CN104710583A - Preparation method for high-strength hydrogel - Google Patents

Preparation method for high-strength hydrogel Download PDF

Info

Publication number
CN104710583A
CN104710583A CN201510080672.2A CN201510080672A CN104710583A CN 104710583 A CN104710583 A CN 104710583A CN 201510080672 A CN201510080672 A CN 201510080672A CN 104710583 A CN104710583 A CN 104710583A
Authority
CN
China
Prior art keywords
methacrylic acid
preparation
chitosan
high intensity
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510080672.2A
Other languages
Chinese (zh)
Other versions
CN104710583B (en
Inventor
马晓梅
纪全
夏延致
张振江
陈同旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201510080672.2A priority Critical patent/CN104710583B/en
Publication of CN104710583A publication Critical patent/CN104710583A/en
Application granted granted Critical
Publication of CN104710583B publication Critical patent/CN104710583B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

The invention discloses a preparation method for high-strength hydrogel. The method comprises the following steps: uniformly mixing chitosan, methacrylic acid, water and the like, adding montmorillonite dispersion liquid into the mixture, performing uniform stirring to form a mixed solution, removing oxygen from the mixed solution, adding an initiator into the mixed solution, and reacting at constant temperature for a certain period of time to obtain the high-strength hydrogel. According to the method, the high-strength hydrogel is polymerized and prepared by a one-step method, a micromolecular organic chemical cross-linking agent is not used in a preparation process, and the prepared hydrogel has super-high tensile property, breaking elongation capable of reaching over 3,000 percent or above and high biocompatibility, and has wide application prospects on the aspects of biosensors, artificial organs, tissue repair materials, medicine controlled release and the like in the field of biomedicine.

Description

A kind of preparation method of high intensity hydrogel
Technical field
The invention belongs to hydrogel preparation field, be specifically related to a kind of preparation method of high intensity hydrogel.
Background technology
Macromolecule hydrogel is the three-dimensional space network structure formed after swelling in water by cross-linked polymer, and the water of 50 ~ 90% is filled in usual reticulated structure inside.As a kind of wet soft material, hydrogel is quite similar with some Organ and tissues of human body in many aspects, therefore demonstrates good application prospect at bio-medical field (in tissue renovation material, artificial muscle, biosensor and pharmaceutical carrier etc.).But traditional synthetic water gel often presents lower mechanical property, and matter is crisp frangible, hydrogel practical application request in a lot of fields can not be met.In order to improve the physical strength of hydrogel, in recent ten years, gel scholar develops some hydrogels having new network structure and improve mechanical property, relatively more typical hydrogel, organic-inorganic hybrid nanocomposite hydrogel, double-network hydrogel, four arm gels and the organic macromolecule microballoon plural gel etc. represented as having topological framework (or slip ring).
But often there is many deficiencies in the high intensity hydrogel reported, preparation as the hydrogel and four arm hydrogels with topological framework (or slip ring) needs to use the gel precursor with special construction, narrow application range high to the requirement of gel precursor.Organic-inorganic hybrid nanocomposite hydrogel, due to mainly by the network structure that physical crosslinking is formed, causes hydrogel less stable.Although the preparation of organic macromolecule microballoon composite aquogel does not need separately to add organic crosslinking agent, but need first to prepare the polymer microballoon of surface containing a large amount of free radical (or decomposable asymmetric choice net forms the group of free radical) and carry out trigger monomer polymerization as initiator and large linking agent, process is comparatively complicated.Although the double-network hydrogel be made up of the asymmetric two kinds of cross-linked networks of intensity is applicable to various of monomer, linking agent and cross-linking method, but preparation process is complicated, often need the continuous radical polymerization process of multistep, not only consuming time and need to use micromolecular organic chemistry linking agent.Therefore, develop simple high intensity hydrogel preparation method and remain a challenging job, for the practical application promoting hydrogel, there is most important theories and practical significance.
Summary of the invention
The object of the present invention is to provide a kind of preparation method of high intensity hydrogel, it is prepared from by one-step polymerization reaction, and preparation technology is simple to operation, and the hydrogel prepared has superpower tensile property.
Its technical solution comprises:
A preparation method for high intensity hydrogel, comprises the following steps successively:
A, the mixture of chitosan, methacrylic acid or methacrylic acid and comonomer, water to be mixed, abundant stirring obtains homogeneous transparent solution, in described solution, solid content is 15 ~ 30%, wherein, in solid mixture, the massfraction of chitosan is 4 ~ 10%, surplus is the mixture of methacrylic acid or methacrylic acid and comonomer, and the massfraction of methacrylic acid accounts for 3 ~ 100% of methacrylic acid and comonomer total mass;
B, in gained solution, be filled with nitrogen with abundant deoxygenation, in the solution after removing oxygen, add initiator more fully to mix, the add-on of initiator is 0.5 ~ 2.5% of methacrylic acid and comonomer total mass, then be placed in the constant temperature water bath of 25 ± 1 DEG C, isothermal reaction 12-36 hour, obtains high intensity hydrogel.
Utilize methacrylic acid and chitosan reaction generating chitosan methacrylate, make water-fast chitosan originally be dissolved in water and form homogeneous solution, chitosan methacrylate salt is as the multifunctional macromolecules cross-linking agent preparing hydrogel simultaneously.
As a preferred version of the present invention, in above-mentioned steps a, in step a, after the mixture of chitosan, methacrylic acid or methacrylic acid and comonomer, water fully mix, add wherein massfraction be 0.5% montmorillonite dispersions mix, wherein, the massfraction sum of polynite and chitosan accounts for 4 ~ 10% of methacrylic acid and comonomer total mass, and the mass ratio of chitosan and polynite is 7 ~ 25:1.
Add polynite as physical crosslinking agent, prepare hydrogel with chitosan methacrylate salt composite crosslinking, be conducive to the mechanical property improving hydrogel.
As another preferred version of the present invention, in step a, above-mentioned comonomer is any one in vinylformic acid, 2-acrylamide-2-methylpro panesulfonic acid, acrylamide, NIPA, N-vinyl caprolactam, N,N-DMAA, Hydroxyethyl acrylate, hydroxyethyl methylacrylate, polyethylene glycol monoacrylate or polyethylene glycol monomethacrylate.
By introducing different structure and character comonomer, a step joint comonomer consumption of going forward side by side, regulates the mechanical property of hydrogel, swelling behavior and stimuli responsive performance, thus obtains multiple difference in functionality hydrogel.
Further, above-mentioned initiator is any one in Potassium Persulphate, ammonium persulphate or Sodium Persulfate.
The preparation method of above-mentioned montmorillonite dispersions is: polynite be added to the water, mechanical stirring 30 minutes, and ultrasonic disperse obtains for 2 hours.
The solid content of above-mentioned solution is 18 ~ 25%.
The add-on of above-mentioned initiator is 0.8 ~ 1.5% of methacrylic acid and comonomer total mass.
The Advantageous Effects that the present invention brings:
The present invention proposes a kind of preparation method of high intensity hydrogel, first the mixture of chitosan, methacrylic acid or methacrylic acid and comonomer, water mix by it, form mixing solutions, then add initiator by after this mixing solutions deoxygenation, isothermal reaction prepares high intensity hydrogel after for some time; As of the present invention one preferably, it adds montmorillonite dispersions in the mixed solution of chitosan, methacrylic acid or methacrylic acid and comonomer, water; It is in the selection of raw material, by adding montmorillonite dispersions, as physical crosslinking agent, being conducive to gel mechanical property and improving;
The present invention is reacted by one-step polymerization and prepares high intensity hydrogel, does not use micromolecular organic chemistry linking agent in preparation process; Obtained hydrogel has superpower tensile property (elongation at break is up to more than 3000%), good biocompatibility and pH-, temperature response (part has) performance, and in bio-medical field, (in the controlled release etc. of biosensor, artificial organ, tissue renovation material, medicine) has wide practical use.
Prepared by the present invention is single network aqueous gel, small molecules organic crosslinking agent is not used in its preparation, relative to the preparation method of prior art hydrogel disclosed in CN103739861A, what it was prepared is double-network hydrogel, agar used, gelatin etc. form the first heavy network wherein, and the monomers such as acrylamide form the second heavy network; Often heavy network all needs cross-linking agents, as the linking agent of the polyvalent metal ion that wherein adds mainly the first heavy network; The linking agent of the second heavy network is N, N ' the dual functional organic molecule linking agent such as-methylene-bisacrylamide; Preparation technology of the present invention is simple, and its tensile strength of the hydrogel prepared is 2.0MPa ~ 3.7MPa, tensile modulus is 180KPa ~ 370KPa, tension fracture elongation rate is 1500% ~ 3800%, and modulus of compression is 95KPa ~ 305KPa, and compressive strain is all greater than 98%.
Embodiment
The present invention proposes a kind of preparation method of high intensity hydrogel, in order to make advantage of the present invention, technical scheme clearly, clearly, below in conjunction with specific embodiment, explanation clear, complete further being done to the present invention.
The invention provides a kind of preparation method of high intensity hydrogel, it is in the selection of raw material, that selects has polynite, chitosan, methacrylic acid, comonomer (vinylformic acid, 2-acrylamide-2-methylpro panesulfonic acid, acrylamide, NIPA, N-vinyl caprolactam, N, N-DMAA, Hydroxyethyl acrylate, hydroxyethyl methylacrylate, polyethylene glycol monoacrylate or polyethylene glycol monomethacrylate), initiator (Potassium Persulphate, ammonium persulphate or Sodium Persulfate), above-mentioned raw materials is all bought by commercial channel and is obtained.
A preparation method for high intensity hydrogel, it specifically comprises the following steps:
Step 1, chitosan, methacrylic acid to be mixed with water three, or the mixture of chitosan, methacrylic acid and comonomer and water are mixed, fully stir and obtain homogeneous transparent solution; In this solution, solid content is 15 ~ 30%, wherein, in solid mixture, the massfraction of chitosan is 4 ~ 10%, and surplus is the mixture of methacrylic acid or methacrylic acid and comonomer, and the massfraction of methacrylic acid accounts for 3 ~ 100% of methacrylic acid and comonomer total mass;
Step 2, in gained mixing solutions, be filled with nitrogen with abundant deoxygenation, in the mixing solutions after removing oxygen, add initiator more fully to mix, the add-on of initiator is 0.5 ~ 2.5% of methacrylic acid and comonomer total mass, then be placed in the constant temperature water bath of 25 ± 1 DEG C, isothermal reaction 12-36 hour, obtains high intensity hydrogel.
It is following that the present invention will be further described in conjunction with specific embodiments:
Embodiment 1:
Chitosan, methacrylic acid are mixed with water three, fully stirs and obtain mixing solutions; In this mixing solutions, solid content is 15%, and wherein, in solid mixture, the massfraction of chitosan is 10%.
In above-mentioned mixing solutions, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, persulfate aqueous solution is added again in mixing solutions, the add-on of Potassium Persulphate is 1.5% of methacrylic acid total mass, then solution is transferred in reaction mould and react 12 hours under 25 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that the present embodiment prepares, tensile strength is 0.4MPa, tensile modulus is 50KPa, tension fracture elongation rate is 1300%, and modulus of compression is about 25KPa, compressive strain is greater than 98%.
Embodiment 2:
Difference from Example 1 is: in mixing solutions, solid content is 30%, and wherein in solid mixture, the massfraction of chitosan is 4%.
The hydrogel that the present embodiment prepares, tensile strength is 1.6MPa, tensile modulus is 180KPa, tension fracture elongation rate is 1900%, and modulus of compression is about 110KPa, compressive strain is greater than 98%.
Embodiment 3:
Difference from Example 1 is: in mixing solutions, solid content is 18%, and in solid mixture, the massfraction of chitosan is 5.5%.
The hydrogel that the present embodiment prepares, tensile strength is 1.8MPa, tensile modulus is 195KPa, tension fracture elongation rate is 3000%, and modulus of compression is about 95KPa, compressive strain is greater than 98%.
Embodiment 4:
Difference from Example 1 is: in mixing solutions, solid content is 18%, and in solid mixture, the massfraction of chitosan is 7%.
The hydrogel that the present embodiment prepares, tensile strength is 2.6MPa, tensile modulus is 250KPa, tension fracture elongation rate is 3000%, and modulus of compression is about 195KPa, compressive strain is greater than 98%.
Embodiment 5:
Difference from Example 1 is: in mixing solutions, solid content is 18%, and in solid mixture, the massfraction of chitosan is 10%.
The hydrogel that the present embodiment prepares, tensile strength is 2.2MPa, tensile modulus is 235KPa, tension fracture elongation rate is 3200%, and modulus of compression is about 215KPa, compressive strain is greater than 98%.
Embodiment 6:
Chitosan, methacrylic acid, acrylamide are mixed with water, fully stirs and obtain mixing solutions; In this mixing solutions, solid content is 18%, and wherein, in solid mixture, the massfraction of chitosan is 7%, and the massfraction of methacrylic acid accounts for 50% of methacrylic acid and acrylamide total mass;
In above-mentioned mixing solutions, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, persulfate aqueous solution is added again in mixing solutions, the add-on of Potassium Persulphate be methacrylic acid and acrylamide quality and 1.5%, then solution is transferred in reaction mould and react 12 hours under 25 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that the present embodiment prepares, tensile strength is 2.0MPa, tensile modulus is 220KPa, tension fracture elongation rate is 3400%, and modulus of compression is about 300KPa, compressive strain is greater than 98%.
Embodiment 7:
Chitosan, methacrylic acid, vinylformic acid are mixed with water, fully stirs and obtain mixing solutions; In this mixing solutions, solid content is 18%, and wherein, in solid mixture, the massfraction of chitosan is 7%, and the massfraction of methacrylic acid accounts for 50% of methacrylic acid and vinylformic acid total mass
In above-mentioned mixing solutions, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, persulfate aqueous solution is added again in mixing solutions, the add-on of Potassium Persulphate be methacrylic acid and vinylformic acid quality and 1.5%, then solution is transferred in reaction mould and react 12 hours under 25 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that the present embodiment prepares, tensile strength is 1.5MPa, tensile modulus is 180KPa, tension fracture elongation rate is 2100%, and modulus of compression is about 205KPa, compressive strain is greater than 98%.
Embodiment 8:
A certain amount of polynite is added to the water abundant stirring 30 minutes, ultrasonic disperse after 2 hours, obtained polynite massfraction is the montmorillonite dispersions of 0.5%;
Chitosan, methacrylic acid are mixed with water three, fully stirs and obtain mixing solutions, add montmorillonite dispersions wherein; In this mixing solutions, solid content is 18%, and wherein, the massfraction of chitosan and polynite in solid mixture is 5%, and the mass ratio of chitosan and polynite is 15.
In above-mentioned mixing solutions, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, persulfate aqueous solution is added again in mixing solutions, the add-on of Potassium Persulphate is 1.5% of methacrylic acid total mass, then solution is transferred in reaction mould and react 12 hours under 25 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that the present embodiment prepares, tensile strength is 2.7MPa, tensile modulus is 300KPa, tension fracture elongation rate is 3600%, and modulus of compression is about 260KPa, compressive strain is greater than 98%.
Embodiment 9:
A certain amount of polynite is added to the water abundant stirring 30 minutes, ultrasonic disperse after 2 hours, obtained polynite massfraction is the montmorillonite dispersions of 0.5%;
Chitosan, methacrylic acid are mixed with water three, fully stirs and obtain mixing solutions, add montmorillonite dispersions wherein; In this mixing solutions, solid content is 18%, and wherein, the massfraction of chitosan and polynite in solid mixture is 8%, and the mass ratio of chitosan and polynite is 15.
In above-mentioned mixing solutions, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, persulfate aqueous solution is added again in mixing solutions, the add-on of Potassium Persulphate is 1.5% of methacrylic acid total mass, then solution is transferred in reaction mould and react 12 hours under 25 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that the present embodiment prepares, tensile strength is 3.7MPa, tensile modulus is 370KPa, tension fracture elongation rate is 3800%, and modulus of compression is about 305KPa, compressive strain is greater than 98%.
Comparative example 1:
By 0.15g N, N '-methylene-bisacrylamide, 2.1g methacrylic acid, 11.75g water add in Erlenmeyer flask respectively, stirring and dissolving, in solution, inflated with nitrogen is to remove oxygen, after abundant deoxygenation, then add persulfate aqueous solution in solution, it is obtained that persulfate aqueous solution is that 0.0338g Potassium Persulphate is dissolved in 1mL water, then solution is transferred in reaction mould and react 24 hours under 25 ± 1 DEG C of constant temperatures, obtain hydrogel.
The hydrogel that this comparative example prepares, tensile strength is 0.07MPa, tensile modulus is 3KPa, tension fracture elongation rate is 25%, compressive strength 65KPa, compressive strain 75%.
All the other comonomers do not exemplified are as the vinyl monomer such as polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, and the combination that those skilled in the art obtain under enlightenment of the present invention, all should within protection scope of the present invention.

Claims (8)

1. a preparation method for high intensity hydrogel, is characterized in that, comprises the following steps:
A, the mixture of chitosan, methacrylic acid or methacrylic acid and comonomer, water to be mixed, abundant stirring obtains homogeneous transparent solution, in described solution, solid content is 15 ~ 30%, wherein, in solid mixture, the massfraction of chitosan is 4 ~ 10%, surplus is the mixture of methacrylic acid or methacrylic acid and comonomer, and the massfraction of methacrylic acid accounts for 3 ~ 100% of methacrylic acid and comonomer total mass;
B, in gained solution, be filled with nitrogen with abundant deoxygenation, in the solution after removing oxygen, add initiator more fully to mix, the add-on of initiator is 0.5 ~ 2.5% of methacrylic acid and comonomer total mass, then be placed in the constant temperature water bath of 25 ± 1 DEG C, isothermal reaction 12-36 hour, obtains high intensity hydrogel.
2. the preparation method of high intensity hydrogel according to claim 1, it is characterized in that: in step a, after the mixture of chitosan, methacrylic acid or methacrylic acid and comonomer, water fully mix, add wherein massfraction be 0.5% montmorillonite dispersions mix, wherein, the massfraction sum of polynite and chitosan accounts for 4 ~ 10% of methacrylic acid and comonomer total mass, and the mass ratio of chitosan and polynite is 7 ~ 25:1.
3. the preparation method of high intensity hydrogel according to claim 1 and 2, it is characterized in that: in step a, described comonomer is any one in vinylformic acid, 2-acrylamide-2-methylpro panesulfonic acid, acrylamide, NIPA, N-vinyl caprolactam, N,N-DMAA, Hydroxyethyl acrylate, hydroxyethyl methylacrylate, polyethylene glycol monoacrylate or polyethylene glycol monomethacrylate.
4. the preparation method of high intensity hydrogel according to claim 3, is characterized in that: in step b, and described initiator is any one in Potassium Persulphate, ammonium persulphate or Sodium Persulfate.
5. the preparation method of high intensity hydrogel according to claim 3, is characterized in that: the preparation method of montmorillonite dispersions is: polynite be added to the water, mechanical stirring 30 minutes, and ultrasonic disperse obtains for 2 hours.
6. the preparation method of high intensity hydrogel according to claim 3, is characterized in that: the solid content of described solution is 18 ~ 25%.
7. the preparation method of high intensity hydrogel according to claim 3, is characterized in that: in step b, and the add-on of initiator is 0.8 ~ 1.5% of methacrylic acid and comonomer total mass.
8. the preparation method of high intensity hydrogel according to claim 2, is characterized in that: the massfraction sum of polynite and chitosan accounts for 6 ~ 8% of methacrylic acid and comonomer total mass, and the mass ratio of chitosan and polynite is 10 ~ 15:1.
CN201510080672.2A 2015-02-15 2015-02-15 A kind of preparation method of high intensity hydrogel Active CN104710583B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510080672.2A CN104710583B (en) 2015-02-15 2015-02-15 A kind of preparation method of high intensity hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510080672.2A CN104710583B (en) 2015-02-15 2015-02-15 A kind of preparation method of high intensity hydrogel

Publications (2)

Publication Number Publication Date
CN104710583A true CN104710583A (en) 2015-06-17
CN104710583B CN104710583B (en) 2017-12-01

Family

ID=53410347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510080672.2A Active CN104710583B (en) 2015-02-15 2015-02-15 A kind of preparation method of high intensity hydrogel

Country Status (1)

Country Link
CN (1) CN104710583B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537446A (en) * 2017-10-10 2018-01-05 长沙爱扬医药科技有限公司 Organic montmorillonite carried titanium dioxide material and preparation method thereof
CN113150320A (en) * 2021-03-31 2021-07-23 中国地质大学(武汉) Preparation method and application of irradiation-initiated chitosan-based double-network high-strength hydrogel
CN113461971A (en) * 2021-06-28 2021-10-01 广州大学 Conductive hydrogel and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709328A (en) * 2013-10-28 2014-04-09 北京林业大学 Preparation method of hemicelluloses-based organic-inorganic compound hydrogel
CN104327821A (en) * 2014-09-15 2015-02-04 西南石油大学 Amphiphilic modified chitosan degradable oil displacement agent and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709328A (en) * 2013-10-28 2014-04-09 北京林业大学 Preparation method of hemicelluloses-based organic-inorganic compound hydrogel
CN104327821A (en) * 2014-09-15 2015-02-04 西南石油大学 Amphiphilic modified chitosan degradable oil displacement agent and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEHRDAD YAZDANI-PEDRAM等: ""Hydrogels based on modified chitosan, Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan"", 《MACROMOL. CHEM. PHYS.》 *
MEHRDAD YAZDANI-PEDRAM等: ""Hydrogels based on modified chitosan, Synthesis and swelling behavior of poly(acrylic acid)"", 《MACROMOL. CHEM. PHYS.》 *
刘延平等: ""温敏性P(NIPAAm- co- Am)/MMT水凝胶复合材料的研究"", 《胶体与聚合物》 *
杨黎明等: ""辐射法制备壳聚糖/聚丙烯酸水凝胶及其溶胀性能研究"", 《辐射研究与辐照工艺学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107537446A (en) * 2017-10-10 2018-01-05 长沙爱扬医药科技有限公司 Organic montmorillonite carried titanium dioxide material and preparation method thereof
CN113150320A (en) * 2021-03-31 2021-07-23 中国地质大学(武汉) Preparation method and application of irradiation-initiated chitosan-based double-network high-strength hydrogel
CN113461971A (en) * 2021-06-28 2021-10-01 广州大学 Conductive hydrogel and preparation method and application thereof
CN113461971B (en) * 2021-06-28 2023-12-26 广州大学 Conductive hydrogel and preparation method and application thereof

Also Published As

Publication number Publication date
CN104710583B (en) 2017-12-01

Similar Documents

Publication Publication Date Title
CN104693360A (en) Method for preparing high-strength hydrogel
CN105175755B (en) High stretching dual network physical cross-linking hydrogel of a kind of high intensity and preparation method thereof
CN106279542B (en) A kind of dual network Nanometer composite hydrogel and its preparation and application based on xylan
CN102229683B (en) Preparation method of graphene based nano composite hydrogel
CN105732999B (en) High intensity cross-linked hydrogel and elastomer and preparation method thereof
CN105199281B (en) It is a kind of to possess superelevation mechanical strength and the hydrogel of chemical stability
CN103435951B (en) A kind of Nanometer composite high-molecular dual-network hydrogel and preparation method thereof
CN104693382A (en) Method for preparing high-strength hydrogel
CN107903406A (en) A kind of preparation method of three network aqueous gel of high intensity selfreparing
CN104311841A (en) Method for preparing high-intensity covalence/ion interpenetrating polymer network easily molded gel
CN103739861A (en) Preparation method of high-strength hydrogel
CN106986967B (en) A kind of method that visible light-initiated one-step method preparation has double cross-linked network structure sodium alginate composite hydrogels
CN101524630B (en) Preparation of nano composite gel with organic/inorganic hybrid microspheres as crosslinking points
CN108276522A (en) Can 3D printing the double cross-linked alginate-polyacrylamide acrylic acid high-performance water gels of iron ion preparation method
CN102675549B (en) Method for preparing high-strength hydrogel with macromolecular microgel composite structure
CN109054052A (en) A kind of preparation method of high tenacity dual network physical crosslinking selfreparing hydrogel
CN104448161A (en) Organic composite hydrogel cross-linked by modified gelatin nano-microsphere and preparation method of organic composite hydrogel
CN109851725A (en) The gelatin-compounded hydrogel of nano-cellulose-polyacrylamide-, preparation method and application
CN104356319A (en) Porous biological material using modified gelatin as crosslinking agent and preparation method of porous biological material
CN104861179A (en) Preparation for feather keratin and sodium alginate composite polymer double-sensitive hydrogel and application therefore as drug carrier
CN104710583A (en) Preparation method for high-strength hydrogel
CN109705373A (en) A kind of high-intensitive three network aqueous gel and preparation method thereof
CN109400818A (en) A kind of preparation method of polyacrylamide hydrogel
CN107973881A (en) A kind of preparation of high stretch hydroxyethyl cellulose/polyacrylamide hydrogel
CN110373136B (en) Preparation method of high-strength double-network bonding gel for seawater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant