CN104732303A - Oil field output prediction method based on dynamic radial basis function neural network - Google Patents

Oil field output prediction method based on dynamic radial basis function neural network Download PDF

Info

Publication number
CN104732303A
CN104732303A CN201510165643.6A CN201510165643A CN104732303A CN 104732303 A CN104732303 A CN 104732303A CN 201510165643 A CN201510165643 A CN 201510165643A CN 104732303 A CN104732303 A CN 104732303A
Authority
CN
China
Prior art keywords
neural network
output
value
hidden layer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510165643.6A
Other languages
Chinese (zh)
Inventor
李克文
王义龙
苏玉亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201510165643.6A priority Critical patent/CN104732303A/en
Publication of CN104732303A publication Critical patent/CN104732303A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Development Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Game Theory and Decision Science (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Primary Health Care (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于动态径向基函数神经网络的油田产量预测方法,包括以下步骤:A.根据油田情况确定影响产量因素,获取历史数据并将其划分为训练数据集和检测数据集;B.利用离差标准化方法将数据集进行归一化处理;C.利用敏感度法动态调整RBF神经网络结构,建立临时RBF神经网络预测模型;D.利用状态转移概率矩阵对模型误差进行修正,得到稳定的RBF神经网络油田产量预测模型;E.利用步骤A得到检测数据集对模型进行验证,判断是否符合期望;F.利用步骤E所得到的符合期望的产量预测模型进行石油产量预测。该方法避免了RBF隐含层神经元过多或过小的问题,得到的模型有自适应调节的功能;对预测误差进行二次修正,使预测结果更加准确、合理。

A method for predicting oilfield production based on dynamic radial basis function neural network, comprising the following steps: A. Determine factors affecting production according to oilfield conditions, obtain historical data and divide it into training data sets and detection data sets; B. use isolated The difference normalization method is used to normalize the data set; C. Use the sensitivity method to dynamically adjust the RBF neural network structure, and establish a temporary RBF neural network prediction model; D. Use the state transition probability matrix to correct the model error to obtain a stable RBF Neural network oilfield production prediction model; E. use the detection data set obtained in step A to verify the model, and judge whether it meets expectations; F. use the expected production prediction model obtained in step E to predict oil production. This method avoids the problem of too many or too small neurons in the RBF hidden layer, and the obtained model has the function of self-adaptive adjustment; the prediction error is corrected twice to make the prediction result more accurate and reasonable.

Description

一种基于动态径向基函数神经网络的油田产量预测方法A Method of Oilfield Production Prediction Based on Dynamic Radial Basis Function Neural Network

技术领域technical field

本发明涉及一种基于动态径向基函数神经网络的油田产量预测方法,尤其涉及一种通过敏感度法来动态优化径向基函数神经网络的结构,结合状态转移概率方法修正残差,实现对油田产量预测方法。The present invention relates to a method for predicting oilfield production based on a dynamic radial basis function neural network, in particular to a method for dynamically optimizing the structure of a radial basis function neural network through a sensitivity method, combined with a state transition probability method to correct residuals, and realizing Oilfield Production Prediction Methods.

背景技术Background technique

石油作为国民经济的命脉,其产量的高低直接影响到国家的经济发展。对于油田生产来说,要保证一个好的经济效益,就必须要有一个高的稳定的油产量。确保油田高产稳产是油田开发生产的中心任务。因此,对油田油产量的准确预测一直是油田开发工作者的重要研究任务之一。As the lifeblood of the national economy, oil production directly affects the country's economic development. For oil field production, to ensure a good economic benefit, there must be a high and stable oil production. Ensuring high and stable oilfield production is the central task of oilfield development and production. Therefore, the accurate prediction of oil production in oilfields has always been one of the important research tasks of oilfield development workers.

影响油田油产量的因素大体分为地质因素和人为因素两大类。地质因素,从某种程度上说是不可改变的或者说改变是微小的。而人为因素的变化范围却要宽得多,从开采方式、井网、井距、注采强度、打调整井、老井的关停报废或转注转采等,到各项人工措施(包括压裂、酸化、补孔调层、改电泵、水力泵、大修等),每一项人为因素的改变都会影响到油田油产量的变化。因此,预测油田油产量的方法也都是基于地质因素、人为因素或者是二者的结合,主要分为两类方法:一类是从系统论的观点出发,从整体上研究预测油田的油产量;另一类是研究单项措施的增产增注效果。第一类方法主要包括统计公式法(经验法)、水驱特征曲线法、物质平衡方程法,和油气藏数值模拟法。但是统计公式法(经验法)、水驱特征曲线法和物质平衡方程法存在一定的缺陷:一是不能直接考虑储层的非均质性对油田油产量的影响;二是无法考虑各项人为因素的改变对油田产量的影响。从理论上说,油气藏数值模拟法能够全面直接地考虑储层的地质因素和各项人为因素的改变对油田产量的影响。但是,其对地质资料的依赖性过大,往往造成因对储层地质情况的认识存在误差,使得油气藏数值模拟的预测结果无使用价值。虽然,通过对油田开发历史的精细拟合可修正对储层地质的认识,但其拟合结果存在多解性.对油田开发历史的精确拟合往往要求研究人员同时具有扎实的地质知识、油藏知识、采油工艺知识、数学计算知识和计算机知识,而且工作量大。第二类方法是孤立地研究各项人为因素对油田油产量的影响,这违背油田开发是一个大系统的事实。油田的开发是一个复杂的非线性动力系统.油田油产量的预测是一个多因素非线性预测问题。因此,为了保证油田产量预测的科学性与准确性,迫切的需要一种新的油田产量预测方法,从而使产量预测结果更加准确、客观、合理。Factors affecting oil production in oil fields can be roughly divided into two categories: geological factors and human factors. Geological factors, to some extent, are immutable or the changes are small. However, the range of human factors is much wider, ranging from mining methods, well patterns, well spacing, injection-production intensity, drilling adjustment wells, shutting down and scrapping old wells or switching injection and production, etc., to various artificial measures (including compression Cracking, acidification, hole repairing and layer adjustment, electric pump modification, hydraulic pump, overhaul, etc.), each change of human factors will affect the change of oil production in the oil field. Therefore, the methods for predicting oil production in oilfields are also based on geological factors, human factors, or a combination of the two. They are mainly divided into two types: one is to study and predict the oil production of oilfields as a whole from the perspective of system theory. The other is to study the effect of increasing production and injection of individual measures. The first type of methods mainly include statistical formula method (empirical method), water drive characteristic curve method, material balance equation method, and oil and gas reservoir numerical simulation method. However, the statistical formula method (empirical method), the water drive characteristic curve method and the material balance equation method have certain defects: first, the influence of reservoir heterogeneity on oil production cannot be directly considered; second, it is impossible to consider various human factors. The impact of changes in factors on oilfield production. Theoretically speaking, the numerical simulation method of oil and gas reservoirs can comprehensively and directly consider the influence of geological factors of reservoirs and changes of various human factors on oilfield production. However, its dependence on geological data is too large, often resulting in errors in the understanding of reservoir geological conditions, making the prediction results of oil and gas reservoir numerical simulation useless. Although the understanding of reservoir geology can be corrected by finely fitting the oilfield development history, the fitting results are ambiguous. Accurate fitting of the oilfield development history often requires researchers to have solid geological knowledge, oil Knowledge of reservoir, oil recovery technology, mathematical calculation and computer knowledge, and the workload is heavy. The second type of method is to study the influence of various human factors on oil production in isolation, which goes against the fact that oil field development is a large system. Oilfield development is a complex nonlinear dynamical system. Oilfield oil production forecast is a multi-factor nonlinear forecasting problem. Therefore, in order to ensure the scientificity and accuracy of oilfield production forecasting, a new oilfield production forecasting method is urgently needed, so that the production forecasting results are more accurate, objective and reasonable.

发明内容Contents of the invention

本发明从人工智能的角度出发,利用敏感度法对径向基函数(RBF)神经网络结构优化调整,利用油田产量影响因素数据样本对RBF神经网络进行训练,利用状态转移概率方法进行修正,实现产量预测结果更加准确、客观、合理。From the perspective of artificial intelligence, the present invention uses the sensitivity method to optimize and adjust the radial basis function (RBF) neural network structure, uses the data samples of oil field production influencing factors to train the RBF neural network, and uses the state transition probability method to correct the neural network, so as to realize The output prediction result is more accurate, objective and reasonable.

为达到上述目的,提供一种基于动态径向基函数神经网络的油田产量预测方法,主要包括以下步骤:In order to achieve the above purpose, a method for predicting oilfield production based on dynamic radial basis function neural network is provided, which mainly includes the following steps:

A.获取数据A. Get data

根据油田实际情况,确定影响油田产量因素指标,获取历史数据集并将其划分为训练数据集和检测数据集;According to the actual situation of the oilfield, determine the indicators of factors affecting the oilfield production, obtain the historical data set and divide it into a training data set and a detection data set;

B.归一化处理B. Normalization processing

对历史数据集进行归一化处理,归一化方法可以采用离差标准化方法,使不同量纲的数据转化为统一的处理格式,转换函数如下:To normalize the historical data set, the normalization method can use the deviation standardization method to convert the data of different dimensions into a unified processing format. The conversion function is as follows:

x * = x - x min x max - x min   (公式1) x * = x - x min x max - x min (Formula 1)

其中xmax为样本数据的最大值,xmin为样本数据的最小值;Where x max is the maximum value of the sample data, and x min is the minimum value of the sample data;

C.预测模型的建立及训练C. Establishment and training of prediction model

RBF神经网络中,设K是隐含层神经元数,x(x1,…,xm)是输入向量,αk是第k个隐含层神经元与输出层神经元的联结权值,φk是第k个隐含层神经元的输出,因此RBF神经网络的输出可描述为:In the RBF neural network, let K be the number of neurons in the hidden layer, x(x 1 ,…,x m ) be the input vector, α k is the connection weight between the kth hidden layer neuron and the output layer neuron, φ k is the output of the kth hidden layer neuron, so the output of the RBF neural network can be described as:

y = Σ k = 1 K α k φ k ( x )   (公式2) the y = Σ k = 1 K α k φ k ( x ) (Formula 2)

(1)给定一个隐含层神经元为任意自然数的RBF神经网络进行训练,设定训练的次数。(1) A hidden layer neuron is given as an RBF neural network with any natural number for training, and the training times are set.

(2)计算每一个隐含层神经元输出值。由公式(1)可得到第k个隐含层神经元的输出为:(2) Calculate the output value of each hidden layer neuron. From the formula (1), the output of the kth hidden layer neuron can be obtained as:

φ k ( x ) = e - | | x - μ k | | σ k 2   (公式3) φ k ( x ) = e - | | x - μ k | | σ k 2 (Formula 3)

(3)对每一个神经元输出进行敏感度分析,计算其对输出的贡献值。隐含层神经元的输出加权值作为敏感度法的输入量,利用下式计算隐含层神经元输出对神经网络对输出所做的贡献:(3) Conduct sensitivity analysis on the output of each neuron, and calculate its contribution to the output. The weighted value of the output of the neurons in the hidden layer is used as the input of the sensitivity method, and the contribution of the output of the neurons in the hidden layer to the output of the neural network is calculated by using the following formula:

S h = var h [ E ( y | Z h = α h φ h ( x ) ) ] var ( y )   (公式4) S h = var h [ E. ( the y | Z h = α h φ h ( x ) ) ] var ( the y ) (Formula 4)

其中,Z=[Z1,Z2,...,Zk]是敏感度法的输入向量,y是神经网络输出量,y与Z的关系可表示为y=f(Z1,Z2,...,Zk),varh[E(y|Zh=αhφh(x))]是Zh等于αhφh(x)时对y方差的影响,var(y)是y的方差,Sh是αhφh对输出y的一阶灵敏度表示。对Sh进行归一化处理:Among them, Z=[Z 1 ,Z 2 ,...,Z k ] is the input vector of the sensitivity method, y is the output of the neural network, and the relationship between y and Z can be expressed as y=f(Z 1 ,Z 2 ,...,Z k ), var h [E(y|Z h =α h φ h (x))] is the influence of Z h on the variance of y when Z h is equal to α h φ h (x), var(y) is the variance of y, and Sh is the first-order sensitivity representation of α h φ h to the output y. Normalize Sh :

ST h = S h Σ i = 1 K S i   (公式5) ST h = S h Σ i = 1 K S i (Formula 5)

(4)选取ε值并根据隐含层神经元输出贡献值调整神经网络结构。ε的值一般小于目标误差值,对于贡献值最大且大于ε1的隐含层神经元进行分裂,对于贡献值小于ε2的隐含层神经元进行删除,这里ε12,最终实现调整神经网络结构。定义误差目标函数为(N为训练样本数):(4) Select the value of ε and adjust the neural network structure according to the output contribution value of hidden layer neurons. The value of ε is generally smaller than the target error value, split the hidden layer neurons with the largest contribution value and greater than ε 1 , and delete the hidden layer neurons with a contribution value less than ε 2 , where ε 12 , and finally achieve Adjust the neural network structure. Define the error objective function as (N is the number of training samples):

E = 1 2 N Σ j = 1 N e j 2   (公式6) E. = 1 2 N Σ j = 1 N e j 2 (Formula 6)

(5)根据目标误差函数,利用梯度下降算法来调整神经网络的隐含层神经元的输出权值、中心值和函数宽度:(5) According to the target error function, the gradient descent algorithm is used to adjust the output weight, central value and function width of the hidden layer neurons of the neural network:

a i ( t + 1 ) = a i ( t ) - η 1 ST i ∂ E ∂ a i ( t )   (公式7) a i ( t + 1 ) = a i ( t ) - η 1 ST i ∂ E. ∂ a i ( t ) (Formula 7)

μ i ( t + 1 ) = μ i ( t ) - η 2 ST i ∂ E ∂ μ i ( t )   (公式8) μ i ( t + 1 ) = μ i ( t ) - η 2 ST i ∂ E. ∂ μ i ( t ) (Formula 8)

σ i ( t + 1 ) = σ i ( t ) - η 3 ST i ∂ E ∂ σ i ( t )   (公式9) σ i ( t + 1 ) = σ i ( t ) - η 3 ST i ∂ E. ∂ σ i ( t ) (Formula 9)

其中,η123为参数学习步长。Among them, η 1 , η 2 , η 3 are parameter learning step sizes.

(6)达到期望误差或计算步骤时停止计算。(6) Stop calculation when the desired error or calculation step is reached.

D.残差修正D. Residual Correction

在建立的神经网络模型的基础上,对训练样本的预测值与实际产量值对比,计算出误差序列。将误差序列作为一个马尔可夫过程,进行状态划分,以频率代替概率,计算误差状态的转移概率矩阵。On the basis of the established neural network model, the error sequence is calculated by comparing the predicted value of the training sample with the actual output value. The error sequence is regarded as a Markov process, and the state is divided, and the probability is replaced by the frequency, and the transition probability matrix of the error state is calculated.

E.模型验证E. Model Validation

运用检测数据集对模型进行检验,如果输出的预测值与实际对比值的误差达到了预期的期望,神经网络模型训练成功,可以利用模型对石油产量进行预测;反之,模型训练不成熟,需要重新进行训练。Use the detection data set to test the model. If the error between the output prediction value and the actual comparison value reaches the expected expectation, the neural network model is trained successfully, and the model can be used to predict oil production; otherwise, the model training is immature and needs to be restarted. to train.

F.石油产量预测F. Oil Production Forecast

获取真实的预测基础数据,输入训练好的优化后的RBF神经网络中,RBF神经网络的输出即为油田产量的预测值。Obtain real forecast basic data and input it into the trained and optimized RBF neural network. The output of the RBF neural network is the predicted value of oilfield production.

本发明的有益效果是,较之一般神经网络预测模型判断依据更客观,通过对神经网络结构的调整,最终获得的神经网络结构比较紧凑,具有良好的自适应能力,使评价结果更加科学、准确、公正、合理。The beneficial effect of the present invention is that, compared with the general neural network prediction model, the judgment basis is more objective, and through the adjustment of the neural network structure, the finally obtained neural network structure is relatively compact, has good self-adaptive ability, and makes the evaluation result more scientific and accurate , fair and reasonable.

附图说明Description of drawings

图1是基于动态径向基函数神经网络的油田产量预测方法流程图。Fig. 1 is a flow chart of oil field production prediction method based on dynamic radial basis function neural network.

具体实施方式Detailed ways

下面结合附图对本发明作进一步详细的描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.

第一步:获取数据Step 1: Get Data

根据油田实际情况,确定影响油田产量因素指标,获取历史数据集并将其划分为训练数据集和检测数据集;According to the actual situation of the oilfield, determine the indicators of factors affecting the oilfield production, obtain the historical data set and divide it into a training data set and a detection data set;

第二步:归一化处理The second step: normalization processing

对历史数据集进行归一化处理,归一化方法可以采用离差标准化方法,使不同量纲的数据转化为统一的处理格式。转换函数如下:The historical data set is normalized, and the normalization method can use the deviation standardization method to transform the data of different dimensions into a unified processing format. The conversion function is as follows:

xx ** == xx -- xx minmin xx maxmax -- xx minmin

其中xmax为样本数据的最大值,xmin为样本数据的最小值;Where x max is the maximum value of the sample data, and x min is the minimum value of the sample data;

第三步:预测模型的建立及训练The third step: the establishment and training of the prediction model

RBF神经网络中,设K是隐含层神经元数,x(x1,…,xm)是输入向量,αk是第k个隐含层神经元与输出层神经元的联结权值,φk是第k个隐含层神经元的输出,因此RBF神经网络的输出可描述为:In the RBF neural network, let K be the number of neurons in the hidden layer, x(x 1 ,…,x m ) be the input vector, α k is the connection weight between the kth hidden layer neuron and the output layer neuron, φ k is the output of the kth hidden layer neuron, so the output of the RBF neural network can be described as:

ythe y == ΣΣ kk == 11 KK αα kk φφ kk (( xx ))

(1)给定一个隐含层神经元为任意自然数的RBF神经网络进行训练。(1) A hidden layer neuron is given as an RBF neural network with any natural number for training.

(2)计算每一个隐含层神经元输出值。由公式(1)可得到第k个隐含层神经元的输出为:(2) Calculate the output value of each hidden layer neuron. From the formula (1), the output of the kth hidden layer neuron can be obtained as:

φφ kk (( xx )) == ee -- || || xx -- μμ kk || || σσ kk 22

(3)对每一个神经元输出进行敏感度分析,计算其对输出的贡献值。隐含层神经元的输出加权值作为敏感度法的输入量,利用下式计算隐含层神经元输出对神经网络对输出所做的贡献:(3) Conduct sensitivity analysis on the output of each neuron, and calculate its contribution to the output. The weighted value of the output of the neurons in the hidden layer is used as the input of the sensitivity method, and the contribution of the output of the neurons in the hidden layer to the output of the neural network is calculated by using the following formula:

SS hh == varvar hh [[ EE. (( ythe y || ZZ hh == αα hh φφ hh (( xx )) )) ]] varvar (( ythe y ))

其中,Z=[Z1,Z2,...,Zk]是敏感度法的输入向量,y是神经网络输出量,y与Z的关系可表示为y=f(Z1,Z2,...,Zk),varh[E(y|Zh=αhφh(x))]是Zh等于αhφh(x)时对y方差的影响,var(y)是y的方差,Sh是αhφh对输出y的一阶灵敏度表示。对输入变量αhφh进行傅里叶变换(其中αhφh的范围是[ah,bh]):Among them, Z=[Z 1 ,Z 2 ,...,Z k ] is the input vector of the sensitivity method, y is the output of the neural network, and the relationship between y and Z can be expressed as y=f(Z 1 ,Z 2 ,...,Z k ), var h [E(y|Z h =α h φ h (x))] is the influence of Z h on the variance of y when Z h is equal to α h φ h (x), var(y) is the variance of y, and Sh is the first-order sensitivity representation of α h φ h to the output y. Perform Fourier transform on the input variable α h φ h (where the range of α h φ h is [a h ,b h ]):

ZZ hh == aa hh ++ bb hh 22 ++ bb hh -- aa hh ππ arcsinarcsin (( sinsin (( ww hh sthe s )) ))

其中,wh是选择的合适的频率,取基频上的傅里叶振幅计算灵敏度,公式4最终变形为变换:Among them, w h is the appropriate frequency selected, and the Fourier amplitude on the fundamental frequency is used to calculate the sensitivity. Formula 4 is finally transformed into a transformation:

SS hh == (( AA kwkw hh 22 ++ BB kwkw hh 22 )) ΣΣ jj == 11 ++ ∞∞ (( AA jj 22 ++ BB jj 22 ))

其中,-π<s<π, A j = 1 2 &pi; &Integral; - &infin; &infin; f ( s ) &times; cos ( w j s ) ds , 对Sh归一化处理,记STh为隐含层神经元输出对神经网络对输出所做的贡献值:Among them, -π<s<π, A j = 1 2 &pi; &Integral; - &infin; &infin; f ( the s ) &times; cos ( w j the s ) ds , To normalize S h , record ST h as the contribution value made by the hidden layer neuron output to the output of the neural network:

STST hh == SS hh &Sigma;&Sigma; ii == 11 KK SS ii

定义误差目标函数为(N为训练样本数):Define the error objective function as (N is the number of training samples):

EE. == 11 22 NN &Sigma;&Sigma; jj == 11 NN ee jj 22

(4)选取ε值并根据隐含层神经元输出贡献值调整神经网络结构。ε的值一般小于目标误差值,对于贡献值最大且大于ε1的隐含层神经元进行分裂,调整神经网络结构;假设分裂前隐含层神经元数为K,运行时刻为t,贡献值大于ε1的隐含层神经元为j,则新增加的神经元K+1的初始参数和神经元j的参数为:(4) Select the value of ε and adjust the neural network structure according to the output contribution value of hidden layer neurons. The value of ε is generally smaller than the target error value, split the hidden layer neurons with the largest contribution value and greater than ε 1 , and adjust the neural network structure; assuming that the number of hidden layer neurons before splitting is K, the running time is t, and the contribution value The hidden layer neuron greater than ε 1 is j, then the initial parameters of the newly added neuron K+1 and the parameters of neuron j are:

aK+1(t)=λ×aj(t)a K+1 (t)=λ×a j (t)

μK+1(t)=μj(t)μ K+1 (t) = μ j (t)

σK+1(t)=σj(t)σ K+1 (t) = σ j (t)

aa jj ,, (( tt )) == (( 11 -- &lambda;&lambda; )) &times;&times; aa jj (( tt ))

&mu;&mu; jj ,, (( tt )) == &mu;&mu; jj (( tt ))

&sigma;&sigma; jj ,, (( tt )) == &sigma;&sigma; jj (( tt ))

其中,λ为(0,0.3)中的任意常数(根据油田的实际需要设定),结构不变神经元的参数按照公式(7)~(9)调整。Among them, λ is an arbitrary constant in (0, 0.3) (set according to the actual needs of the oil field), and the parameters of the structure-invariant neurons are adjusted according to formulas (7) to (9).

(5)对于贡献值小于ε2的隐含层神经元进行删除,调整神经网络结构;假设运行时刻为t,贡献值小于ε2的隐含层神经元为i,与神经元i欧氏距离最近的神经元为ii,删除神经元i,神经元ii的参数为:(5) Delete hidden layer neurons whose contribution value is less than ε 2 , and adjust the neural network structure; assuming that the running time is t, the hidden layer neuron whose contribution value is less than ε 2 is i, and the Euclidean distance from neuron i The nearest neuron is ii, delete neuron i, and the parameters of neuron ii are:

aa iii ,, (( tt )) == aa iii (( tt )) == aa ii (( tt )) &phi;&phi; ii (( xx )) &phi;&phi; iii (( xx ))

&mu;&mu; iii ,, (( tt )) == &mu;&mu; iii (( tt ))

&sigma;&sigma; iii ,, (( tt )) == &sigma;&sigma; iii (( tt ))

其他神经元的参数按照公式(7)~(9)调整。The parameters of other neurons are adjusted according to formulas (7)-(9).

(6)达到期望误差或计算步骤时停止计算,模型训练结束。(6) When the expected error or calculation step is reached, the calculation is stopped, and the model training ends.

第四步:残差修正Step 4: Residual Correction

在建立的神经网络模型的基础上,对训练样本的预测值与实际产量值对比,计算出误差序列。将误差序列作为一个马尔可夫过程,进行状态划分,以频率代替概率,计算误差状态的转移概率矩阵。On the basis of the established neural network model, the error sequence is calculated by comparing the predicted value of the training sample with the actual output value. The error sequence is regarded as a Markov process, and the state is divided, and the probability is replaced by the frequency, and the transition probability matrix of the error state is calculated.

假设训练数据集状态所处状态数有k个,即状态有S1,S2,…,Sk。假设现在处于Si状态,下一步转移到Sj状态的概率记为Pij,则状态总的转移情况可用以下的矩阵表示:Assume that there are k states in the state of the training data set, that is, there are states S 1 , S 2 ,...,S k . Assuming that we are in state S i now, and the probability of transferring to state S j in the next step is recorded as P ij , then the total state transition can be expressed by the following matrix:

其中, &Sigma; j = 1 k p ij = p i 1 + p i 2 + . . . + p ik = 1 , i = 1,2 , . . . , k . in, &Sigma; j = 1 k p ij = p i 1 + p i 2 + . . . + p ik = 1 , i = 1,2 , . . . , k .

转移概率矩阵之间的关系为:P(k)=P(k-1)×P,其中P为一步转移概率矩阵,P(k)为k步转移概率矩阵。The relationship between transition probability matrices is: P (k) = P (k-1) × P, where P is a one-step transition probability matrix, and P (k) is a k-step transition probability matrix.

转移状态之间的关系为:S(k)=S(0)×P(k),其中S(k)为k步转移后的状态向量,S(0)为初始状态向量。The relationship between transition states is: S (k) = S (0) × P (k) , where S (k) is the state vector after k steps of transition, and S (0) is the initial state vector.

第五步:模型验证Step 5: Model Validation

运用检测数据集对模型进行检验,如果输出的预测值与实际对比值的误差达到了预期的期望,神经网络模型训练成功,可以利用模型对石油产量进行预测;反之,模型训练不成熟,需要重新返回第三步进行训练。Use the detection data set to test the model. If the error between the output prediction value and the actual comparison value reaches the expected expectation, the neural network model is trained successfully, and the model can be used to predict oil production; otherwise, the model training is immature and needs to be restarted. Return to the third step for training.

第六步:石油产量预测Step 6: Oil Production Forecast

获取真实的预测基础数据,输入训练好的优化后的RBF神经网络中,RBF神经网络的输出即为油田产量的预测值。Obtain real forecast basic data and input it into the trained and optimized RBF neural network. The output of the RBF neural network is the predicted value of oilfield production.

当然,本发明上述实施方案仅是对本发明的说明而不能限制本发明,本技术领域的普通技术人员在本发明的实质范围内所做的变化、改型、添加或替换,也应属于本发明的保护范围。Of course, the above-mentioned embodiments of the present invention are only descriptions of the present invention and cannot limit the present invention. Changes, modifications, additions or replacements made by those skilled in the art within the scope of the present invention shall also belong to the present invention scope of protection.

Claims (1)

1.一种基于动态径向基函数神经网络的油田产量预测方法其特征在于,主要包括以下步骤:1. a kind of oil field production prediction method based on dynamic radial basis function neural network is characterized in that, mainly comprises the following steps: A.获取数据A. Get data 根据油田实际情况,确定影响油田产量因素指标,获取历史数据集并将其划分为训练数据集和检测数据集;According to the actual situation of the oilfield, determine the indicators of factors affecting the oilfield production, obtain the historical data set and divide it into a training data set and a detection data set; B.归一化处理B. Normalization processing 对历史数据集进行归一化处理,归一化方法可以采用离差标准化方法,使不同量纲的数据转化为统一的处理格式,转换函数如下:To normalize the historical data set, the normalization method can use the deviation standardization method to convert the data of different dimensions into a unified processing format. The conversion function is as follows: x * = x - x min x max - x min    (公式1) x * = x - x min x max - x min (Formula 1) 其中xmax为样本数据的最大值,xmin为样本数据的最小值;Where x max is the maximum value of the sample data, and x min is the minimum value of the sample data; C.预测模型的建立及训练C. Establishment and training of prediction model RBF神经网络中,设K是隐含层神经元数,x(x1,…,xm)是输入向量,αk是第k个隐含层神经元与输出层神经元的联结权值,φk是第k个隐含层神经元的输出,因此RBF神经网络的输出可描述为:In the RBF neural network, let K be the number of neurons in the hidden layer, x(x 1 ,…,x m ) be the input vector, α k is the connection weight between the kth hidden layer neuron and the output layer neuron, φ k is the output of the kth hidden layer neuron, so the output of the RBF neural network can be described as: y = &Sigma; k = 1 K &alpha; k &phi; k ( x )    (公式2) the y = &Sigma; k = 1 K &alpha; k &phi; k ( x ) (Formula 2) (1)给定一个隐含层神经元为任意自然数的RBF神经网络进行训练,设定训练的次数;(1) Given a hidden layer neuron is an RBF neural network of any natural number to train, set the number of times of training; (2)计算每一个隐含层神经元输出值,由公式(1)可得到第k个隐含层神经元的输出为:(2) Calculate the output value of each hidden layer neuron, the output of the kth hidden layer neuron can be obtained from the formula (1): &phi; k ( x ) = e - | | x - &mu; k | | &sigma; k 2    (公式3) &phi; k ( x ) = e - | | x - &mu; k | | &sigma; k 2 (Formula 3) (3)对每一个神经元输出进行敏感度分析,计算其对输出的贡献值,隐含层神经元的输出加权值作为敏感度法的输入量,利用下式计算隐含层神经元输出对神经网络对输出所做的贡献:(3) Conduct sensitivity analysis on the output of each neuron, calculate its contribution to the output, and use the weighted value of the output of the hidden layer neuron as the input of the sensitivity method, and use the following formula to calculate the output of the hidden layer neuron. Contribution of the neural network to the output: S h = var h [ E ( y | Z h = &alpha; h &phi; h ( x ) ) ] var ( y )    (公式4) S h = var h [ E. ( the y | Z h = &alpha; h &phi; h ( x ) ) ] var ( the y ) (Formula 4) 其中,Z=[Z1,Z2,...,Zk]是敏感度法的输入向量,y是神经网络输出量,y与Z的关系可表示为y=f(Z1,Z2,...,Zk),varh[E(y|Zh=αhφh(x))]是Zh等于αhφh(x)时对y方差的影响,var(y)是y的方差,Sh是αhφh对输出y的一阶灵敏度表示,对Sh进行归一化处理:Among them, Z=[Z 1 ,Z 2 ,...,Z k ] is the input vector of the sensitivity method, y is the output of the neural network, and the relationship between y and Z can be expressed as y=f(Z 1 ,Z 2 ,...,Z k ), var h [E(y|Z h =α h φ h (x))] is the influence of Z h on the variance of y when Z h is equal to α h φ h (x), var(y) is the variance of y, S h is the first-order sensitivity representation of α h φ h to the output y, and S h is normalized: ST h = S h &Sigma; i = 1 K S i    (公式5) ST h = S h &Sigma; i = 1 K S i (Formula 5) (4)选取ε值并根据隐含层神经元输出贡献值调整神经网络结构,ε的值一般小于目标误差值,对于贡献值最大且大于ε1的隐含层神经元进行分裂,对于贡献值小于ε2的隐含层神经元进行删除,这里ε12,最终实现调整神经网络结构,定义误差目标函数为(N为训练样本数):(4) Select the ε value and adjust the neural network structure according to the output contribution value of the hidden layer neurons. The value of ε is generally smaller than the target error value, and split the hidden layer neurons with the largest contribution value and greater than ε 1. For the contribution value The hidden layer neurons smaller than ε 2 are deleted, here ε 12 , and finally the neural network structure is adjusted, and the error objective function is defined as (N is the number of training samples): E = 1 2 N &Sigma; j = 1 N e j 2    (公式6) E. = 1 2 N &Sigma; j = 1 N e j 2 (Formula 6) (5)根据目标误差函数,利用梯度下降算法来调整神经网络的隐含层神经元的输出权值、中心值和函数宽度:(5) According to the target error function, the gradient descent algorithm is used to adjust the output weight, central value and function width of the hidden layer neurons of the neural network: a i ( t + 1 ) = a i ( t ) - &eta; 1 ST i &PartialD; E &PartialD; a i ( t )    (公式7) a i ( t + 1 ) = a i ( t ) - &eta; 1 ST i &PartialD; E. &PartialD; a i ( t ) (Formula 7) &mu; i ( t + 1 ) = &mu; i ( t ) - &eta; 2 ST i &PartialD; E &PartialD; &mu; i ( t )    (公式8) &mu; i ( t + 1 ) = &mu; i ( t ) - &eta; 2 ST i &PartialD; E. &PartialD; &mu; i ( t ) (Formula 8) &sigma; i ( t + 1 ) = &sigma; i ( t ) - &eta; 3 ST i &PartialD; E &PartialD; &sigma; i ( t )    (公式9) &sigma; i ( t + 1 ) = &sigma; i ( t ) - &eta; 3 ST i &PartialD; E. &PartialD; &sigma; i ( t ) (Formula 9) 其中,η123为参数学习步长;Wherein, η 1 , η 2 , η 3 are parameter learning steps; (6)达到期望误差或计算步骤时停止计算;(6) Stop calculation when the expected error or calculation step is reached; D.残差修正D. Residual Correction 在建立的神经网络模型的基础上,对训练样本的预测值与实际产量值对比,计算出误差序列,将误差序列作为一个马尔可夫过程,进行状态划分,以频率代替概率,计算误差状态的转移概率矩阵;On the basis of the established neural network model, the predicted value of the training sample is compared with the actual output value, and the error sequence is calculated. The error sequence is regarded as a Markov process, and the state is divided, and the probability is replaced by the frequency, and the error state is calculated. Transition probability matrix; E.模型验证E. Model Validation 运用检测数据集对模型进行检验,如果输出的预测值与实际对比值的误差达到了预期的期望,神经网络模型训练成功,可以利用模型对石油产量进行预测;反之,模型训练不成熟,需要重新进行训练;Use the detection data set to test the model. If the error between the output prediction value and the actual comparison value reaches the expected expectation, the neural network model is trained successfully, and the model can be used to predict oil production; otherwise, the model training is immature and needs to be restarted. conduct training; F.石油产量预测F. Oil Production Forecast 获取真实的预测基础数据,输入训练好的优化后的RBF神经网络中,RBF神经网络的输出即为油田产量的预测值。Obtain real forecast basic data and input it into the trained and optimized RBF neural network. The output of the RBF neural network is the predicted value of oilfield production.
CN201510165643.6A 2015-04-09 2015-04-09 Oil field output prediction method based on dynamic radial basis function neural network Pending CN104732303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510165643.6A CN104732303A (en) 2015-04-09 2015-04-09 Oil field output prediction method based on dynamic radial basis function neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510165643.6A CN104732303A (en) 2015-04-09 2015-04-09 Oil field output prediction method based on dynamic radial basis function neural network

Publications (1)

Publication Number Publication Date
CN104732303A true CN104732303A (en) 2015-06-24

Family

ID=53456175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510165643.6A Pending CN104732303A (en) 2015-04-09 2015-04-09 Oil field output prediction method based on dynamic radial basis function neural network

Country Status (1)

Country Link
CN (1) CN104732303A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046377A (en) * 2015-09-06 2015-11-11 河海大学 Method for screening optimum indexes of reservoir flood control dispatching scheme based on BP neural network
CN105488525A (en) * 2015-11-27 2016-04-13 齐鲁工业大学 Paddy delphacidae identification method based on DS (Dempster and Shagfer) multi-classifier fusion
CN106991509A (en) * 2017-05-27 2017-07-28 重庆科技学院 Log Forecasting Methodology based on radial basis function neural network model
CN107358363A (en) * 2017-07-17 2017-11-17 哈尔滨理工大学 Coal work incidence of disease Forecasting Methodology based on radial basis function neural network built-up pattern
CN108131848A (en) * 2017-12-15 2018-06-08 河海大学 A kind of DSG slot types photo-thermal power station heat collecting field fluid properties Forecasting Methodology
CN108229726A (en) * 2017-12-15 2018-06-29 同济大学 A kind of shiver stone side slope catastrophe dangerous situation early alarming and forecasting method
WO2018120000A1 (en) * 2016-12-30 2018-07-05 Nokia Technologies Oy Artificial neural network
CN109523072A (en) * 2018-11-02 2019-03-26 中国石油化工股份有限公司 Oil field oil production prediction technique based on LSTM
CN109564594A (en) * 2016-06-13 2019-04-02 吉奥奎斯特系统公司 For modeling the automatic calibration in oil field
CN109979033A (en) * 2019-03-26 2019-07-05 广东艾胜物联网科技有限公司 A kind of industrial production yield monitoring method based on width learning algorithm
CN110348094A (en) * 2019-07-01 2019-10-18 中国人民解放军国防科技大学 Petroleum pipeline leakage detection method and system based on influence network
CN110400006A (en) * 2019-07-02 2019-11-01 中国石油化工股份有限公司 Oil well output prediction technique based on deep learning algorithm
WO2019242296A1 (en) * 2018-06-21 2019-12-26 北京国双科技有限公司 Method for obtaining relationship model between water injection well and oil production well, and method for determining production rate and water injection amount
CN110965977A (en) * 2019-11-20 2020-04-07 中国石油大学(北京) Fracturing Construction Analysis Method
CN111291917A (en) * 2018-12-10 2020-06-16 财团法人工业技术研究院 Dynamic prediction model establishing method, electronic device and user interface
CN112396230A (en) * 2020-11-16 2021-02-23 中国石油大学(华东) Oil reservoir geological modeling static parameter distribution prediction method based on neighbor neural network
CN113011639A (en) * 2021-03-04 2021-06-22 中国石油大学(华东) Perforation well productivity prediction method and system based on machine learning
CN113225346A (en) * 2021-05-12 2021-08-06 电子科技大学 Network operation and maintenance situation assessment method based on machine learning
CN113496306A (en) * 2020-04-08 2021-10-12 中国石油化工股份有限公司 Yield prediction method and device for single karst cave oil and gas well
CN115099539A (en) * 2022-08-25 2022-09-23 大庆正方软件科技股份有限公司 Big data artificial intelligence water injection method based on water absorption profile
US11555943B2 (en) 2020-03-20 2023-01-17 Saudi Arabian Oil Company Method for identifying misallocated historical production data using machine learning to improve a predictive ability of a reservoir simulation
CN117522173A (en) * 2024-01-04 2024-02-06 山东科技大学 Natural gas hydrate depressurization exploitation productivity prediction method based on deep neural network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299234A (en) * 2008-06-06 2008-11-05 华南理工大学 Method for recognizing human eye state based on built-in type hidden Markov model
CN101571912A (en) * 2008-04-30 2009-11-04 中国科学院半导体研究所 Computer face-positioning method based on human visual simulation
CN101630144A (en) * 2009-08-18 2010-01-20 湖南大学 Self-learning inverse model control method of electronic throttle
CN104020135A (en) * 2014-06-18 2014-09-03 中国科学院重庆绿色智能技术研究院 Calibration model establishing method based on near infrared spectrum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571912A (en) * 2008-04-30 2009-11-04 中国科学院半导体研究所 Computer face-positioning method based on human visual simulation
CN101299234A (en) * 2008-06-06 2008-11-05 华南理工大学 Method for recognizing human eye state based on built-in type hidden Markov model
CN101630144A (en) * 2009-08-18 2010-01-20 湖南大学 Self-learning inverse model control method of electronic throttle
CN104020135A (en) * 2014-06-18 2014-09-03 中国科学院重庆绿色智能技术研究院 Calibration model establishing method based on near infrared spectrum

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
乔俊飞: "RBF神经网络的结构动态优化设计", 《自动化学报》 *
刁凤琴等: "《石油储量动态经济评价研究》", 31 December 2007 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105046377A (en) * 2015-09-06 2015-11-11 河海大学 Method for screening optimum indexes of reservoir flood control dispatching scheme based on BP neural network
CN105488525A (en) * 2015-11-27 2016-04-13 齐鲁工业大学 Paddy delphacidae identification method based on DS (Dempster and Shagfer) multi-classifier fusion
CN109564594A (en) * 2016-06-13 2019-04-02 吉奥奎斯特系统公司 For modeling the automatic calibration in oil field
CN109564594B (en) * 2016-06-13 2023-09-22 吉奥奎斯特系统公司 Automatic calibration for modeling oil fields
US11042722B2 (en) 2016-12-30 2021-06-22 Nokia Technologies Oy Artificial neural network
WO2018120000A1 (en) * 2016-12-30 2018-07-05 Nokia Technologies Oy Artificial neural network
CN106991509A (en) * 2017-05-27 2017-07-28 重庆科技学院 Log Forecasting Methodology based on radial basis function neural network model
CN107358363A (en) * 2017-07-17 2017-11-17 哈尔滨理工大学 Coal work incidence of disease Forecasting Methodology based on radial basis function neural network built-up pattern
CN108131848B (en) * 2017-12-15 2019-07-12 河海大学 A kind of DSG slot type photo-thermal power station heat collecting field fluid properties prediction technique
CN108229726A (en) * 2017-12-15 2018-06-29 同济大学 A kind of shiver stone side slope catastrophe dangerous situation early alarming and forecasting method
CN108131848A (en) * 2017-12-15 2018-06-08 河海大学 A kind of DSG slot types photo-thermal power station heat collecting field fluid properties Forecasting Methodology
WO2019242296A1 (en) * 2018-06-21 2019-12-26 北京国双科技有限公司 Method for obtaining relationship model between water injection well and oil production well, and method for determining production rate and water injection amount
CN109523072A (en) * 2018-11-02 2019-03-26 中国石油化工股份有限公司 Oil field oil production prediction technique based on LSTM
CN111291917A (en) * 2018-12-10 2020-06-16 财团法人工业技术研究院 Dynamic prediction model establishing method, electronic device and user interface
CN111291917B (en) * 2018-12-10 2023-07-28 财团法人工业技术研究院 Dynamic prediction model establishment method, electronic device and user interface
CN109979033A (en) * 2019-03-26 2019-07-05 广东艾胜物联网科技有限公司 A kind of industrial production yield monitoring method based on width learning algorithm
CN109979033B (en) * 2019-03-26 2021-08-20 广东艾胜物联网科技有限公司 Industrial production yield monitoring method based on width learning algorithm
CN110348094A (en) * 2019-07-01 2019-10-18 中国人民解放军国防科技大学 Petroleum pipeline leakage detection method and system based on influence network
CN110348094B (en) * 2019-07-01 2023-01-06 中国人民解放军国防科技大学 Oil pipeline leak detection method and system based on influence network
CN110400006B (en) * 2019-07-02 2022-06-03 中国石油化工股份有限公司 Oil well yield prediction method based on deep learning algorithm
CN110400006A (en) * 2019-07-02 2019-11-01 中国石油化工股份有限公司 Oil well output prediction technique based on deep learning algorithm
CN110965977A (en) * 2019-11-20 2020-04-07 中国石油大学(北京) Fracturing Construction Analysis Method
US11555943B2 (en) 2020-03-20 2023-01-17 Saudi Arabian Oil Company Method for identifying misallocated historical production data using machine learning to improve a predictive ability of a reservoir simulation
CN113496306A (en) * 2020-04-08 2021-10-12 中国石油化工股份有限公司 Yield prediction method and device for single karst cave oil and gas well
CN112396230B (en) * 2020-11-16 2022-03-29 中国石油大学(华东) Oil reservoir geological modeling static parameter distribution prediction method based on neighbor neural network
CN112396230A (en) * 2020-11-16 2021-02-23 中国石油大学(华东) Oil reservoir geological modeling static parameter distribution prediction method based on neighbor neural network
CN113011639A (en) * 2021-03-04 2021-06-22 中国石油大学(华东) Perforation well productivity prediction method and system based on machine learning
CN113225346A (en) * 2021-05-12 2021-08-06 电子科技大学 Network operation and maintenance situation assessment method based on machine learning
CN115099539A (en) * 2022-08-25 2022-09-23 大庆正方软件科技股份有限公司 Big data artificial intelligence water injection method based on water absorption profile
CN117522173A (en) * 2024-01-04 2024-02-06 山东科技大学 Natural gas hydrate depressurization exploitation productivity prediction method based on deep neural network
CN117522173B (en) * 2024-01-04 2024-04-26 山东科技大学 Natural gas hydrate depressurization exploitation productivity prediction method based on deep neural network

Similar Documents

Publication Publication Date Title
CN104732303A (en) Oil field output prediction method based on dynamic radial basis function neural network
CN109948841B (en) A deep learning-based prediction method for the distribution of remaining oil in waterflooding oilfields
CN110029986B (en) Dynamic liquid level prediction method of beam pumping unit based on particle swarm extreme learning machine
Xu et al. Scenario tree reduction in stochastic programming with recourse for hydropower operations
Ahmadi et al. Robust intelligent tool for estimating dew point pressure in retrograded condensate gas reservoirs: application of particle swarm optimization
Lv et al. A long Short-Term memory cyclic model with mutual information for hydrology forecasting: A Case study in the xixian basin
Mingming et al. A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices
Lin et al. Applying fuzzy grey modification model on inflow forecasting
Yue et al. Bayesian regularization BP Neural Network model for predicting oil-gas drilling cost
Yang et al. Long short-term memory suggests a model for predicting shale gas production
Talebi et al. Application of soft computing approaches for modeling saturation pressure of reservoir oils
CN110070202A (en) A method of economic output is predicted by electricity consumption data
Behnia et al. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods
CN103530818A (en) Water supply pipe network modeling method based on BRB (belief-rule-base) system
CN105631554A (en) Oil-well oil water content multi-model prediction method based on time sequence
CN112257942A (en) Stress corrosion cracking prediction method and system
CN114358434A (en) Prediction method of drilling machine ROP based on LSTM recurrent neural network model
CN112541571A (en) Injection-production connectivity determination method based on machine learning of double parallel neural networks
CN112539054A (en) Production optimization method for ground pipe network and underground oil reservoir complex system
CN104751254A (en) Line loss rate prediction method based on non-isometric weighted grey model and fuzzy clustering sorting
CN102495939A (en) SVM solar wing unfolding reliability evaluation method based on kernel optimization
CN104653170A (en) Method for calibrating recoverable reserve in ultra-high water containing stage
CN104268662B (en) A Subsidence Prediction Method Based on Step-by-step Optimal Quantile Regression
Vatani et al. An efficient surrogate model for reliability analysis of the marine structure piles
CN105184306A (en) Power transmission tower material actual strength calculation method enabling evaluation indexes to reflect evaluation results

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150624

RJ01 Rejection of invention patent application after publication