CN104735654A - Private data fusing method capable of detecting data integrity - Google Patents
Private data fusing method capable of detecting data integrity Download PDFInfo
- Publication number
- CN104735654A CN104735654A CN201510104390.1A CN201510104390A CN104735654A CN 104735654 A CN104735654 A CN 104735654A CN 201510104390 A CN201510104390 A CN 201510104390A CN 104735654 A CN104735654 A CN 104735654A
- Authority
- CN
- China
- Prior art keywords
- data
- node
- nodes
- bunch
- fusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 17
- 230000004927 fusion Effects 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 15
- 238000007500 overflow downdraw method Methods 0.000 claims abstract description 11
- 230000005540 biological transmission Effects 0.000 claims abstract description 5
- MHABMANUFPZXEB-UHFFFAOYSA-N O-demethyl-aloesaponarin I Natural products O=C1C2=CC=CC(O)=C2C(=O)C2=C1C=C(O)C(C(O)=O)=C2C MHABMANUFPZXEB-UHFFFAOYSA-N 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 11
- 238000012795 verification Methods 0.000 abstract description 7
- 230000008859 change Effects 0.000 abstract description 6
- 241000854291 Dianthus carthusianorum Species 0.000 description 29
- 238000010586 diagram Methods 0.000 description 11
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 238000007499 fusion processing Methods 0.000 description 4
- PIGCSKVALLVWKU-UHFFFAOYSA-N 2-Aminoacridone Chemical compound C1=CC=C2C(=O)C3=CC(N)=CC=C3NC2=C1 PIGCSKVALLVWKU-UHFFFAOYSA-N 0.000 description 3
- 101000637792 Homo sapiens Solute carrier family 35 member G5 Proteins 0.000 description 3
- 102100032019 Solute carrier family 35 member G5 Human genes 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000001010 compromised effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/04—Key management, e.g. using generic bootstrapping architecture [GBA]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/10—Integrity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种可检测数据完整性的隐私数据融合方法。本发明请求保护一种可进行数据完整性和隐私保护的数据融合方法,涉及无线传感器网络数据融合中节点数据的隐私保护和完整性检测。在无线传感器网络节点与节点之间进行数据传输的过程中,容易遭受攻击者注入虚假或者篡改数据,导致数据跟节点收集的原始数据不一致。提出一种方法,在节点进行数据融合的过程中加入同态消息验证码,使节点的真实密钥与相应生成的消息验证码都随着存储数据的改变而改变,而节点自身的存储密钥不发生改变。即使攻击者同时捕获了节点的密钥和数据,但也无法获取节点真实密钥,实现数据的完整性和隐私保护。
A private data fusion method that can detect data integrity. The invention requests protection of a data fusion method capable of data integrity and privacy protection, and relates to privacy protection and integrity detection of node data in wireless sensor network data fusion. In the process of data transmission between wireless sensor network nodes and nodes, it is easy for attackers to inject false or tamper data, resulting in data inconsistency with the original data collected by nodes. A method is proposed to add a homomorphic message verification code in the process of node data fusion, so that the real key of the node and the corresponding generated message verification code change with the change of the stored data, while the storage key of the node itself No change occurs. Even if the attacker captures the node's key and data at the same time, it cannot obtain the real key of the node to achieve data integrity and privacy protection.
Description
技术领域technical field
本发明涉及到无线传感网络技术和无线通信技术领域,具体是无线传感器网络数据融合中节点数据的隐私保护和完整性检测。The invention relates to the fields of wireless sensor network technology and wireless communication technology, in particular to privacy protection and integrity detection of node data in wireless sensor network data fusion.
背景技术Background technique
无线传感器网络(Wireless Sensor Network,WSN)是物联网的重要组成部分,它通过网络中随机分布的大量节点收集信息,并返回给所在区域供查询用户进行分析和处理。由于WSN中每个节点的能量和资源受限,难以传输大量的传感数据,在信息收集的过程中采用各个节点单独传送数据到QS的方法是不合适的,即会增加通信开销,又会降低采集信息的效率。因此,为了能够有效地减少WSN中的能耗,一般采用有效的数据融合技术。数据融合是传感器网络中一种高效的数据查询处理方案,它将多份数据进行处理,组合出更有效、更符合用户需求的数据。在日常生活中数据融合技术被广泛应用,例如在森林防火的应用中,需要对多个温度传感器探测到的环境温度数据进行融合;在目标自动识别应用中,需要对图像监测传感器采集的图像数据进行融合处理。在传感器应用中,大多数时候只关心监测结果,并不需要收到大量原始数据,数据融合是实现此目的的重要手段。Wireless Sensor Network (WSN) is an important part of the Internet of Things. It collects information through a large number of randomly distributed nodes in the network, and returns it to the area for analysis and processing by query users. Due to the limited energy and resources of each node in WSN, it is difficult to transmit a large amount of sensing data. In the process of information collection, it is inappropriate to use each node to transmit data to QS separately, which will increase the communication overhead and reduce the Reduce the efficiency of collecting information. Therefore, in order to effectively reduce energy consumption in WSN, effective data fusion techniques are generally adopted. Data fusion is an efficient data query processing scheme in the sensor network. It processes multiple data to combine data that is more effective and more in line with user needs. Data fusion technology is widely used in daily life. For example, in the application of forest fire prevention, it is necessary to fuse the environmental temperature data detected by multiple temperature sensors; Perform fusion processing. In sensor applications, most of the time, we only care about the monitoring results and do not need to receive a large amount of raw data. Data fusion is an important means to achieve this goal.
传感器网络中收集到的信息作为物联网应用的基础,是物联网的重要资源之一,由于QS不可能直接获取所有节点收集到的数据,其安全性一直是该领域的一大挑战。安全性问题不仅局限于隐私保护方面,还包括信息的完整性。在TAG算法中,节点通过无线信道将数据沿着融合树向上传递并融合,最终QS得到需要的融合数据。然而,由于无线传输的特性,节点间传输的数据容易被捕获或偷听。信任父节点会获取子节点的数据,如果父节点或者链路被监听以至捕获,数据的隐私性会被破坏。因此,在数据融合中对数据进行隐私保护是有必要的。As the basis of IoT applications, the information collected in the sensor network is one of the important resources of the IoT. Since it is impossible for QS to directly obtain the data collected by all nodes, its security has always been a major challenge in this field. Security issues are not limited to privacy protection, but also include information integrity. In the TAG algorithm, the nodes transmit and fuse the data up the fusion tree through the wireless channel, and finally the QS obtains the required fusion data. However, due to the characteristics of wireless transmission, the data transmitted between nodes is easy to be captured or eavesdropped. It is trusted that the parent node will obtain the data of the child node. If the parent node or the link is monitored or captured, the privacy of the data will be destroyed. Therefore, it is necessary to protect the privacy of data in data fusion.
数据的完整性检测是安全性问题的另一重要方面。通过完整性检测可以准确地判断获取的数据跟节点收集的原始数据是否一致,以防止在传输过程中注入虚假或者被篡改的数据。经过数据融合后的信息是用来供用户分析与处理,或制定相应的解决方案的,数据的正确与否直接影响着用户的判断。如果信息的完整性被破坏,融合后的信息将与原始信息不一致,用户依赖此信息进行的分析将会有偏差。所以,在数据融合中对数据进行完整性检测是非常重要的。Data integrity detection is another important aspect of security issues. Integrity detection can accurately determine whether the obtained data is consistent with the original data collected by the node, so as to prevent false or tampered data from being injected during transmission. The information after data fusion is used for users to analyze and process, or formulate corresponding solutions. The correctness of the data directly affects the judgment of users. If the integrity of the information is compromised, the fused information will be inconsistent with the original information, and the analysis performed by users relying on this information will be biased. Therefore, it is very important to check the integrity of the data in data fusion.
目前,已提出了一些检测数据完整性的隐私数据融合方法,虽然聚合结果精确度高,但计算开销和通信开销都太大,且完整性检测机制还不完善,使用范围有局限性。At present, some privacy data fusion methods for detecting data integrity have been proposed. Although the aggregation results are highly accurate, the computational overhead and communication overhead are too large, and the integrity detection mechanism is not perfect, and the scope of application is limited.
发明内容Contents of the invention
针对现有技术中的不足,本发明的目的在于提供一种使用范围广、完整性检测全面且通信开销和计算开销都较小的方法,本发明的技术方案如下:一种可检测数据完整性的隐私数据融合方法,其包括以下步骤:Aiming at the deficiencies in the prior art, the purpose of the present invention is to provide a method with a wide range of use, comprehensive integrity detection, and relatively small communication overhead and calculation overhead. The technical solution of the present invention is as follows: a method that can detect data integrity The privacy data fusion method, it comprises the following steps:
101、在无线传感器网络中,所述无线传感器网络具有若干节点及查询服务器QS,查询服务器QS采用随机密钥分配机制为每个节点进行端到端的密钥分配,具体为分配给每个节点私有密钥k及公开到整个无线传感器网络中的素数C,同时QS存储所有节点的ID和私有密钥k;查询服务器QS发送包含有共享密钥m的hello信号包给每个节点;101. In a wireless sensor network, the wireless sensor network has several nodes and a query server QS, and the query server QS uses a random key distribution mechanism to distribute an end-to-end key for each node, specifically assigning a private key to each node The key k and the prime number C disclosed to the entire wireless sensor network, while QS stores the ID and private key k of all nodes; the query server QS sends a hello signal packet containing the shared key m to each node;
102、在无线传感器网络的某个区域S内,构建一个簇群,簇群包括一个簇头节点及若干簇内节,并为每个簇头节点分配一个数组J[N],用于存储同一个簇内所有节点的切片数,数组J[N]的索引号与所有节点的ID一一对应,如果某节点不属于该簇,则该节点ID相对应的数组索引号所对应的值始终为0;102. In a certain area S of the wireless sensor network, construct a cluster group, the cluster group includes a cluster head node and several cluster internal nodes, and assign an array J[N] to each cluster head node for storing the same The number of slices of all nodes in a cluster. The index number of the array J[N] corresponds to the IDs of all nodes. If a node does not belong to the cluster, the value corresponding to the array index number corresponding to the node ID is always 0;
103、对簇群内包括簇头节点及若干簇内节点的所有节点进行数据等量切分得到切片数据,即簇Ci有ni个成员,即簇的大小为ni,则这个簇的一个节点将发送ni-1份切片数据给这个簇内的其他节点,每个节点自身保留1份切片数据,其余的ni-1份切片数据发送给簇内其它节点,其中发送给其它节点的数据是经过加密后的数据,经过加密后的数据包括切片数据和消息验证码MAC值;103. Segment the data of all nodes in the cluster including the cluster head node and several nodes in the cluster to obtain slice data, that is, the cluster C i has n i members, that is, the size of the cluster is n i , then the cluster’s A node will send n i -1 pieces of slice data to other nodes in the cluster, each node retains 1 piece of slice data, and the remaining n i -1 pieces of slice data are sent to other nodes in the cluster, among them sent to other nodes The data is encrypted data, and the encrypted data includes slice data and message authentication code MAC value;
104、当簇Ci内的ni个成员节点均接受其他节点转发来的经过加密后的数据,并对经过加密后的数据进行解密后,将自身保留的私有数据和解密后的数据进行簇内数据同态性融合;然后节点将经过簇内数据同态性融合的数据经过加密再广播给簇头节点,然后簇头节点对簇内融合数据进行解密,并将自身融合数据与解密后的簇内融合数据进行同态性融合计算得到融合结果,完成簇内节点数据融合;104. When the n i member nodes in the cluster C i accept the encrypted data forwarded by other nodes, and after decrypting the encrypted data, cluster the private data retained by itself and the decrypted data Intra-data homomorphic fusion; then the node encrypts the data homomorphic fusion in the cluster and then broadcasts it to the cluster head node, and then the cluster head node decrypts the fusion data in the cluster, and combines the fusion data with the decrypted The fusion data in the cluster is calculated for homomorphic fusion to obtain the fusion result, and the data fusion of the nodes in the cluster is completed;
105、簇头节点把计算出的融合结果沿着数据融合算法TAG建立的路由树传送至查询服务器QS;簇头数据聚合完成后,此时查询服务器QS获得网络最终融合结果,并进行数据的完整性检测;105. The cluster head node transmits the calculated fusion result to the query server QS along the routing tree established by the data fusion algorithm TAG; after the cluster head data aggregation is completed, the query server QS obtains the final network fusion result and completes the data sex test;
106、如果数据的完整性有误,簇头节点不再按照融合树上传数据,而是直接将数据上传给查询服务器QS,单独进行数据完整性检测,直到找出所有数据完整性被破坏的簇头节点,将该被破坏的簇头节点反馈给用户。106. If the integrity of the data is wrong, the cluster head node no longer uploads the data according to the fusion tree, but directly uploads the data to the query server QS, and performs data integrity detection separately until all clusters whose data integrity is damaged are found The head node feeds back the destroyed cluster head node to the user.
进一步的,步骤103所述的消息验证码MAC值为,假设WSN中只建立一颗融合树,,对于节点i,其中a为节点的原始数据,设定三个密钥k、m、C,k为每个节点的私有密钥,只有节点自身和QS节点知道,N表示一颗融合树中有N个节点,就会产生k1~kN共N个密钥;m是一颗网络区域融合树的共享密钥,同一颗融合树中节点的共享密钥相同;C是一个素数被公开到网络中的每个节点。Further, the MAC value of the message authentication code described in step 103, assuming that only one fusion tree is established in the WSN, for node i, Where a is the original data of the node, set three keys k, m, C, k is the private key of each node, only the node itself and the QS node know, N means that there are N nodes in a fusion tree, A total of N keys from k 1 to k N will be generated; m is the shared key of a fusion tree in a network area, and the shared keys of nodes in the same fusion tree are the same; C is a prime number that is disclosed to every node in the network. nodes.
进一步的,当步骤103中簇Ci的ni为3时,即簇内节点分别是:X、Y和Z,并假设节点Z为这个簇的簇头,DATAX、DATAY、DATAZ分别代表三个节点的私有数据,设节点X的私有数据被切分为三片,表示为DATAX=seedX+seedXY+seedXZ,其中seedX为节点自身保留的私有数据,seedXY为节点X发送给Y的切片数据,seedXZ为节点X发送给Z的切片数据,经过加密,节点X最终发给节点Y的切片数据为IDX|seedXY|MAC(seedXY,kX),此时DATAX=DATAX-seedXY。Further, when the ni of cluster C i in step 103 is 3, that is, the nodes in the cluster are: X, Y and Z respectively, and assuming that node Z is the cluster head of this cluster, DATA X , DATA Y , and DATA Z are respectively Represents the private data of three nodes, assuming that the private data of node X is divided into three pieces, expressed as DATA X = seed X + seed XY + seed XZ , where seed X is the private data reserved by the node itself, and seed XY is the node The slice data sent by X to Y, seed XZ is the slice data sent by node X to Z, after encryption, the slice data finally sent by node X to node Y is ID X |seed XY |MAC(seed XY ,k X ), here When DATA X = DATA X -seed XY .
进一步的,当步骤104中的解密后包括以下步骤:当节点Y接收X发送来的切片数据,通过链路通信共享密钥解密后,进行如下操作:计算RECY=RECY+seedXY,MACY=MACY⊕MAC(seedXY,kX),RECY表示节点Y接收到的数据,MACY表示节点Y数据的消息验证码,表示融合,当簇内的所有节点发送及接受切片数据完成后,节点进行如下计算以节点X为例:MACX=MACX⊕MAC(DATAX,kA);DATAX=DATAX+RECX;AGGX=AGGX+DATAX;DMACX=DMACX⊕MACX。Further, the decryption in step 104 includes the following steps: when node Y receives the slice data sent by X, after decrypting the shared key through the link communication, the following operations are performed: calculate REC Y =REC Y +seed XY , MAC Y =MAC Y ⊕MAC(seed XY ,k X ), REC Y represents the data received by node Y, MAC Y represents the message verification code of node Y data, Indicates fusion. When all nodes in the cluster send and receive sliced data, the nodes perform the following calculations. Take node X as an example: MAC X =MAC X ⊕MAC(DATA X ,k A ); DATA X =DATA X +REC X ; AGG X = AGG X + DATA X ; DMAC X = DMAC X ⊕ MAC X .
本发明的优点及有益效果如下:Advantage of the present invention and beneficial effect are as follows:
由于现有的一些检测数据完整性的隐私数据融合方法,虽然聚合结果精确度高,但在检测的过程中通信开销和计算开销都比较大,且完整性检测机制还不完善,使用范围有局限性。为了克服上述现有技术中存在的缺陷同时满足数据的隐私保护,本发明提出了一种可进行数据完整性和隐私保护的数据融合方法,通过在节点进行数据混合的过程中加入同态消息验证码,使节点的真实密钥与相应生成的MAC都随着存储数据的改变而改变,而节点自身的存储密钥不发生改变。即使攻击者同时捕获了节点的密钥和数据,但也无法获取节点真实密钥,因此可以同时满足数据的完整性和隐私保护。如果QS检测出数据的完整性有错,可以回溯到相关节点进行完整性检测,并由QS计算出的真实密钥来判断遭到攻击的具体节点。因此使得完整性检测更加全面,使用范围更广。Due to some existing private data fusion methods for detecting data integrity, although the aggregation results are highly accurate, the communication overhead and calculation overhead are relatively large during the detection process, and the integrity detection mechanism is not perfect, and the scope of use is limited. sex. In order to overcome the defects in the above-mentioned prior art and satisfy data privacy protection at the same time, the present invention proposes a data fusion method capable of data integrity and privacy protection, by adding homomorphic message verification in the process of data mixing by nodes Code, so that both the real key of the node and the corresponding generated MAC will change with the change of the stored data, but the storage key of the node itself will not change. Even if the attacker captures the node's key and data at the same time, it cannot obtain the node's real key, so data integrity and privacy protection can be satisfied at the same time. If QS detects that the integrity of the data is wrong, it can go back to the relevant nodes for integrity detection, and use the real key calculated by QS to determine the specific node under attack. Therefore, the integrity detection is more comprehensive and the application range is wider.
附图说明Description of drawings
图1是本发明所涉及的数据融合模型图;Fig. 1 is a data fusion model diagram involved in the present invention;
图2是本发明的同态消息验证码的融合基本原理图;Fig. 2 is the fusion basic principle diagram of homomorphic message verification code of the present invention;
图3是本发明的网络模型图;Fig. 3 is a network model figure of the present invention;
图4是本发明的簇内节点切片数据融合流程示意图;Fig. 4 is a schematic diagram of the fusion process of node slice data in the cluster of the present invention;
图5是本发明的簇内节点数据融合流程示意图;Fig. 5 is a schematic diagram of the node data fusion process in the present invention;
图6是本发明的簇头节点数据融合流程示意图;Fig. 6 is a schematic diagram of the cluster head node data fusion flow chart of the present invention;
图7是本发明的流程图。Fig. 7 is a flowchart of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的一个实施例,而不是全部的实施例。The technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Apparently, the described embodiment is only one embodiment of the present invention, not all of them.
图1是本发明的无线传感器网络数据融合模型图。本文定义的数据融合模型是y(t)=f(d1(t),d2(t),…dN(t)),di(t)(i=1,…,N)表示节点i在t时刻采集到的数据。由于很多数据融合函数,如count,average等都可以简化为sum函数,因此本发明以sum函数为研究对象,记 FIG. 1 is a diagram of a wireless sensor network data fusion model of the present invention. The data fusion model defined in this paper is y(t)=f(d 1 (t),d 2 (t),…d N (t)), where d i (t)(i=1,…,N) represents the node i is the data collected at time t. Because many data fusion functions, such as count, average, etc., can be simplified into sum functions, the present invention takes the sum function as the research object, and records
图2是本发明的同态消息验证码的融合基本原理图。设节点的原始数据为a,设定三个密钥k、m、C。k为每个节点的私有密钥,只有节点自身和QS节点知道。假设一颗融合树中有N个节点,就会产生k1~kN共N个密钥;m是一颗网络区域融合树的共享密钥,同一颗融合树中节点的共享密钥相同;C是一个较大的素数被公开到网络中的每个节点。假设WSN中只建立一颗融合树,对于节点i,其消息验证码MAC值为 Fig. 2 is a schematic diagram of the fusion basic principle of the homomorphic message verification code of the present invention. Let the original data of the node be a, and set three keys k, m, and C. k is the private key of each node, only known by the node itself and the QS node. Assuming that there are N nodes in a fusion tree, a total of N keys from k 1 to k N will be generated; m is the shared key of a fusion tree in a network area, and the shared keys of nodes in the same fusion tree are the same; C is a large prime number that is disclosed to every node in the network. Assuming that only one fusion tree is established in WSN, for node i, its message authentication code MAC value is
依据同态性融合两个MAC值的过程如下:The process of fusing two MAC values according to homomorphism is as follows:
设节点采集的数据为a1,接收到的数据为a2,根据sum函数,得融合结果为A=a1+a2。将MAC(a1,k1)与MAC(a2,k2)进行如下计算得到AMAC(数据A的MAC值):AMAC=MAC(a1,k1)*MAC(a2,k2),将此式进一步计算得:
因此得到数据A的MAC值,此时的真实密钥为k1+k2而不是k1。Therefore, the MAC value of data A is obtained, and the real key at this time is k 1 +k 2 instead of k 1 .
图3是本发明的网络模型图。共分三层:QS、簇头节点层、簇内普通节点层。簇内所有节点都进行数据的采集。首先,将采集到的数据进行切片,簇内节点之间进行相互混合;其次,簇内节点将混合后的数据都发送给簇头节点;最后簇头节点把计算出的融合结果沿着TAG算法建立的路由树传送至QS。QS接收到传输数据后进行解密,依据同态消息验证码的相关特性,先计算出真实密钥,然后利用真实密钥和融合数据计算出相应的MAC,通过比较上传上来的MAC值与计算出来的MAC值是否相等,来判断数据的完整性。但数据完整性被破坏时,将进行回溯纠错。在此阶段,簇头节点不再按照融合树上传数据,而是直接将数据上传给QS。Fig. 3 is a network model diagram of the present invention. It is divided into three layers: QS, cluster head node layer, and ordinary node layer in the cluster. All nodes in the cluster collect data. First, the collected data is sliced, and the nodes in the cluster are mixed with each other; second, the nodes in the cluster send the mixed data to the cluster head node; finally, the cluster head node uses the calculated fusion results along the TAG algorithm The established routing tree is sent to QS. After receiving the transmitted data, QS decrypts it. According to the relevant characteristics of the homomorphic message verification code, it first calculates the real key, then uses the real key and the fusion data to calculate the corresponding MAC, and compares the uploaded MAC value with the calculated Whether the MAC values are equal to determine the integrity of the data. But when data integrity is compromised, retrospective error correction will be performed. At this stage, the cluster head node no longer uploads data according to the fusion tree, but directly uploads the data to QS.
图4是本发明的簇内节点切片数据混合流程示意图。此过程要经历两个阶段:第一个阶段是数据切片阶段,即对簇内节点数据进行切片。假设一个簇Ci有ni个成员,则这个簇内的一个节点将发送ni-1个数据片给这个簇内的其它节点,此时节点分片数JX=ni。为了方便讨论,图中使用包含三个节点的簇的简单方案,其簇内节点分别是:X、Y和Z,并假设节点Z为这个簇的簇头。DATAX、DATAY、DATAZ分别代表三个节点的私有数据。设节点X的私有数据被切分为三片,表示为DATAX=seedX+seedXY+seedXZ,其中seedX为节点自身保留的私有数据,seedXY为节点X发送给Y的切片数据。经过数据加密,节点X最终发送给节点Y的切片数据为IDX|seedXY|MAC(seedXY,kX),此时DATAX=DATAX-seedXY。第二个阶段是接受切片数据阶段。节点Y接收X发送来的切片数据,通过链路通信共享密钥解密后,进行如下操作:计算RECY=RECY+seedXY,MACY=MACY⊕MAC(seedXY,kX)。当簇内的所有节点发送及接受切片数据完成后,节点进行如下计算(以节点X为例):MACX=MACX⊕MAC(DATAX,kA);DATAX=DATAX+RECX;AGGX=AGGX+DATAX;DMACX=DMACX⊕MACX。FIG. 4 is a schematic diagram of a flow chart of mixing node slice data in a cluster according to the present invention. This process goes through two stages: the first stage is the data slicing stage, which is to slice the node data in the cluster. Assuming that a cluster C i has n i members, a node in this cluster will send n i -1 pieces of data to other nodes in this cluster, and the number of node fragments J X =n i at this time. For the convenience of discussion, the simple scheme of a cluster containing three nodes is used in the figure, and the nodes in the cluster are: X, Y, and Z, and node Z is assumed to be the cluster head of this cluster. DATA X , DATA Y , and DATA Z represent the private data of the three nodes respectively. Suppose the private data of node X is divided into three pieces, expressed as DATA X = seed X + seed XY + seed XZ , where seed X is the private data retained by the node itself, and seed XY is the sliced data sent by node X to Y. After data encryption, the slice data that node X finally sends to node Y is ID X |seed XY |MAC(seed XY , k X ), at this time DATA X =DATA X -seed XY . The second stage is the stage of accepting sliced data. Node Y receives the sliced data sent by X, decrypts it through the link communication shared key, and performs the following operations: calculate REC Y =REC Y +seed XY , MAC Y =MAC Y ⊕MAC(seed XY ,k X ). After all the nodes in the cluster send and receive sliced data, the nodes perform the following calculations (take node X as an example): MAC X = MAC X ⊕ MAC(DATA X , k A ); DATA X = DATA X +REC X ; AGG X =AGG X +DATA X ; DMAC X =DMAC X ⊕MAC X .
图5是本发明的簇内节点数据融合流程示意图。经过簇内节点切片数据混合过程后,X、Y、Z的数据分别为:JX|DMACX|AGGX、JY|DMACY|AGGY、JZ|DMACZ|AGGZ,节点X、Y将数据广播给簇头节点Z,此时JZ[N]={0,…,0,JX,JY,JZ,0,…,0},节点Z接收数据并进行如下计算:DMACZ=DMACZ⊕DMACX⊕DMACY;AGGZ=AGGZ+AGGX+AGGY。FIG. 5 is a schematic diagram of the process flow of node data fusion in the cluster according to the present invention. After the node slicing data mixing process in the cluster, the data of X, Y, and Z are: J X |DMAC X |AGG X , J Y |DMAC Y |AGG Y , J Z |DMAC Z |AGG Z , nodes X, Y broadcasts the data to the cluster head node Z, at this time J Z [N]={0,…,0,J X ,J Y ,J Z ,0,…,0}, node Z receives the data and performs the following calculation: DMAC Z = DMAC Z ⊕ DMAC X ⊕ DMAC Y ; AGG Z = AGG Z + AGG X + AGG Y .
图6是本发明的簇头节点数据融合流程示意图。簇头节点把计算出的结果沿着TAG算法建立的路由树传送至QS。簇头节点除了上传数据外,还要上传收集到的所有切片数Ji。如节点上传的数据为JX|JY|JZ|DMACZ|AGGZ。FIG. 6 is a schematic diagram of the cluster head node data fusion process in the present invention. The cluster head node transmits the calculated result to QS along the routing tree established by TAG algorithm. In addition to uploading data, the cluster head node also uploads all the collected slice numbers J i . For example, the data uploaded by the node is J X |J Y |J Z |DMAC Z |AGG Z .
图7是本发明的流程图,本发明提供了一种可检测数据完整性的隐私数据融合方法,包括如下步骤:Fig. 7 is a flowchart of the present invention, and the present invention provides a privacy data fusion method that can detect data integrity, including the following steps:
S1:在无线传感器网络中QS节点与每个节点进行端到端的密钥分配,本发明使用随机密钥分配机制,在此环节只分配给节点私有密钥,并将一个较大的素数被公开到网络中的每个节点;S1: In the wireless sensor network, the QS node and each node perform end-to-end key distribution. The present invention uses a random key distribution mechanism. In this link, only the private key of the node is allocated, and a larger prime number is made public to each node in the network;
S2:在一颗融合树发hello信号包时共享密钥m到树中的所有节点,每个节点可以选择自己作为簇头,当簇头节点产生后,为每个簇头节点分配一个数组J[N],用于存储同一个簇内所有节点的切片数,再进行数据回溯纠错阶段使用。S2: When a fusion tree sends a hello signal packet, the shared key m is sent to all nodes in the tree. Each node can choose itself as the cluster head. When the cluster head node is generated, an array J is allocated to each cluster head node. [N], used to store the number of slices of all nodes in the same cluster, and then used in the data backtracking and error correction stage.
S3::对簇内每一个节点进行数据切片,节点自身保留一份数据,其余发送给簇内其它节点;发送给其它节点的数据是经过加密后的数据,数据包括切片数据和MAC值。S3:: Perform data slicing for each node in the cluster, the node itself retains a copy of the data, and sends the rest to other nodes in the cluster; the data sent to other nodes is encrypted data, and the data includes sliced data and MAC values.
S4:簇内成员接受切片数据,对数据进行解密,并将相应类型的数据进行混合;节点将混合后的数据经过加密再广播给簇头节点,然后簇头节点对数据进行相关计算并融合。S4: Members in the cluster accept sliced data, decrypt the data, and mix corresponding types of data; nodes encrypt and broadcast the mixed data to the cluster head node, and then the cluster head node performs related calculations on the data and fuses them.
S5:簇头节点把计算出的融合结果沿着TAG算法建立的路由树传送至QS;S5: The cluster head node transmits the calculated fusion result to QS along the routing tree established by the TAG algorithm;
S6:簇头数据聚合完成后,此时QS获得网络最终融合结果,并进行数据的完整性检测;S6: After cluster head data aggregation is completed, QS obtains the final fusion result of the network at this time, and performs data integrity detection;
S7:如果数据的完整性有误,簇头节点不再按照融合树上传数据,而是直接将数据上传给QS,单独进行数据完整性检测,直到找出所有数据完整性被破坏的簇头节点。S7: If the integrity of the data is wrong, the cluster head node no longer uploads data according to the fusion tree, but directly uploads the data to QS, and performs data integrity detection separately until all cluster head nodes whose data integrity is damaged are found .
本发明中使用随机密钥分配机制方案进行数据的加密和解密。由于无线传输的特性,在无线传感器网络中节点间的通信链路容易被破坏,传输的数据容易被监听。为了保证节点间的通信链路安全,往往需要加密数据。本文使用随机密钥分配机制。首先生成一个拥有K个密钥的密钥池,然后给每个节点随机分配k个密钥,如果邻居节点与本节点共享同一个密钥,那么这两个节点就会建立一条安全的通信链路。任意两个节点共享同一个的密钥的概率为p=1-((K-k)!)2/(K!(K-2k)!)。如果第三个节点也获得此密钥,则通信链路的安全将遭到破坏,被破坏的概率为poverhead=k/K。在通常情况下,poverhead是一个很小的数。In the present invention, a random key distribution mechanism scheme is used to encrypt and decrypt data. Due to the characteristics of wireless transmission, the communication link between nodes in wireless sensor network is easy to be destroyed, and the transmitted data is easy to be monitored. In order to ensure the security of communication links between nodes, it is often necessary to encrypt data. This paper uses a random key distribution mechanism. First generate a key pool with K keys, and then randomly assign K keys to each node. If the neighbor node shares the same key with this node, then the two nodes will establish a secure communication chain road. The probability that any two nodes share the same key is p=1-((Kk)!) 2 /(K!(K-2k)!). If the third node also obtains this key, the security of the communication link will be destroyed, and the probability of being destroyed is p overhead =k/K. Under normal circumstances, p overhead is a very small number.
以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明权利要求所限定的范围。The above embodiments should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the contents of the present invention, skilled persons can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510104390.1A CN104735654A (en) | 2015-03-10 | 2015-03-10 | Private data fusing method capable of detecting data integrity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510104390.1A CN104735654A (en) | 2015-03-10 | 2015-03-10 | Private data fusing method capable of detecting data integrity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104735654A true CN104735654A (en) | 2015-06-24 |
Family
ID=53458997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510104390.1A Pending CN104735654A (en) | 2015-03-10 | 2015-03-10 | Private data fusing method capable of detecting data integrity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104735654A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105657642A (en) * | 2016-01-08 | 2016-06-08 | 重庆邮电大学 | Clustering non-encrypted type privacy-preserving data aggregation method |
CN106059774A (en) * | 2016-05-31 | 2016-10-26 | 东南大学 | Data slice mixture privacy protection method based on cluster |
CN107231628A (en) * | 2017-05-12 | 2017-10-03 | 南京邮电大学 | A kind of secure data fusion method suitable for many application scenarios |
CN108152577A (en) * | 2017-10-18 | 2018-06-12 | 广东科学技术职业学院 | A kind of point-to-point intelligent metering method |
CN108347420A (en) * | 2017-01-25 | 2018-07-31 | 华为技术有限公司 | A kind of method, relevant device and the system of netkey processing |
CN110135196A (en) * | 2019-05-10 | 2019-08-16 | 内蒙古工业大学 | A data fusion anti-tampering method based on input data compression representation association analysis |
CN111258295A (en) * | 2020-01-15 | 2020-06-09 | 重庆长安汽车股份有限公司 | System and method for verifying big data acquisition and uploading accuracy |
CN111865989A (en) * | 2020-07-23 | 2020-10-30 | 湘潭大学 | A data security protection method for smart meters |
CN112165693A (en) * | 2020-09-28 | 2021-01-01 | 贵州大学 | A Safe and Efficient Privacy-Preserving Data Fusion Method |
CN112584325A (en) * | 2021-01-13 | 2021-03-30 | 海南大学 | Underwater sensor safety data fusion method based on dynamic slicing technology |
CN112911599A (en) * | 2021-01-20 | 2021-06-04 | 沈阳化工大学 | Low-energy-consumption data fusion recessive method supporting integrity verification of wireless sensor network |
CN113423129A (en) * | 2021-05-25 | 2021-09-21 | 沈阳化工大学 | Internet of things IM-D-SMART method based on negative fraction |
CN114866352A (en) * | 2022-07-06 | 2022-08-05 | 山东省计算中心(国家超级计算济南中心) | Method and program product for protecting industrial internet data privacy and integrity |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638791A (en) * | 2012-04-11 | 2012-08-15 | 南京邮电大学 | Protection method for fusion integrity of sensor network data |
CN103200185A (en) * | 2013-03-14 | 2013-07-10 | 重庆邮电大学 | Data safe transmission method in body area network system |
CN103795529A (en) * | 2014-02-26 | 2014-05-14 | 东南大学 | Wireless sensor network data safety infusion method based secret key vectors |
-
2015
- 2015-03-10 CN CN201510104390.1A patent/CN104735654A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102638791A (en) * | 2012-04-11 | 2012-08-15 | 南京邮电大学 | Protection method for fusion integrity of sensor network data |
CN103200185A (en) * | 2013-03-14 | 2013-07-10 | 重庆邮电大学 | Data safe transmission method in body area network system |
CN103795529A (en) * | 2014-02-26 | 2014-05-14 | 东南大学 | Wireless sensor network data safety infusion method based secret key vectors |
Non-Patent Citations (3)
Title |
---|
ZHENGWEI GUO, XIAOJIAO DING: "Low energy-consuming cluster-based algorithm to enforce integrity and preserve privacy in data aggregation", 《2014 13TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE》 * |
冯艳芬、刘宴兵: "基于分簇的低能耗数据融合隐私保护协议", 《计算机应用研究》 * |
李玮、杨庚: "保护隐私性与完整性的低能耗数据融合算法", 《计算机应用》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105657642A (en) * | 2016-01-08 | 2016-06-08 | 重庆邮电大学 | Clustering non-encrypted type privacy-preserving data aggregation method |
CN105657642B (en) * | 2016-01-08 | 2019-01-22 | 重庆邮电大学 | A clustered non-encrypted privacy-preserving data fusion method |
CN106059774A (en) * | 2016-05-31 | 2016-10-26 | 东南大学 | Data slice mixture privacy protection method based on cluster |
CN106059774B (en) * | 2016-05-31 | 2019-01-29 | 东南大学 | Data slicer mixing method for secret protection based on sub-clustering |
US11917054B2 (en) | 2017-01-25 | 2024-02-27 | Huawei Technologies Co., Ltd. | Network key processing method and system and related device |
US11431479B2 (en) | 2017-01-25 | 2022-08-30 | Huawei Technologies Co., Ltd. | Network key processing method and system and related device |
CN108347420A (en) * | 2017-01-25 | 2018-07-31 | 华为技术有限公司 | A kind of method, relevant device and the system of netkey processing |
CN107231628B (en) * | 2017-05-12 | 2020-04-14 | 南京邮电大学 | A secure data fusion method suitable for multiple application scenarios |
CN107231628A (en) * | 2017-05-12 | 2017-10-03 | 南京邮电大学 | A kind of secure data fusion method suitable for many application scenarios |
CN108152577A (en) * | 2017-10-18 | 2018-06-12 | 广东科学技术职业学院 | A kind of point-to-point intelligent metering method |
CN110135196A (en) * | 2019-05-10 | 2019-08-16 | 内蒙古工业大学 | A data fusion anti-tampering method based on input data compression representation association analysis |
CN111258295A (en) * | 2020-01-15 | 2020-06-09 | 重庆长安汽车股份有限公司 | System and method for verifying big data acquisition and uploading accuracy |
CN111865989A (en) * | 2020-07-23 | 2020-10-30 | 湘潭大学 | A data security protection method for smart meters |
CN112165693A (en) * | 2020-09-28 | 2021-01-01 | 贵州大学 | A Safe and Efficient Privacy-Preserving Data Fusion Method |
CN112165693B (en) * | 2020-09-28 | 2022-07-01 | 贵州大学 | Safe and efficient privacy protection data fusion method |
CN112584325A (en) * | 2021-01-13 | 2021-03-30 | 海南大学 | Underwater sensor safety data fusion method based on dynamic slicing technology |
CN112911599A (en) * | 2021-01-20 | 2021-06-04 | 沈阳化工大学 | Low-energy-consumption data fusion recessive method supporting integrity verification of wireless sensor network |
CN113423129A (en) * | 2021-05-25 | 2021-09-21 | 沈阳化工大学 | Internet of things IM-D-SMART method based on negative fraction |
CN114866352A (en) * | 2022-07-06 | 2022-08-05 | 山东省计算中心(国家超级计算济南中心) | Method and program product for protecting industrial internet data privacy and integrity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104735654A (en) | Private data fusing method capable of detecting data integrity | |
Al Zaid et al. | Secure data aggregation in wireless sensor network: a survey | |
JP4902744B2 (en) | How to select an aggregator node in a network | |
CN106059774B (en) | Data slicer mixing method for secret protection based on sub-clustering | |
CN103795529A (en) | Wireless sensor network data safety infusion method based secret key vectors | |
Li et al. | Secure and energy-efficient data aggregation with malicious aggregator identification in wireless sensor networks | |
Ullah et al. | Secure critical data reclamation scheme for isolated clusters in IoT-enabled WSN | |
He et al. | A cluster-based protocol to enforce integrity and preserve privacy in data aggregation | |
Zhang et al. | Preserving privacy against external and internal threats in WSN data aggregation | |
CN106454815A (en) | Routing method for wireless sensor network based on LEACH protocol | |
Yu et al. | Constrained function-based message authentication for sensor networks | |
CN105682089A (en) | Data protection method and device based on fragments | |
Murugeshwari et al. | Effective data aggregation in WSN for enhanced security and data privacy | |
CN104717644A (en) | Two-tiered wireless sensor network range query method capable of verifying privacy protection | |
CN106714088B (en) | Continuous data aggregation method facing privacy protection in sensor network | |
CN103763702A (en) | Two-layer sensor network range query system with privacy protection function and query method | |
Shu et al. | Detection of malicious packet dropping in wireless ad hoc networks based on privacy-preserving public auditing | |
Alzaid et al. | Secure data aggregation in wireless sensor networks | |
Gaikwad et al. | Survey on secure data aggregation in wireless sensor networks | |
CN110166243B (en) | Aggregation data privacy protection method based on elliptic curve in crowd sensing | |
CN102638795B (en) | A Trust Evaluation Method for Attack-Resistant Distributed Sensor Networks | |
Bista et al. | A new sensitive data aggregation scheme for protecting integrity in wireless sensor networks | |
Kifayat et al. | Component‐based security system (COMSEC) with QoS for wireless sensor networks | |
CN106961660A (en) | The continuous data collection method that can verify that safely in sensor network | |
Alam et al. | An energy-efficient approach for provenance transmission in wireless sensor networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150624 |
|
RJ01 | Rejection of invention patent application after publication |