CN104714155B - A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method - Google Patents
A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method Download PDFInfo
- Publication number
- CN104714155B CN104714155B CN201510053432.3A CN201510053432A CN104714155B CN 104714155 B CN104714155 B CN 104714155B CN 201510053432 A CN201510053432 A CN 201510053432A CN 104714155 B CN104714155 B CN 104714155B
- Authority
- CN
- China
- Prior art keywords
- partial discharge
- discharge
- cable
- output device
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 31
- 229920003020 cross-linked polyethylene Polymers 0.000 title claims abstract description 17
- 239000004703 cross-linked polyethylene Substances 0.000 title claims abstract description 17
- 238000004458 analytical method Methods 0.000 claims abstract description 31
- 238000005259 measurement Methods 0.000 claims abstract description 26
- 238000011156 evaluation Methods 0.000 claims abstract description 8
- 238000012360 testing method Methods 0.000 claims description 30
- 238000010586 diagram Methods 0.000 claims description 14
- 230000007547 defect Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 238000012806 monitoring device Methods 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000002847 impedance measurement Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 239000000284 extract Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 238000009413 insulation Methods 0.000 abstract description 15
- 230000005684 electric field Effects 0.000 description 18
- 230000008859 change Effects 0.000 description 13
- 238000011161 development Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
本发明公开了一种对直流XLPE电缆局部放电的检测与评估装置及方法,包括被测电缆以及用于获取局部放电信号的直流局部放电检测装置;被测电缆的两端连接有直流高压输出装置和电流输出装置;被测电缆上布设有温度检测装置。本发明根据直流局部放电与交流局部放电的区别,采用适用于交流局部放电检测与分析的手段,填补了直流局部放电检测与分析方法的空白。本发明考虑温度对于局部放电的影响,采用将在常温下模拟电缆空载或离线状态下进行局部放电测量的测量结果与利用电流输出装置模拟电缆在带载状态下进行局部放电测量的测量结果相结合综合分析的方式,对于电缆绝缘状况进行更为全面综合的评估。
The invention discloses a device and method for detecting and evaluating the partial discharge of a DC XLPE cable, comprising a cable to be tested and a DC partial discharge detection device for obtaining partial discharge signals; two ends of the cable to be tested are connected with a DC high voltage output device and current output device; the tested cable is equipped with a temperature detection device. According to the difference between direct current partial discharge and alternating current partial discharge, the present invention adopts a means suitable for the detection and analysis of alternating current partial discharge, and fills the blank of the direct current partial discharge detection and analysis method. The present invention considers the influence of temperature on partial discharge, and adopts the method of comparing the measurement results of partial discharge measurement carried out under the no-load or offline state of the simulated cable at normal temperature with the measurement result of the partial discharge measurement carried out by using the current output device to simulate the cable under load. Combined with the comprehensive analysis method, a more comprehensive and comprehensive evaluation of the cable insulation condition is carried out.
Description
技术领域technical field
本发明涉及一种对直流XLPE电缆局部放电的检测与评估装置及方法。The invention relates to a detection and evaluation device and method for partial discharge of a DC XLPE cable.
背景技术Background technique
交联聚乙烯(XLPE)电力电缆因其结构简单、负载能力强、敷设容易、运行维护方便、绝缘性能优异、生产工艺简单等优点,被广泛应用于电力系统中。随着XLPE电缆线路的广泛应用,中间接头作为电力电缆的重要组成部分,使用量也随之增加。但电缆中间接头同时也是输电线路事故的多发部位,其可靠性直接影响供电系统的安全。电缆中间接头由于劣质材料、粗糙制作工艺、现场不规范安装以及电、热、机械应力等多种因素,会形成潜伏性绝缘缺陷,为电网的运行带来潜在的安全隐患。运行经验和研究均表明:电缆接头设计阶段存在的各类典型缺陷大多会产生局部放电,因此电缆接头的局部放电检测对于高压电缆的正常运行及故障预测有很重要的意义。Cross-linked polyethylene (XLPE) power cables are widely used in power systems due to their simple structure, strong load capacity, easy laying, convenient operation and maintenance, excellent insulation performance, and simple production process. With the wide application of XLPE cable lines, the use of intermediate connectors as an important part of power cables has also increased. However, the cable intermediate joint is also a frequent site of transmission line accidents, and its reliability directly affects the safety of the power supply system. Due to various factors such as inferior materials, rough manufacturing process, irregular installation on site, and electrical, thermal, and mechanical stresses, the intermediate joints of cables will form latent insulation defects, which will bring potential safety hazards to the operation of the power grid. Both operating experience and research have shown that most of the typical defects in the design stage of cable joints will generate partial discharges. Therefore, partial discharge detection of cable joints is of great significance to the normal operation and fault prediction of high-voltage cables.
而目前随着海上风电装机容量的快速增加以及直流输电技术的不断发展,直流电缆凭借其损耗低、易于进行功率调节等优势,需求量飞速提高。特别是近几年基于电压源换流器VSC(voltagesourceconverter)技术的发展,大大促进了以交联聚乙烯(XLPE)为主绝缘材料的柔性直流电缆的发展,相比于油纸电缆来讲,XLPE直流电缆具有更加环境友好,并且制造敷设简单等优点。通常直流电缆线路长、电压等级高,工程浩大,重要性极高,因此对其工作状态进行检测,确保其在正常的工作状态是非常有必要的。考虑到直流电缆与交流电缆不同的运行方式,直接套用交流电缆检测手段可能并不合适,目前针对直流电缆检测分析手段仍非常匮乏。At present, with the rapid increase of offshore wind power installed capacity and the continuous development of DC transmission technology, the demand for DC cables is rapidly increasing due to their advantages such as low loss and easy power adjustment. Especially in recent years, the development of VSC (voltage source converter) technology based on voltage source converter has greatly promoted the development of flexible DC cables with cross-linked polyethylene (XLPE) as the main insulating material. Compared with oil-paper cables, XLPE The DC cable has the advantages of being more environmentally friendly and simple to manufacture and lay. Usually, the DC cable line is long, the voltage level is high, the project is huge, and the importance is extremely high. Therefore, it is very necessary to detect its working state to ensure that it is in a normal working state. Considering the different operation modes of DC cables and AC cables, it may not be appropriate to directly apply AC cable detection methods. At present, the detection and analysis methods for DC cables are still very scarce.
局部放电检测作为交流电缆检测的重要手段,能够作为反映绝缘水平的重要手段。对于XLPE直流电缆,当其电缆主绝缘或附件发生缺陷并在一定电压下同样可能会产生局部放电,因此对直流电缆系统进行局部放电检测同样可以发现其可能存在的缺陷。而局部放电检测,直流局部放电与交流局部放电特征有着显著区别,相比较于交流局部放电,直流局部放电的重复率较低,而且只有放电幅值以及放电间隔,没有放电相位角的概念,因此交流局部放电分析当中常用的-q-n等与相角相关的分析方式便都无法应用于直流局部放电。对于直流局部放电需要用特殊的手段进行分析,这方面目前仍然相对空白。As an important means of AC cable detection, partial discharge detection can be used as an important means to reflect the insulation level. For XLPE DC cables, partial discharge may also occur when the main insulation or accessories of the cable are defective and under a certain voltage, so the partial discharge detection of the DC cable system can also find possible defects. For partial discharge detection, the characteristics of DC partial discharge and AC partial discharge are significantly different. Compared with AC partial discharge, the repetition rate of DC partial discharge is lower, and there is only discharge amplitude and discharge interval, and there is no concept of discharge phase angle. Therefore, Commonly used in AC partial discharge analysis -qn and other analysis methods related to the phase angle cannot be applied to DC partial discharge. The analysis of DC partial discharge requires special means, which is still relatively blank.
对于高压交流电缆来讲电场在绝缘层中分布主要依赖于电缆电容电场的几何分布,而在假定介电常数为一个不随温度变化的常数时便可容易得到,因而在加上负载并运行加热到操作温度的时候其始终不变,尽管实际情况介电常数是会发生一定变化的,但是其影响几乎可以忽略不计。For high-voltage AC cables, the distribution of the electric field in the insulating layer mainly depends on the geometric distribution of the electric field of the cable capacitance, and it can be easily obtained when the dielectric constant is assumed to be a constant that does not change with temperature. It is always constant at the operating temperature. Although the actual dielectric constant will change to a certain extent, its influence is almost negligible.
高压交流电缆绝缘中的电场通常可以表示为:The electric field in a high voltage AC cable insulation can generally be expressed as:
其中:EAC(r)=在半径为r处的交流电场分布(kV/mm或MV/m)Where: E AC (r) = AC electric field distribution at radius r (kV/mm or MV/m)
U0=电缆的设计电压,即电介质上电压(kV);在交流领域即表示相电压U 0 = the design voltage of the cable, that is, the voltage on the dielectric (kV); in the AC field, it means the phase voltage
r=半径距离(mm)r = radius distance (mm)
ri=电缆绝缘内半径(mm)r i = inner radius of cable insulation (mm)
r0=电缆绝缘外半径(mm)r 0 = outer radius of cable insulation (mm)
对于高压直流电缆,其电场分布是随温度和时间变化的,这是由于直流电缆电场分布在稳态情况下是由该处电阻决定,即决定于绝缘的电阻率,而电介质的电阻率反过来依赖于温度与电场强度,仅在无负载电缆内部也没有温度梯度的情况下,直流电缆的电场分布情况与交流基本相同。For high-voltage DC cables, the electric field distribution changes with temperature and time. This is because the electric field distribution of the DC cable is determined by the resistance at the steady state, that is, the resistivity of the insulation, and the resistivity of the dielectric. Depending on the temperature and the electric field strength, the electric field distribution of the DC cable is basically the same as that of the AC only when there is no temperature gradient inside the unloaded cable.
高压直流电缆绝缘中的电场通常可以表示为:The electric field in HVDC cable insulation can usually be expressed as:
其中 in
其中:in:
a=电导率的温度系数(1/K或1/℃)a = temperature coefficient of conductivity (1/K or 1/°C)
b=电导率的应力系数(mm/kV或m/MV)b = Stress coefficient of conductivity (mm/kV or m/MV)
其中:in:
WC=导体中的焦耳热损耗(w/m)W C = Joule heat loss in conductor (w/m)
λT=绝缘的热导率λ T = thermal conductivity of the insulation
放电位置处局部场强的变化会主要反映在放电重复率的改变,而由于电场的热效应影响,电场的变化反过来又会引起温度的变化,从而导致电场与温度的耦合关系,对于放电产生复杂的影响。The change of the local field strength at the discharge location will mainly be reflected in the change of the discharge repetition rate, and due to the thermal effect of the electric field, the change of the electric field will in turn cause the change of the temperature, resulting in the coupling relationship between the electric field and temperature, which is complicated for the discharge. Impact.
发明内容Contents of the invention
本发明的目的在于解决上述现有技术中的问题,提供一种对直流XLPE电缆局部放电的检测与评估装置及方法。The purpose of the present invention is to solve the above-mentioned problems in the prior art, and provide a detection and evaluation device and method for partial discharge of DC XLPE cables.
为了实现上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to achieve:
一种直流局部放电测量装置,包括被测电缆以及用于获取局部放电信号的直流局部放电检测装置;被测电缆的两端连接有直流高压输出装置和电流输出装置;被测电缆上布设有温度检测装置。A DC partial discharge measurement device, including a cable under test and a DC partial discharge detection device for obtaining partial discharge signals; both ends of the cable under test are connected with a DC high-voltage output device and a current output device; the cable under test is equipped with a temperature detection device.
所述直流高压输出装置采用工频试验变压器将工频交流220V升至工频高压Ut,经过硅堆D进行半波整流,再串接限流电阻R向滤波电容C进行充电,最后输出到被测电缆上。The DC high-voltage output device uses a power frequency test transformer to raise the power frequency AC 220V to power frequency high voltage U t , conducts half-wave rectification through the silicon stack D, and then connects the current limiting resistor R in series to charge the filter capacitor C, and finally outputs to on the cable under test.
所述温度检测装置采用布设在被测电缆表面与电缆附件上的PT100热电偶。The temperature detection device adopts PT100 thermocouples arranged on the surface of the tested cable and the cable accessories.
所述电流输出装置采用穿心变压器,穿心变压器与被测电缆的连接处安装有用于防止发生电晕的均压罩;穿心变压器上还连接有调压器。The current output device adopts a feed-through transformer, and a voltage equalizing cover for preventing corona is installed at the joint between the feed-through transformer and the tested cable; a voltage regulator is also connected to the feed-through transformer.
所述直流局部放电检测装置包括检测阻抗测量回路、高频电流互感器以及超声传感器;检测阻抗测量回路采用IEC60270标准中的规定,高频电流互感器卡接在被测电缆的接地线上,超声传感器紧贴于被测电缆接头。The DC partial discharge detection device includes a detection impedance measurement circuit, a high-frequency current transformer and an ultrasonic sensor; the detection impedance measurement circuit adopts the regulations in the IEC60270 standard, and the high-frequency current transformer is clamped on the ground wire of the cable under test, and the ultrasonic sensor The sensor is tightly attached to the cable connector under test.
一种对直流XLPE电缆局部放电的检测与评估方法,包括以下步骤:A method for detecting and evaluating partial discharge of DC XLPE cables, comprising the following steps:
1)在电流输出装置关闭的情况下,利用直流高压输出装置对被测电缆进行加压,升压至设定试验电压,记录温度监测装置显示温度;1) When the current output device is closed, use the DC high-voltage output device to pressurize the tested cable, boost the voltage to the set test voltage, and record the temperature displayed by the temperature monitoring device;
2)直流局部放电检测装置将局部放电信号进行耦合;2) The DC partial discharge detection device couples the partial discharge signal;
3)对耦合后的局部放电信号去噪处理;3) denoising the coupled partial discharge signal;
4)在时域下对局部放电信号中的放电幅值Q进行提取,以时间函数t的函数形式展开,形成用于表现放电幅值随时间的变化规律的Q-t图进行直流局部放电分析;4) Extract the discharge amplitude Q in the partial discharge signal in the time domain, expand it in the form of a time function t, and form a Q-t diagram for expressing the variation of the discharge amplitude with time for DC partial discharge analysis;
5)建立适用于直流局部放电分析情况下的三维谱图;5) Establish a three-dimensional spectrogram suitable for DC partial discharge analysis;
6)通过对多个不同缺陷的被测电缆进行直流局部放电,并将得到的不同H(Q,Δt)三维谱图与相应放电类型进行保存,建立指纹库;将得到的H(Q,Δt)图像与放电图像进行对比,实现对直流局部放电的缺陷类型的判断;6) By performing DC partial discharge on multiple tested cables with different defects, and saving the obtained three-dimensional spectra of different H(Q, Δt) and corresponding discharge types, a fingerprint library is established; the obtained H(Q, Δt) ) image is compared with the discharge image to realize the judgment of the defect type of DC partial discharge;
7)对步骤3)得到的局部放电信号进行快速傅里叶变化,在频域下分析局部放电信号在不同频段范围内的分布,通过分析波峰频率对实际放电或噪声、内部放电或电晕放电以及产生放电的缺陷类型进行判断;7) Perform fast Fourier transformation on the partial discharge signal obtained in step 3), analyze the distribution of the partial discharge signal in different frequency ranges in the frequency domain, and analyze the peak frequency for actual discharge or noise, internal discharge or corona discharge And judge the type of defect that produces discharge;
8)调节直流高压输出装置,将电压降低到0kV,开启电流输出装置穿心变压器,调节电流模拟电缆带载状况,观察温度监测装置中电缆及其附件表面温度,使其表面温度升高到70℃或以上,以模拟电缆高负荷运行条件下的情况;8) Adjust the DC high-voltage output device, reduce the voltage to 0kV, turn on the current output device through the core transformer, adjust the current to simulate the load status of the cable, observe the surface temperature of the cable and its accessories in the temperature monitoring device, and raise the surface temperature to 70 ℃ or above, in order to simulate the situation under the high-load operating conditions of the cable;
9)待温度达到稳定后,再利用直流高压输出装置对被测电缆试样进行加压,升压至设定试验电压后,记录温度监测装置显示温度;9) After the temperature reaches a stable level, use the DC high-voltage output device to pressurize the tested cable sample, and after boosting the voltage to the set test voltage, record the temperature displayed by the temperature monitoring device;
10)重复执行一次步骤2)~步骤7)检测分析过程,完成测量,测量完成后关闭电流输出装置与直流高压输出装置,将被测试样静置使温度降低并进行有效放电24小时。10) Repeat step 2) to step 7) for the detection and analysis process to complete the measurement. After the measurement is completed, turn off the current output device and the DC high voltage output device, let the tested sample stand still to lower the temperature and perform effective discharge for 24 hours.
所述步骤2)中,对传感器耦合到的局部放电信号进行放大和滤波处理,然后执行步骤3)。In the step 2), the partial discharge signal coupled to the sensor is amplified and filtered, and then the step 3) is executed.
所述步骤3)中,去噪处理是通过对脉冲信号进行捕捉,将与施加直流电压极性相反的信号过滤。In the step 3), the denoising process is to capture the pulse signal and filter the signal opposite to the polarity of the applied DC voltage.
所述步骤5)中,建立适用于直流局部放电分析情况下的三维谱图的具体方法如下:In said step 5), the specific method for establishing a three-dimensional spectrogram suitable for DC partial discharge analysis is as follows:
以直流局部放电过程中放电脉冲与其前序放电脉冲之间的时间间隔Δt代替相角,建立不同放电次数占总放电次数的百分比即放电密度H之间关系H(Q,Δt),其中放电幅值Q在Q-t图绘制当中已进行提取;对于相邻脉冲时间间隔Δt的提取,根据放电阈值Qmin的设置,以超过放电阈值的脉冲为有效放电脉冲,记录各放电脉冲在Q-t对应坐标参数(Qi,ti),其中Qi>Qmin,而Δt=ti-ti-1得到Δt。The phase angle is replaced by the time interval Δt between the discharge pulse and its preceding discharge pulse in the DC partial discharge process , to establish the percentage of different discharge times in the total discharge times, that is, the relationship H(Q, Δt) between the discharge densities H, where the discharge amplitude Q has been extracted in the drawing of the Qt diagram; for the extraction of the adjacent pulse time interval Δt, according to The setting of the discharge threshold Q min takes the pulse exceeding the discharge threshold as the effective discharge pulse, and records the coordinate parameters (Q i , t i ) corresponding to each discharge pulse at Qt, where Q i >Q min , and Δt=t i -t i -1 to get Δt.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明根据直流局部放电与交流局部放电的区别,采用适用于交流局部放电检测与分析的手段,填补了直流局部放电检测与分析方法的空白。根据直流局部放电重复率低的特点,提出30-60分钟长时间局部放电测量,而根据直流局部放电无脉冲对应相角的概念,从而导致交流局部放电分析方法当中与相角相关分析手段不适用于直流局部放电分析,因而采用以Q-t图为主,N-t、N-Q图辅助的研究方式,同时用两相邻放电脉冲间时间间隔Δt代替相角形成适用于直流局部放电分析三维谱图。同时根据直流局部放电信号脉冲单极性的特别,去噪处理当中将相反极性脉冲作为干扰去除以保证测量的准确性。本发明考虑温度对于局部放电的影响,由于温度对于直流下的电场分布有着显著影响而直接反应于放电重复率的变化,因此采用将在常温下模拟电缆空载或离线状态下进行局部放电测量的测量结果与利用电流输出装置模拟电缆在带载状态下进行局部放电测量的测量结果相结合综合分析的方式,对于电缆绝缘状况进行更为全面综合的评估。According to the difference between direct current partial discharge and alternating current partial discharge, the present invention adopts a means suitable for the detection and analysis of alternating current partial discharge, and fills the blank of the direct current partial discharge detection and analysis method. According to the low repetition rate of DC partial discharge, a long-time partial discharge measurement of 30-60 minutes is proposed, and according to the concept of phase angle corresponding to no pulse of DC partial discharge, the analysis method related to phase angle in the analysis method of AC partial discharge is not applicable For the analysis of DC partial discharge, the Q-t diagram is used as the main research method, and the N-t and N-Q diagrams are assisted. At the same time, the time interval Δt between two adjacent discharge pulses is used instead of the phase angle to form a three-dimensional spectrogram suitable for DC partial discharge analysis. At the same time, according to the particularity of the unipolarity of the DC partial discharge signal pulse, the pulse of the opposite polarity is removed as interference in the denoising process to ensure the accuracy of the measurement. The present invention considers the influence of temperature on partial discharge, because temperature has a significant influence on the electric field distribution under direct current and directly responds to the change of discharge repetition rate, so the partial discharge measurement will be carried out under normal temperature simulation cable no-load or offline state The measurement results are combined with the measurement results of the partial discharge measurement using the current output device to simulate the cable under load, and a more comprehensive and comprehensive evaluation of the cable insulation status is carried out.
附图说明Description of drawings
图1为本发明的试验电路图;Fig. 1 is a test circuit diagram of the present invention;
图2为本发明的试验流程图;Fig. 2 is test flowchart of the present invention;
图3为本发明直流局部放电分析方法流程图;Fig. 3 is the flow chart of DC partial discharge analysis method of the present invention;
图4为本发明实施例的背景噪声波形;Fig. 4 is the background noise waveform of the embodiment of the present invention;
图5为本发明实施例的背景噪声波形对应频域分布图;Fig. 5 is the corresponding frequency domain distribution diagram of the background noise waveform of the embodiment of the present invention;
图6为本发明实施例的脉冲源B的脉冲波形;Fig. 6 is the pulse waveform of the pulse source B of the embodiment of the present invention;
图7为为本发明实施例的脉冲源B的脉冲波形对应频域分布图;Fig. 7 is the corresponding frequency domain distribution diagram of the pulse waveform of the pulse source B of the embodiment of the present invention;
图8为本发明实施例的Q-t谱图;Fig. 8 is the Q-t spectrogram of the embodiment of the present invention;
图9为本发明实施例的N-t其中N设置为1min内放电次数;Fig. 9 is the N-t of the embodiment of the present invention, where N is set as the number of discharges within 1 min;
图10为本发明N-Q谱图,其中N设置为1min内放电次数;Fig. 10 is the N-Q spectrogram of the present invention, wherein N is set as the number of discharges within 1 min;
图11为本发明Q-Δt谱图。Fig. 11 is a Q-Δt spectrum diagram of the present invention.
具体实施方式detailed description
下面结合附图对本发明做进一步详细的说明:Below in conjunction with accompanying drawing, the present invention is described in further detail:
参见图1,本发明提供一种针对XLPE直流电缆的局部放电结合温度的检测与分析方法,由于直流局部放电信号相比交流局部放电信号具有放电重复率低、无放电脉冲对应相角等显著区别,因此在本发明采用30-60min长时间直流局部放电测量,另采用以Q-t图为主结合适用于直流局部放电分析的新型三维普通H(Q,Δt)进行模式识别。由于直流下,绝缘中的电场分布依赖于电阻率的分布,电阻会随温度变化发生明显变化,从而影响该处电场的分布,放电位置处局部场强的变化会主要反映在放电重复率的改变。而由于电场的热效应影响,电场的变化反过来又会引起温度的变化,从而导致电场与温度的耦合关系,对于放电产生复杂的影响。本发明考虑到温度变化对于放电的影响,将温度纳入综合考评范围。Referring to Fig. 1, the present invention provides a detection and analysis method for the combined partial discharge temperature of an XLPE DC cable. Compared with the AC partial discharge signal, the DC partial discharge signal has significant differences such as low discharge repetition rate and no phase angle corresponding to the discharge pulse. , so the present invention adopts 30-60min long-term DC partial discharge measurement, and adopts Q-t diagram as the main combined with the new three-dimensional ordinary H(Q, Δt) suitable for DC partial discharge analysis for pattern recognition. Since the distribution of the electric field in the insulation depends on the distribution of the resistivity under DC, the resistance will change significantly with the change of temperature, thereby affecting the distribution of the electric field at the place, and the change of the local field strength at the discharge position will be mainly reflected in the change of the discharge repetition rate . Due to the thermal effect of the electric field, changes in the electric field will in turn cause changes in temperature, resulting in a coupling relationship between the electric field and temperature, which has a complex impact on the discharge. The present invention considers the influence of temperature change on discharge, and includes temperature into the scope of comprehensive evaluation.
本发明的电路布置:Circuit arrangement of the present invention:
(1)直流高压输出装置:直流加压系统不可用直流高压发生器,由于其会引入明显脉冲型干扰,并且与局部放电脉冲频段范围接近,从而造成测量结果信噪比无法达到2:1的标准甚至淹没放电脉冲。本发明采用半波整流产生直流高压,首先使用工频试验变压器将工频交流220V升至工频高压UT,经耐压为至少4.3UT(按照设计电压裕度为击穿电压2/3)的硅堆进行半波整流,串接限流电阻R向滤波电容C进行充电,滤波电容C耐压至少为其中硅堆通流能力由硅堆型号确定,本发明推荐采用3A。限流电阻以及滤波电容值依据高电压试验技术中相关方法由纹波要求以及试验电压、电流决定,其中根据国家标准GB/T:16927.1相关内容,直流高压试验设备纹波系数应小于3%。高压直流加压单元后并联电阻分压器,其中电阻分压器显示实际施加直流电压数值。(1) DC high-voltage output device: The DC high-voltage generator cannot be used in the DC pressurization system, because it will introduce obvious pulse-shaped interference, and it is close to the partial discharge pulse frequency range, so the signal-to-noise ratio of the measurement results cannot reach 2:1. Standard even submerged discharge pulses. The present invention adopts half-wave rectification to generate DC high voltage. First, the power frequency AC 220V is raised to the power frequency high voltage U T by using a power frequency test transformer . ) silicon stack for half-wave rectification, the current limiting resistor R is connected in series to charge the filter capacitor C, and the withstand voltage of the filter capacitor C is at least The flow capacity of the silicon stack is determined by the type of the silicon stack, and 3A is recommended in the present invention. The current limiting resistor and filter capacitor value are determined by the ripple requirements, test voltage and current according to the relevant methods in the high voltage test technology. According to the relevant content of the national standard GB/T: 16927.1, the ripple coefficient of the DC high voltage test equipment should be less than 3%. A resistor divider is connected in parallel behind the high-voltage DC pressurization unit, and the resistor divider displays the actual value of the applied DC voltage.
(2)电流输出装置:穿心变压器主要为电缆及接头在承受高电压的同时提供大电流,以模拟电缆运行负荷。电缆在带载过程中,由于电流热效应导致温度升高,模拟温度影响。穿心变压器与电缆连接处加装均压罩以防止电晕发生。(2) Current output device: The feed-through transformer mainly provides high current for cables and joints to withstand high voltage, so as to simulate the operating load of cables. During the loading process of the cable, the temperature rises due to the thermal effect of the current, and the influence of temperature is simulated. A voltage equalizing cover is installed at the connection between the feedthrough transformer and the cable to prevent corona.
(3)温度监测装置:将热电偶PT100布设于电缆表面与电缆附件,对电缆表面以及其附件进行温度监测。(3) Temperature monitoring device: Arrange thermocouple PT100 on the cable surface and cable accessories, and monitor the temperature of the cable surface and its accessories.
(4)直流局部放电测量装置:直流局部放电检测获取局部放电信号的方式分为收集局部放电过程中产生电信号的电测法以及收集局部放电过程中产生如声、光等非电信号的非电测法。本发明适用于电测法与声测法。对于电测法,适用于IEC60270推荐的脉冲电流法(即检测阻抗进行局部放电信号检测)、高频电流互感器(HFCT)对于局部放电过程中得到的电信号进行收集,而声测法适用于使用压电材料作为传感器,将机械振动信号转换为电信号。检测阻抗测量回路参考IEC60270标准中规定,高频电流互感器安装位置卡接在接地线上,超声传感器紧贴于被测电缆接头(如被测电缆配有电缆接头或终端等附件,最好贴放于附件上)。(4) DC partial discharge measuring device: The method of DC partial discharge detection and acquisition of partial discharge signals is divided into the electrical measurement method for collecting electrical signals generated during the partial discharge process and the non-electrical method for collecting non-electrical signals such as sound and light during the partial discharge process. Electrometry. The present invention is suitable for electrical measuring method and acoustic measuring method. For the electrical measurement method, it is applicable to the pulse current method recommended by IEC60270 (that is, to detect the impedance for partial discharge signal detection), and the high-frequency current transformer (HFCT) to collect the electrical signal obtained during the partial discharge process, while the acoustic measurement method is suitable for Using piezoelectric material as a sensor, the mechanical vibration signal is converted into an electrical signal. The detection impedance measurement circuit refers to the provisions of the IEC60270 standard. The installation position of the high-frequency current transformer is clamped on the grounding wire, and the ultrasonic sensor is closely attached to the cable connector under test (if the cable under test is equipped with accessories such as cable connectors or terminals, it is best to attach on the attachment).
本发明具体检测与评估方法包括以下步骤:The specific detection and evaluation method of the present invention comprises the following steps:
(1)首先电流输出装置穿心变压器关闭即不输出电流情况下,利用直流高压输出装置对被测电缆试样进行加压,升压至约定试验电压,记录温度监测装置显示温度。(1) First, when the feedthrough transformer of the current output device is turned off, that is, no current is output, the DC high-voltage output device is used to pressurize the tested cable sample, boost the voltage to the agreed test voltage, and record the temperature displayed by the temperature monitoring device.
(2)直流局部放电测量装置将局部放电信号进行耦合。对于直流电压下的局部放电,由于重复率较低,测量时间需要达到30-60分钟。(2) The DC partial discharge measuring device couples the partial discharge signal. For partial discharge under DC voltage, due to the low repetition rate, the measurement time needs to reach 30-60 minutes.
(3)为提高测量精度,在传感器后可加入信号处理环节,将传感器耦合到的信号进行必要的放大与过滤。如采用电测法,在环境电磁干扰较强的环境下可将接入滤波器,将传感器耦合到的信号进行滤波,滤波器参数应根据实际噪声环境进行选择。如放电信号较弱则,在滤波过后加入放大器,对信号进行放大,对于现场试验放大器频带可选择相应较窄,推荐频带在1MHz-500MHz,而在实验室使用则使用宽频带放大器。对于采用超声法测量,在传感器后接前置放大器,放大倍数在20dB以上,工作频率推荐在10kHz-2000kHz。(3) In order to improve the measurement accuracy, a signal processing link can be added after the sensor, and the signal coupled to the sensor can be amplified and filtered as necessary. If the electrical measurement method is used, in an environment with strong environmental electromagnetic interference, a filter can be connected to filter the signal coupled to the sensor, and the filter parameters should be selected according to the actual noise environment. If the discharge signal is weak, add an amplifier after filtering to amplify the signal. For the field test amplifier, the frequency band can be selected to be relatively narrow. The recommended frequency band is 1MHz-500MHz, and a broadband amplifier is used in the laboratory. For measurement by ultrasonic method, a preamplifier is connected behind the sensor, the amplification factor is above 20dB, and the recommended working frequency is 10kHz-2000kHz.
(4)对于现场测量,噪声干扰是限制局部放电检测使用的重要因素,去噪处理非常关键,直流局部放电测量当中,施加直流电压为单极性因此局部放电信号也为单极性,对于直流局部放电信号基于其单极性的特征,通过对于脉冲信号进行捕捉,将与施加直流电压极性相反的信号视为噪声信号予以过滤,从而减少噪声的影响。(4) For on-site measurement, noise interference is an important factor limiting the use of partial discharge detection, and denoising processing is very critical. In DC partial discharge measurement, the applied DC voltage is unipolar, so the partial discharge signal is also unipolar. For DC The partial discharge signal is based on its unipolar characteristics. By capturing the pulse signal, the signal with the opposite polarity to the applied DC voltage is regarded as a noise signal and filtered, thereby reducing the influence of noise.
(5)由传感器耦合到的信号,经过信号处理以及去噪处理得到有效放电信号。由于直流局部放电相比交流局部放电缺少相角的概念,因此交流局部放电分析当中与相角的相关分析手段在直流当中均不适用,需要重新建立适用于直流局部放电的分析手段。对于直流局部放电的分析方法,本发明是以在时域下对于局部放电信号中放电幅值Q进行提取,以时间函数t的函数形式展开,形成Q-t图作为主要的分析手段,表现放电幅值随时间的变化规律。实际测量当中应首先设置阈值,将阈值设置在背景噪声水平之上,并同时保证不超过放电幅值的1/2以保证信噪比达到2:1,而超过设置阈值的则判断为有效放电脉冲。另外建立一分钟内的放电重复率N与试验时间t之间关系,形成N-t图,表现放电重复率随时间变化规律。直流局部放电检测当中,平均每分钟放电重复率不低于一次即N≥1,便产生有效局部放电现象,刚好使试样产生N=1时的电压则被视为试样的直流局部放电起始电压。对于Q-t图关系,如在某试验电压下,放电量Q很大并在试验时间内保持稳定或放电重复率N很大并在时间内保持稳定,或随时间增加,Q、N呈明显上升趋势,应当对于被测试样绝缘状况进行关注。(5) The signal coupled to the sensor is subjected to signal processing and denoising processing to obtain an effective discharge signal. Due to the lack of phase angle of DC PD compared to AC PD The concept of the AC partial discharge analysis, so the phase angle The relevant analysis methods are not applicable in DC, and it is necessary to re-establish the analysis methods suitable for DC partial discharge. For the analysis method of DC partial discharge, the present invention extracts the discharge amplitude Q in the partial discharge signal in the time domain, expands it in the form of a time function t, forms a Qt diagram as the main analysis means, and expresses the discharge amplitude Variations over time. In the actual measurement, the threshold should be set first, set the threshold above the background noise level, and at the same time ensure that it does not exceed 1/2 of the discharge amplitude to ensure that the signal-to-noise ratio reaches 2:1, and if it exceeds the set threshold, it is judged as an effective discharge pulse. In addition, the relationship between the discharge repetition rate N within one minute and the test time t is established, and an Nt diagram is formed to show the change rule of the discharge repetition rate with time. In the detection of DC partial discharge, the average discharge repetition rate per minute is not less than once, that is, N≥1, and an effective partial discharge phenomenon occurs. The voltage that just makes the sample generate N=1 is regarded as the DC partial discharge of the sample. starting voltage. For the relationship between Qt graphs, for example, at a certain test voltage, the discharge capacity Q is large and remains stable within the test time, or the discharge repetition rate N is large and remains stable within the time, or increases with time, and Q and N show an obvious upward trend , attention should be paid to the insulation condition of the tested sample.
(6)由于直流电缆系统,可能产生放电的原因很多,如主绝缘划伤、应力锥错位等诸多因素,由于不同放电类型的放电特征有着显著区别,并且其发展趋势也有差别因此相应应对方法应参考不同的缺陷类型。交流局部放电检测当中常用于对于不同放电类型进行模式识别的PRPD谱图由于在直流下缺少相角概念而无法使用。本发明建立适用于直流局部放电分析情况下的三维谱图。以直流局部放电过程中放电脉冲与其前序放电脉冲之间的时间间隔Δt代替相角,建立于不同放电次数占总放电次数的百分比即放电密度H之间关系H(Q,Δt),其中放电幅值Q在步骤(5)Q-t图绘制当中已进行提取,而对于相邻脉冲时间间隔Δt的提取,根据放电阈值Qmin的设置以超过放电阈值的脉冲为有效放电脉冲,记录各放电脉冲在Q-t对应坐标参数(Qi,ti),其中Qi>Qmin,而Δt=ti-ti-1得到Δt。(6) Due to the DC cable system, there may be many reasons for discharge, such as main insulation scratches, stress cone dislocation and many other factors. Since the discharge characteristics of different discharge types are significantly different, and their development trends are also different, the corresponding countermeasures should be Refer to different defect types. The PRPD spectrum commonly used in AC partial discharge detection for pattern recognition of different discharge types due to the lack of phase angle at DC concept and cannot be used. The invention establishes a three-dimensional spectrogram applicable to the analysis of DC partial discharge. The phase angle is replaced by the time interval Δt between the discharge pulse and its preceding discharge pulse in the DC partial discharge process , established on the basis of the percentage of different discharge times in the total discharge times, that is, the relationship H(Q, Δt) between the discharge density H, where the discharge amplitude Q has been extracted in the drawing of the Qt diagram in step (5), and for the adjacent pulse time For the extraction of the interval Δt, according to the setting of the discharge threshold Q min , the pulse exceeding the discharge threshold is regarded as the effective discharge pulse, and the coordinate parameters (Q i , t i ) corresponding to each discharge pulse at Qt are recorded, where Q i >Q min , and Δt= t i -t i-1 yields Δt.
(7)通过对于大量不同缺陷的试品进行直流局部放电,并将得到的不同H(Q,Δt)三维谱图与相应放电类型进行保存,建立指纹库。对于得到的H(Q,Δt)图像,通过与放电图像进行对比从而对于缺陷类型进行判断即模式识别。(7) By performing DC partial discharge on a large number of samples with different defects, and saving the obtained three-dimensional spectra of different H(Q, Δt) and corresponding discharge types, a fingerprint library is established. For the obtained H(Q, Δt) image, by comparing with the discharge image, the defect type can be judged, that is, pattern recognition.
(8)本发明另外采用对于步骤(5)得到的经过信号处理以及去噪的放电信号进行快速傅里叶变化FFT,在频域下分析放电信号在不同频段范围内的分布。记录不同类型的放电波形不同频率的波形成分不同,因此可以通过对于波峰频率等的分析对于实际放电或噪声、内部放电或电晕放电以及产生放电的缺陷类型进行判断。(8) In addition, the present invention uses fast Fourier transform FFT for the signal-processed and denoised discharge signal obtained in step (5), and analyzes the distribution of the discharge signal in different frequency ranges in the frequency domain. Record different types of discharge waveforms and have different waveform components at different frequencies, so the actual discharge or noise, internal discharge or corona discharge, and the type of defect that generated the discharge can be judged by analyzing the peak frequency.
(9)调节直流高压输出装置,将电压降低到0kV,开启电流输出装置穿心变压器,调节电流模拟电缆带载状况,观察温度监测装置中电缆及其附件表面温度,使其表面温度升高到70℃或以上以模拟电缆高负荷运行条件下的情况。(9) Adjust the DC high-voltage output device, reduce the voltage to 0kV, turn on the current output device through the core transformer, adjust the current to simulate the load status of the cable, observe the surface temperature of the cable and its accessories in the temperature monitoring device, and make the surface temperature rise to 70°C or above to simulate the conditions of high-load operation of the cable.
(10)待温度达到稳定后,再利用直流高压输出装置对被测电缆试样进行加压,升压至约定试验电压,记录温度监测装置显示温度。后重复一遍步骤(2)-步骤(8)检测分析过程,完成测量,测量完成后关闭电流输出装置与直流高压输出装置,将被测试样静置使温度降低并进行有效放电24小时。(10) After the temperature has stabilized, use the DC high-voltage output device to pressurize the tested cable sample, boost the voltage to the agreed test voltage, and record the temperature displayed by the temperature monitoring device. Finally, repeat the detection and analysis process of steps (2)-step (8) to complete the measurement. After the measurement is completed, the current output device and the DC high-voltage output device are turned off, and the test sample is left to cool down and effectively discharged for 24 hours.
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical ideas of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solutions according to the technical ideas proposed in the present invention shall fall within the scope of the claims of the present invention. within the scope of protection.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510053432.3A CN104714155B (en) | 2015-02-02 | 2015-02-02 | A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510053432.3A CN104714155B (en) | 2015-02-02 | 2015-02-02 | A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104714155A CN104714155A (en) | 2015-06-17 |
CN104714155B true CN104714155B (en) | 2017-12-15 |
Family
ID=53413648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510053432.3A Active CN104714155B (en) | 2015-02-02 | 2015-02-02 | A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104714155B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105203936A (en) * | 2015-10-26 | 2015-12-30 | 云南电网有限责任公司电力科学研究院 | Method for determining power cable partial discharge defect type based on spectral analysis |
CN105548849A (en) * | 2016-02-19 | 2016-05-04 | 西安交通大学 | Local discharge testing circuit and method for high-voltage direct current cable |
CN105717428B (en) * | 2016-02-19 | 2018-09-04 | 西安交通大学 | A kind of cable partial discharge live correction method based on HFCT |
GB2550368A (en) * | 2016-05-17 | 2017-11-22 | General Electric Technology Gmbh | Control of high-voltage, direct current systems |
CN105911443A (en) * | 2016-07-06 | 2016-08-31 | 三峡大学 | Online measurement system for partial discharge of cable middle joint based on clamp-shaped coaxial capacitor |
CN106066452A (en) * | 2016-08-03 | 2016-11-02 | 国网浙江省电力公司电力科学研究院 | Quantity of state detecting system under a kind of high tension cable typical defect |
CN106353657A (en) * | 2016-11-28 | 2017-01-25 | 国网福建省电力有限公司 | High-voltage direct current cable partial discharge intelligent monitoring device and monitoring method |
CN106405357B (en) * | 2016-12-15 | 2019-06-25 | 中国南方电网有限责任公司超高压输电公司贵阳局 | A kind of extra-high voltage electric transmission and transformation equipment DC partial discharge test macro and test method |
CN107064763B (en) * | 2017-05-29 | 2018-11-30 | 西南交通大学 | Extreme delta is got off download cable terminal part discharge test System and method for |
CN107907805B (en) * | 2017-12-11 | 2019-09-06 | 西南交通大学 | Method for estimating the initial phase of low-temperature partial discharge in vehicle-mounted cables with negative half cycle of power frequency voltage |
CN108254659A (en) * | 2017-12-25 | 2018-07-06 | 国网电力科学研究院武汉南瑞有限责任公司 | The shelf depreciation of cable and the combined detection system of leakage current and method under high direct voltage |
CN108254662A (en) * | 2018-03-15 | 2018-07-06 | 广东电网有限责任公司东莞供电局 | Partial discharge simulation device |
CN108614196A (en) * | 2018-03-29 | 2018-10-02 | 浙江工业大学之江学院 | A kind of high-voltage cable that can detect electric discharge automatically |
CN108983050A (en) * | 2018-07-05 | 2018-12-11 | 国网浙江省电力有限公司舟山供电公司 | A method of load measuring direct current cables shelf depreciation is superimposed using DC voltage |
CN109164358B (en) * | 2018-08-22 | 2019-10-25 | 云南电网有限责任公司电力科学研究院 | A method for simulating and testing cable overall insulation damp faults |
CN109212392B (en) * | 2018-09-25 | 2021-01-08 | 上海交通大学 | Method and system for identifying partial discharge defect fault of direct current cable and Caffe convolutional neural network |
CN109298267A (en) * | 2018-11-01 | 2019-02-01 | 国网浙江省电力有限公司舟山供电公司 | Reliability test system of XLPE AC cable for flexible DC transmission |
CN109490730A (en) * | 2018-12-19 | 2019-03-19 | 国网北京市电力公司 | Cable discharge detection method, device, storage medium and processor |
CN110196382B (en) * | 2019-07-05 | 2023-12-22 | 杭州西湖电子研究所 | No detection blind area oscillatory wave partial discharge detection device |
CN110988612B (en) * | 2019-11-08 | 2021-07-20 | 广东电网有限责任公司 | Cable head insulation performance online monitoring system and method |
CN111025093B (en) * | 2019-11-19 | 2022-02-01 | 云南电网有限责任公司临沧供电局 | XLPE cable insulation life estimation method based on double-end balance factor |
CN111579951B (en) * | 2020-05-29 | 2022-10-14 | 全球能源互联网欧洲研究院 | A kind of DC cable discharge detection device and detection method |
CN113253064B (en) * | 2021-04-12 | 2023-05-30 | 广东电网有限责任公司广州供电局 | Cable partial discharge detection method and device |
CN113311291A (en) * | 2021-05-28 | 2021-08-27 | 国网江苏省电力有限公司无锡供电分公司 | Partial discharge detection sensitivity testing device and method for long-section high-voltage cable |
CN113884837B (en) * | 2021-11-03 | 2023-07-28 | 国网河南省电力公司驻马店供电公司 | Cable partial discharge online monitoring and analyzing system and analyzing method |
CN114019329A (en) * | 2021-11-08 | 2022-02-08 | 国网山东省电力公司莱芜供电公司 | XLPE cable insulation early deterioration multidimensional evaluation system and method based on machine learning |
CN114779027B (en) * | 2022-05-18 | 2023-05-12 | 四川大学 | A PDIV test device and method capable of realizing intelligent temperature rise |
CN118091407B (en) * | 2024-04-23 | 2024-07-05 | 荣成市泰锞机械有限公司 | Method and device for testing insulation performance of engine stator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4445596A1 (en) * | 1994-12-20 | 1996-06-27 | Hagenuk Telecom Gmbh | Partial discharge measurement method for e.g. high voltage cable |
CN102735977A (en) * | 2012-07-12 | 2012-10-17 | 四川大学 | Electrical-thermal aging device of cable accessories under high voltage and high current and test method thereof |
CN203365619U (en) * | 2013-08-19 | 2013-12-25 | 广东弘光电力工程有限公司 | System for detecting and positioning partial discharge of cable oscillation waves |
CN203405538U (en) * | 2013-08-07 | 2014-01-22 | 广东电网公司东莞供电局 | Partial discharge test system for cable |
CN103954890A (en) * | 2014-04-10 | 2014-07-30 | 国家电网公司 | DC partial discharge detection device and method for converter transformer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100693634B1 (en) * | 2005-03-17 | 2007-03-14 | 엘에스전선 주식회사 | Junction box integrated sensing device for detecting partial discharge of power cable and manufacturing method thereof |
-
2015
- 2015-02-02 CN CN201510053432.3A patent/CN104714155B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4445596A1 (en) * | 1994-12-20 | 1996-06-27 | Hagenuk Telecom Gmbh | Partial discharge measurement method for e.g. high voltage cable |
CN102735977A (en) * | 2012-07-12 | 2012-10-17 | 四川大学 | Electrical-thermal aging device of cable accessories under high voltage and high current and test method thereof |
CN203405538U (en) * | 2013-08-07 | 2014-01-22 | 广东电网公司东莞供电局 | Partial discharge test system for cable |
CN203365619U (en) * | 2013-08-19 | 2013-12-25 | 广东弘光电力工程有限公司 | System for detecting and positioning partial discharge of cable oscillation waves |
CN103954890A (en) * | 2014-04-10 | 2014-07-30 | 国家电网公司 | DC partial discharge detection device and method for converter transformer |
Non-Patent Citations (1)
Title |
---|
便携式电缆局部放电检测仪器——高压谐振电源装置的设计;刘亚赤;《电器工业》;20041231(第06期);正文第36页左栏第二节第1段,图2-1 * |
Also Published As
Publication number | Publication date |
---|---|
CN104714155A (en) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104714155B (en) | A kind of detection to direct current XLPE cable shelf depreciation and apparatus for evaluating and method | |
CN103257306B (en) | Method for diagnosing direct current partial discharging insulation state of converter transformer and measurement system | |
CN105277857B (en) | A kind of bushing shell for transformer of monitoring on-line makes moist the method for defect | |
Yao et al. | Transformer winding deformation diagnostic system using online high frequency signal injection by capacitive coupling | |
CN105021957B (en) | A kind of electric cable fitting fault recognition method and system | |
CN103913681A (en) | System and method for detecting partial discharge under high-frequency voltage | |
CN102944777A (en) | Method for detecting service life of cable | |
CN104061850A (en) | Device for detecting deformation of transformer winding based on pulse on-line injection | |
CN105223483B (en) | A kind of DC transmission engineering insulator chain defect online detection method and device | |
CN104614648A (en) | Electroacoustic combined DC local discharging detecting device | |
Moula et al. | Characterization of discharges on non-uniformly polluted glass surfaces using a wavelet transform approach | |
CN104459486A (en) | Method for evaluating insulation of crosslinked polyethylene medium-voltage cable through polarization current | |
CN109633385B (en) | Method for distinguishing noise from discharge in HFCT cable on-line monitoring | |
CN106526406A (en) | Inter-tern short-circuit detection device, analysis method and device for voltage transformer | |
CN203191508U (en) | A GIS partial discharge detection test platform based on transient ground waves | |
CN104849635A (en) | Partial discharge positioning system based on ultrasonic sensor array | |
Ji et al. | Research on characteristics of acoustic signal of typical partial discharge models | |
CN201628754U (en) | Broadband partial discharge detection device for power equipment | |
CN104459492B (en) | Power cable pressure test local discharge detection device and detection method | |
CN203164363U (en) | High-voltage power cable non-destructive testing device | |
CN105093084A (en) | Partial discharge automatic testing device | |
CN111562475A (en) | Circuit for detecting partial discharge amount of variable frequency power supply for high-voltage test and evaluation method | |
CN207232366U (en) | A kind of transformer high-frequency test instrument sensitivity and the inspection circuit of the linearity | |
CN115718267A (en) | Method for detecting leakage current of alternating current three-core cable in live line and positioning defects | |
Shen et al. | Development of online monitoring system for 1500 V ethylene–propylene–rubber DC feeder cable of Shanghai urban rail transit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
ASS | Succession or assignment of patent right |
Owner name: POWER GRID TECHNIQUE RESEARCH CENTER OF CHINA SOUT Effective date: 20150608 |
|
C41 | Transfer of patent application or patent right or utility model | ||
C53 | Correction of patent of invention or patent application | ||
CB03 | Change of inventor or designer information |
Inventor after: Xu Yang Inventor after: Kang Qiang Inventor after: Chen Hao Inventor after: Fu Mingli Inventor after: Hou Shuai Inventor after: Tian Ye Inventor after: Zhuo Ran Inventor before: Xu Yang Inventor before: Kang Qiang Inventor before: Chen Hao |
|
COR | Change of bibliographic data |
Free format text: CORRECT: INVENTOR; FROM: XU YANG KANG QIANG CHEN HAO TO: XU YANG KANG QIANG CHEN HAO FU MINGLI HOU SHUAI TIAN YE ZHUO RAN |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20150608 Address after: 710049 Xianning West Road, Shaanxi, China, No. 28, No. Applicant after: XI'AN JIAOTONG University Applicant after: POWER GRID TECHNOLOGY RESEARCH CENTER. CHINA SOUTHERN POWER GRID Address before: 710049 Xianning West Road, Shaanxi, China, No. 28, No. Applicant before: Xi'an Jiaotong University |
|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210830 Address after: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee after: XI'AN JIAOTONG University Patentee after: China South Power Grid International Co.,Ltd. Address before: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an Patentee before: XI'AN JIAOTONG University Patentee before: POWER GRID TECHNOLOGY RESEARCH CENTER. CHINA SOUTHERN POWER GRID |