既具有较大的刚度,又质量很轻。
本发明是通过以下技术方案实现的。
一种航天器用高精度微变形姿控仪器安装结构,包括:薄壁壳体结构、封盖板、仪器安装板、导热体以及支撑杆组件;其中,所述仪器安装板整体呈工字型结构,包括第一翼板、第二翼板和腹板,所述第一翼板固定在薄壁壳体结构的外表面,用于安装姿控仪器,所述第二翼板设置于薄壁壳体结构的内部,并与导热体的平面对接法兰连接,所述第一翼板和第二翼板之间通过腹板连接,并通过腹板进行热交换;所述导热体的安装面连接到封盖板上;所述封盖板与薄壁壳体结构连接,形成安装结构头部;所述支撑杆组件的一端与安装结构头部连接,支撑杆组件的另一端安装在航天器光学成像有效载荷结构本体上。
优选地,所述仪器安装板采用为铝合金材质;其中,第一翼板采用四角凸台结构。
优选地,所述仪器安装板的第一翼板与薄壁壳体结构之间的连接点位置位于仪器安装板的第一翼板与姿控仪器之间的连接点位置的内圈。
优选地,所述仪器安装板的第二翼板采用平面结构形式,并通过柔性装置连接到导热体的一端上。
优选地,所述柔性装置采用碟簧,所述仪器安装板的第二翼板与导热体之间的连接点位于第二翼板的四个角点上。
优选地,所述导热体采用高导热低膨胀铝基碳化硅材料形成一体化机构,包括用于连接第二翼板的平面对接法兰、用于与封盖板连接的固定面以及用于安装航天器外部热管的安装面。
优选地,所述薄壁壳体结构采用碳纤维复合材料,并为一体化结构。
优选地,所述支撑杆组件包括接头、杆件以及隔热垫,其中,所述杆件共为五根,其中,每一根杆件的一端通过接头连接到安装结构头部,每一根杆件的另一端通过接头与隔热垫结合的形式连接到航天器光学成像有效载荷结构本体上。
优选地,所述杆件采用碳纤维复合材料,构成杆件的碳纤维复合材料的铺层角度设计为[±35°/0°/90°]的零膨胀形式;所述接头采用碳纤维复合材料。
优选地,所述隔热垫采用钛合金材料,并为孔隙结构。
本发明工作时,姿控仪器安装在仪器安装板的第一翼板上,当仪器开机时产生热量,这些热量通过仪器安装板的腹板传递到第二翼板,第二翼板与导热体的平面对接法兰配合,将热量传递到导热体上,导热体外部安装面与航天器外部热管连接,从而最终将热量传递到航天器散热面。由于整个装置合理的布局和结构、连接设计以及材料选择,使得该装置具有足够的热稳定性以及强度、刚度,且质量较轻。
与现有技术相对,本发明具有如下有效效果:航天器在轨运行时,该装置处于反复交变的恶劣热环境中,特别是导热体由于受航天器散热面低温环境的影响,热环境极为恶劣,极端低温达到-30℃,且周期性变化,而星敏安装面必须保证20℃±0.5℃,本发明采用如上发明内容,使得该装置具有足够的热稳定性以及强度、刚度,且质量较轻。航天器在轨工作时,该装置仪器安装面绝对热变形(即仪器安装面相对于支撑杆根部)小于15″,三个仪器安装面之间相对热变形小于5″,相对常规设计降低1个数量级,满足高轨航天器高精度姿态确定以及图像导航配准要求。该装置采用了诸多创新设计,对类似结构热变形控制有良好的借鉴意义,具体表现在如下几点:
1)采用“工”字型仪器安装板与导热体通过法兰对接的设计形式,连接点位于法兰边缘,这样使得两者之间连接刚度降低2个数量级,同时连接点使用柔性碟簧装置,可进一步降低连接刚度,减小了导热体对仪器安装板仪器安装面的直接拉扯效应;
2)仪器安装板安装仪器的翼板四角采用凸台设计,确保了高精度加工的工艺性,且提供了补偿加热片的安装空间;
3)仪器安装板与薄壁壳体结构连接点位置位于仪器安装板与仪器连接点位置内圈,这样可以释放仪器安装板四个凸台的热变形,保证仪器安装板四个凸台与姿控仪器壳体底板热变形的匹配性;
4)导热体使用高导热低膨胀材料,使其具有良好的导热、传热特性,同时自身热变形较小,降低对仪器安装板的影响;
5)支撑杆组件采取孔隙钛合金结构隔热措施,减小光学成像载荷对支撑杆的热量传递;
6)支撑杆采用“零”膨胀铺层设计,降低了支撑杆热变形;
7)采用碳纤维复合材料的薄壁腔体结构、封盖板及支撑杆组件,使得整个装置具有足够的刚度和热稳定性,同时结构轻量化。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明结构正面图;
图2是本发明结构背面局部剖开图;
图3是本发明仪器板与导热体的连接图;
图4是本发明支撑杆组件图,其中,(a)为整体示意图,(b)为拆分图;
图5是本发明仪器安装板;
图6是本发明导热体;
图中:1为薄壁壳体结构,2为仪器安装板,3为支撑杆组件,4为封盖板,5为导热体,6为碟簧,7为螺钉,8为接头,9为杆件,10为隔热垫,11为第一翼板,12为第二翼板,13为仪器安装板与仪器连接点,14为凸台,15为仪器安装板与薄壁壳体结构连接点,16为腹板,17为平面对接法兰,18为安装面。
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
请同时参阅图1至图6。
本实施例提供了一种航天器用高精度微变形姿控仪器安装结构,包括:薄壁壳体结构、封盖板、仪器安装板、导热体以及支撑杆组件。其中:所述仪器安装板整体呈工字型结构,包括第一翼板、第二翼板和腹板,所述第一翼板固定在薄壁壳体结构的外表面,用于安装姿控仪器,所述第二翼板设置于薄壁壳体结构的内部,并与导热体的平面对接法兰连接,所述仪器安装板的第一翼板和第二翼板之间通过腹板连接,并通过腹板进行热交换;所述导热体的安装面连接到封盖板上;所述封盖板与薄壁壳体结构连接,形成安装结构头部;所述支撑杆组件的一端与安装结构头部连接,支撑杆组件的另一端安装在航天器光学成像有效载荷结构本体上。
进一步地,所述的仪器安装板材质为铝合金材料,采用“工”字型一体化结构,其中第一翼板用于安装姿控仪器,第二翼板用作传热对接法兰,腹板用于两侧翼板之间热交换,用作传热对接法兰的第二翼板由于刚性较弱,能够吸收来自导热体热变形,从而减小对仪器安装板的仪器安装面的影响。
进一步地,所述的仪器安装板用于安装仪器的第一翼板四角采用凸台设计。提供姿控仪器安装四个安装脚,凸台外区域用于提供补偿加热片安装空间,同时采用凸台设计能提高仪器安装面高精度加工的工艺性。
进一步地,所述的仪器安装板与薄壁壳体结构连接点位于仪器安装板与仪器连接点内圈。这样可以释放仪器安装板四个凸台的热变形,保证仪器安装板四个凸台与姿控仪器壳体底板热变形的匹配性,防止由于变形不匹配致破坏姿控仪器内部光学元件。
进一步地,所述的仪器安装板第二翼板采用平面结构形式,柔性连接到导热体对接法兰上,柔性装置选取碟簧,连接点位于法兰边缘。柔性连接可以释放导热体与星敏安装板对接法兰面间热应力,减小导热体对仪器安装板的拉扯效应。
进一步地,所述的导热体采用高导热低膨胀铝基碳化硅材料,为一体化结构,其一端提供平面对接法兰,用于连接仪器安装板翼板,另一端固定在封盖板上,导热体同时提供航天器用热管安装面。采用高导热低膨胀材料使得该结构具有良好的导热、传热特性,又可以降低由于其恶劣的热环境而产生的自身热变形,减小对仪器安装板变形的影响。
进一步地,所述的薄壁壳体结构采用碳纤维复合材料,设计为一体化结构。采用一体化的碳纤维复合材料结构具有良好的热稳定性以及力学稳定性。
进一步地,所述的支撑杆组件包括接头、杆件、隔热垫,所述杆件为五根,每一根杆件的一端通过接头连接到安装结构头部,每一根杆件的另一端通过接头与隔热垫结合的形式连接到航天器光学成像有效载荷结构本体上。。
进一步地,所述的杆件采用碳纤维复合材料,铺层设计为[±35°/0°/90°]的“零”膨胀形式,接头也采用碳纤维复合材料,这样能够降低支撑杆热变形。
进一步地,所述的隔热垫采用钛合金材料,设计为镂空结构形式,减少与航天器光学成像有效载荷结构本体接触面积,从而降低与支撑杆组件之间热交换。
下面结合附图对本实施例作详细说明。
如图1、2所示,本实施例包括:薄壁壳体结构1、封盖板4、仪器安装板2、导热体5以及支撑杆组件3。连接关系为:仪器安装板2有三个,每一个仪器安装板均包括第一翼板、第二翼板和腹板,其中,第一翼板用于安装姿控仪器,固定在薄壁壳体结构1上,第二翼板连接到导热体5平面对接法兰上;导热体另一端连接到封盖板上,封盖板4再与薄壁壳体结构1连接,形成安装结构头部;支撑杆组件3一端与安装结构头部连接,另一端安装在航天器光学成像有效载荷结构本体上。
如图3所示,给出了仪器安装板2与导热体5的连接关系,仪器安装板2通过翼板12的形式连接到导热体5平面对接法兰上,在仪器安装板2与导热体5翼板四个角点采用螺钉7进行连接,同时垫圈选用碟簧6,弱化连接刚度。
所述的薄壁壳体结构1采用碳纤维复合材料,设计为一体化结构。
所述的仪器安装板2用于安装仪器的第一翼板11采用四角凸台14设计。
所述的仪器安装板2与薄壁壳体结构1连接点15位于仪器安装板与仪器连接点13内圈。
所述的导热体5采用高导热低膨胀铝基碳化硅材料,为一体化结构,其一端提供平面对接法兰,用于连接仪器安装板第二翼板12,另一端固定在封盖板4上,导热体5同时提供航天器上热管安装面。
如图4(a)、(b)所示,支撑杆组件3包括接头8、杆件9、隔热垫10,该组件一端连接到安装结构头部,另一端连接到航天器光学成像有效载荷结构上。
所述的杆件9采用碳纤维复合材料,铺层设计为[±35°/0°/90°]的“零”膨胀形式,接头8也采用碳纤维复合材料,整体模压而成。
所述的隔热垫10采用钛合金材料,设计为孔隙结构形式,减少与航天器光学成像有效载荷结构接触面积,从而降低与支撑杆组件之间热交换。
本发明工作时,姿控仪器安装在仪器安装板2的第一翼板11上,当仪器工作时产生热量,这些热量通过仪器安装板腹板16传递到第二翼板12,第二翼板12与导热体5平面对接法兰配合,将热量传递导热体上,导热体外部安装面与航天器外部热管连接,从而最终将热量传递到航天器散热面,本发明相对常规设计使得在轨热变形降低1个数量级,满足高轨航天器高精度姿态确定以及图像导航配准要求。
本实施例解决了姿控仪器安装结构苛刻的热变形技术难题,具有传热性能优与热变形隔离两种特性,从而满足了航天器高精度姿态确定以及图像导航配准要求,同时具有结构形式新颖,质量轻等优点。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种航天器用高精度微变形姿控仪器安装结构,其特征在于:包括:薄壁壳体结构、封盖板、仪器安装板、导热体以及支撑杆组件;其中,所述仪器安装板整体呈工字型结构,包括第一翼板、第二翼板和腹板,所述第一翼板固定在薄壁壳体结构的外表面,用于安装姿控仪器,所述第二翼板设置于薄壁壳体结构的内部,并与导热体的平面对接法兰连接,所述仪器安装板的第一翼板和第二翼板之间通过腹板连接,并通过腹板进行热交换;所述导热体的安装面连接到封盖板上;所述封盖板与薄壁壳体结构连接,形成安装结构头部;所述支撑杆组件的一端与安装结构头部连接,支撑杆组件的另一端安装在航天器光学成像有效载荷结构本体上。
2.根据权利要求1所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述仪器安装板采用为铝合金材质;其中,第一翼板采用四角凸台结构。
3.根据权利要求1或2所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述仪器安装板的第一翼板与薄壁壳体结构之间的连接点位置位于仪器安装板的第一翼板与姿控仪器之间的连接点位置的内圈。
4.根据权利要求1或2所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述仪器安装板的第二翼板采用平面结构形式,并通过柔性装置连接到导热体的一端上。
5.根据权利要求4所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述柔性装置采用碟簧,所述仪器安装板的第二翼板与导热体之间的连接点位于第二翼板的四个角点上。
6.根据权利要求1所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述导热体采用高导热低膨胀铝基碳化硅材料形成一体化结构。
7.根据权利要求1所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述薄壁壳体结构采用碳纤维复合材料,并为一体化结构。
8.根据权利要求1所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述支撑杆组件包括接头、杆件以及隔热垫,其中,所述杆件共为五根,其中,每一根杆件的一端通过接头连接到安装结构头部,每一根杆件的另一端通过接头与隔热垫结合的形式连接到航天器光学成像有效载荷结构本体上。
9.根据权利要求8所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述杆件采用碳纤维复合材料,构成杆件的碳纤维复合材料的铺层角度设计为[±35°/0°/90°]的零膨胀形式;所述接头采用碳纤维复合材料。
10.根据权利要求8所述的航天器用高精度微变形姿控仪器安装结构,其特征在于:所述隔热垫采用钛合金材料,并为孔隙结构。
CN201510079961.0A 2015-02-13 2015-02-13 航天器用高精度微变形姿控仪器安装结构 Active CN104743138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510079961.0A CN104743138B (zh) 2015-02-13 2015-02-13 航天器用高精度微变形姿控仪器安装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510079961.0A CN104743138B (zh) 2015-02-13 2015-02-13 航天器用高精度微变形姿控仪器安装结构

Publications (2)

Publication Number Publication Date
CN104743138A CN104743138A (zh) 2015-07-01
CN104743138B true CN104743138B (zh) 2017-01-25

Family

ID=53583553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510079961.0A Active CN104743138B (zh) 2015-02-13 2015-02-13 航天器用高精度微变形姿控仪器安装结构

Country Status (1)

Country Link
CN (1) CN104743138B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107792400B (zh) * 2017-09-19 2021-06-29 上海卫星工程研究所 具有变形隔离功能的卫星外贴热管安装结构
CN107972889B (zh) * 2017-11-20 2019-06-18 中国运载火箭技术研究院 一种高刚度高精度复合材料惯组安装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848767A (en) * 1996-08-05 1998-12-15 The Boeing Company One piece spacecraft frame
CN103303498A (zh) * 2013-06-18 2013-09-18 北京空间飞行器总体设计部 一种用于星敏感器的辐射小舱
CN103448920A (zh) * 2013-08-08 2013-12-18 上海卫星工程研究所 星载星敏感器的精密控温装置
CN103448925A (zh) * 2013-08-08 2013-12-18 上海卫星工程研究所 卫星用星敏感器高精度温控装置
CN104176272A (zh) * 2014-08-06 2014-12-03 上海卫星工程研究所 八杆连接式非接触卫星平台构型

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848767A (en) * 1996-08-05 1998-12-15 The Boeing Company One piece spacecraft frame
CN103303498A (zh) * 2013-06-18 2013-09-18 北京空间飞行器总体设计部 一种用于星敏感器的辐射小舱
CN103448920A (zh) * 2013-08-08 2013-12-18 上海卫星工程研究所 星载星敏感器的精密控温装置
CN103448925A (zh) * 2013-08-08 2013-12-18 上海卫星工程研究所 卫星用星敏感器高精度温控装置
CN104176272A (zh) * 2014-08-06 2014-12-03 上海卫星工程研究所 八杆连接式非接触卫星平台构型

Also Published As

Publication number Publication date
CN104743138A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
JP6214773B2 (ja) 大型ミラー用の最適な運動学的マウント
CN108910090B (zh) 一种星敏感器和热控装置一体化安装支架
CN104691790B (zh) 高精度微变形星敏感器安装支架
CN104743138B (zh) 航天器用高精度微变形姿控仪器安装结构
CN106114912A (zh) Geo轨道高精度星敏感器在轨高稳定指向保证方法
CN208270826U (zh) 一种准零膨胀空间光学遥感器支撑结构
CN102564419A (zh) 一种星敏感器探头组合体
CN106610517A (zh) 一种矩形离轴金属反射镜的一体化柔性支撑结构
CN110356591A (zh) 一种隔热垫
CN106405785B (zh) 一种热变形量可设计的大口径反射镜组件承力结构
US11867895B2 (en) Space optical system with integrated sensor mounts
CN106347715B (zh) 空间飞行器轨控发动机轻量化隔热屏支架
CN107792400B (zh) 具有变形隔离功能的卫星外贴热管安装结构
CN109387997A (zh) 一种高刚度轻质空间相机镜筒及其抗振稳定性测试方法
CN106052679B (zh) 一种星敏感器图像探测器组件
CN110161643B (zh) 一种基于运动学支撑的光学平台装置
CN108190052A (zh) 一种光学遥感器超紧凑、高稳定性的双层主体结构
GB2527709B (en) Structure for suspending a twin prop-fan engine from a structural element of an aircraft
CN109975830B (zh) Geo卫星光学遥感仪在轨热变形抑制系统
CN108601298B (zh) 一种航天器用星敏感器的一体化通用散热装置
CN106394939A (zh) 用于补偿光学装置精度偏移的真空密封装置及安装方法
CN106291866A (zh) 一种适合月基力学及温差的反射镜支撑机构
JP5475066B2 (ja) 断熱装置
CN107656367B (zh) 一种用于星载扫描机构的扫描镜组件
Xu et al. Design and analysis of a star simulator suitable for confined space

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant