CN104708832B - 一种塑料/纳米碳复合材料的制备方法 - Google Patents

一种塑料/纳米碳复合材料的制备方法 Download PDF

Info

Publication number
CN104708832B
CN104708832B CN201510152210.7A CN201510152210A CN104708832B CN 104708832 B CN104708832 B CN 104708832B CN 201510152210 A CN201510152210 A CN 201510152210A CN 104708832 B CN104708832 B CN 104708832B
Authority
CN
China
Prior art keywords
plastics
composite material
nano
carbon composite
nano carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510152210.7A
Other languages
English (en)
Other versions
CN104708832A (zh
Inventor
胡志好
李红
董明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sayfo (Xuzhou) Co., nano science and technology
Original Assignee
Suzhou First Element Nanosolutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou First Element Nanosolutions GmbH filed Critical Suzhou First Element Nanosolutions GmbH
Priority to CN201510152210.7A priority Critical patent/CN104708832B/zh
Publication of CN104708832A publication Critical patent/CN104708832A/zh
Application granted granted Critical
Publication of CN104708832B publication Critical patent/CN104708832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明要求保护一种塑料/纳米碳复合材料的制备方法,该方法包括步骤:将热塑性塑料制成薄膜,再将纳米碳浆料均匀涂覆于塑料薄膜表面并干燥,经三维热压复合,形成可加工成型的复合材料。本发明方法可有效提升纳米碳材料在塑料中的分散效果,从而有效提升塑料复合材料的导电、导热及机械力学性能。

Description

一种塑料/纳米碳复合材料的制备方法
技术领域
本发明涉及材料合成领域,尤其涉及无机非金属复合材料技术领域,特别涉及一种塑料/纳米碳复合材料的制备方法。
背景技术
热塑性塑料是国防、国民经济应用的重要材料。纳米碳材料在导电、导热及机械力学方面的优异性能,使其成为聚合物材料理想的增强体,添加到塑料基体中形成复合材料,可极大提升塑料的导电、导热及机械力学性能。
然而,纳米碳材料的表面能较高,如碳纳米管特别容易发生团聚,在聚合物基体中难以实现均匀分散。目前采用化学处理方法会对纳米碳材料的结构造成破坏,从而降低了纳米碳材料的优异性能;而采用液相共混、熔融共混等方法过程复杂、成本高,且应用领域有限。
为了解决现有技术存在的上述技术问题,本发明由此而来。
发明内容
本发明目的在于解决现有技术中塑料/纳米碳复合材料制备过程中存在的分散性不好、结合性差等问题,提供一种塑料/纳米碳复合材料。该方法可以将碳纳米管有效地分散在塑料基体中,从而起到提高塑料及导电性、耐老化、导热性等性能。
为解决上述问题,本发明提供的技术方案为:本发明的塑料/纳米碳复合材料的制备方法,包括以下步骤:
(1)将热塑性塑料制备成塑料薄膜;
(2)将纳米碳制备成浆料,将浆料涂覆于塑料薄膜表面并干燥;
(3)利用叠片机或卷绕机将前述涂覆纳米碳的塑料薄膜进行叠加或卷绕;
(4)在一定温度下对步骤(3)得到的叠片或卷绕卷进行三维热压复合,即成塑料/纳米碳复合材料。
优选的,所述步骤(1)中的塑料薄膜厚度为0.1-1000μm。
优选的,所述步骤(2)中涂覆用纳米碳浆料为水性浆料,纳米碳涂层厚度为0.01-5μm。
优选的,所述纳米碳涂覆方法为喷涂、刷涂、辊涂或浸胶中的一种。
优选的,添加的纳米碳材料占塑料/纳米碳复合材料总质量的0.01wt%-20wt%。
优选的,所述步骤(4)中的三维压制的具体步骤为:将叠片或卷绕卷于一个方向上进行第一次热压,重新叠片或收卷;在与第一次压制或轧制垂直的方向上进行第二次热压,再重新叠片或收卷;最后进行第三次热压,方向垂直于前两次热压方向形成的面。
优选的,所述步骤(4)中的热压温度为100-400℃。
优选的,所述热塑性塑料选自聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚酰胺、聚碳酸酯、聚甲基丙烯酸甲酯、聚醚醚酮、热塑性酚醛树脂等热塑性聚合物材料中的一种或两种以上的组合。
优选的,所述纳米碳材料选自碳纳米管、石墨烯、氧化石墨烯中的一种或几种。
本发明的另一方面在于提供一种前述方法制备得到的塑料/纳米碳复合材料。
本发明的一优选技术方案中,塑料/纳米碳复合材料中的纳米碳含量为0.01%-20wt%。
本发明的一优选技术方案中,塑料/纳米碳复合材料中的纳米碳选自碳纳米管、富勒烯、石墨烯、氧化石墨烯中的一种或两种以上的组合。
本发明中,将纳米碳在水中或含水的溶液中均匀分散液得到水性浆料。所述的水性浆料中可以加入分散剂、稳定剂以增强浆料中纳米碳的分散性及稳定性。
本发明提出的一种热塑性塑料和纳米碳材料复合材料的制备方法,该方法将热塑性塑料制备成微米级厚度的薄膜,使用纳米碳材料浆料涂覆于薄膜表面,经干燥、叠加/卷绕,再经三维方向热压复合制得可加工成型的复合材料。该方法不会对纳米碳材料的结构造成破坏,保持其原有的优异性能。同时,该方法的纳米碳材料存在于塑料薄膜的层间,经热压后很好地嵌入塑料基体中,而在三维方向的反复热压使得纳米碳材料在塑料基体中的各个方向均能很好的分散,实现纳米尺寸的均匀分散,结合力强,可有效提升塑料的导电、导热、耐老化、机械强度和韧性等性能。且本发明方法制备工艺简单、成本低、可控性好,易于实现工业化生产。
附图说明
图1为本发明制备方法的一实施例塑料/纳米碳复合材料的制备方法的薄膜涂覆浆料的工艺流程图;
图2为本发明制备方法的一实施例塑料/纳米碳复合材料的三维热压复合工艺流程图;
图3为本发明实施例制备得到的聚丙烯/碳纳米管复合材料的扫描电子显微镜SEM照片。
图4显示了不同碳纳米管添加量对聚丙烯材料导电性能的影响。
具体实施方式
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做进一步调整,未注明的实施条件通常为常规实验中的条件。
实施例1
将聚丙烯材料采用吹膜方法制备成厚度为15μm的薄膜;向碳纳米管中加入分散剂、水,经搅拌、砂磨制得含量碳纳米管含量为5wt%的浆料;将碳纳米管浆料喷涂至聚丙烯薄膜上,105℃进行干燥处理;通过卷绕机,将覆有碳纳米管的薄膜进行卷绕收卷;将收卷得到的聚丙烯薄膜在160-180℃下进行三维热压复合,制得可加工成型的聚丙烯/碳纳米管复合材料。图3所示扫描电镜照片显示碳纳米管在聚丙烯基体中实现均匀分散,与聚丙烯基体均匀复合,起到很好的界面连接作用。
实施例2
将低密度聚乙烯材料采用吹膜方法制备成厚度为15μm的薄膜;向碳纳米管中加入分散剂、水,经搅拌、砂磨制得含量碳纳米管含量为5wt%的浆料;将碳纳米管浆料喷涂至聚乙烯薄膜上,75℃进行干燥处理;通过卷绕机,将覆有碳纳米管的薄膜进行卷绕收卷;将收卷得到的聚乙烯薄膜在100-120℃下进行三维热压复合,制得可加工成型的聚乙烯/碳纳米管复合材料。
上述实例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种塑料/纳米碳复合材料的制备方法,包括以下步骤:
(1)将热塑性塑料制备成塑料薄膜;
(2)将纳米碳制备成浆料,将浆料涂覆于塑料薄膜表面并干燥;
(3)利用叠片机或卷绕机将前述涂覆纳米碳的塑料薄膜进行叠加或卷绕;
(4)在一定温度下对步骤(3)得到的叠片或卷绕卷进行三维方向热压复合,即成塑料/纳米碳复合材料;
所述步骤(4)中的三维压制的具体步骤为:将叠片或卷绕卷于一个方向上进行第一次热压,重新叠片或收卷;在与第一次压制或轧制垂直的方向上进行第二次热压,再重新叠片或收卷;最后进行第三次热压,方向垂直于前两次热压方向形成的面。
2.根据权利要求1所述的塑料/纳米碳复合材料的制备方法,其特征在于,所述步骤(1)中的塑料薄膜厚度为0.1-1000μm。
3.根据权利要求1所述的塑料/纳米碳复合材料的制备方法,其特征在于,所述步骤(2)中涂覆用纳米碳浆料为水性浆料,纳米碳涂层厚度为0.01-5μm。
4.根据权利要求1所述的塑料/纳米碳复合材料的制备方法,其特征在于,所述纳米碳涂覆方法为喷涂、刷涂、辊涂或浸胶中的一种。
5.根据权利要求1所述的塑料/纳米碳复合材料的制备方法,其特征在于,添加的纳米碳材料占塑料/纳米碳复合材料总质量的0.01wt%-20wt%。
6.根据权利要求1所述的塑料/纳米碳复合材料的制备方法,其特征在于,所述步骤(4)中的热压温度为100-400℃。
7.一种如权利要求1-6任一项所述的方法制备得到的塑料/纳米碳复合材料。
8.根据权利要求7所述的塑料/纳米碳复合材料,其特征在于,塑料/纳米碳复合材料中的纳米碳含量为0.01%-20wt%。
9.根据权利要求7所述的塑料/纳米碳复合材料,其特征在于,塑料/纳米碳复合材料中的纳米碳选自碳纳米管、富勒烯、石墨烯、氧化石墨烯中的一种或两种以上的组合。
CN201510152210.7A 2015-04-01 2015-04-01 一种塑料/纳米碳复合材料的制备方法 Active CN104708832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510152210.7A CN104708832B (zh) 2015-04-01 2015-04-01 一种塑料/纳米碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510152210.7A CN104708832B (zh) 2015-04-01 2015-04-01 一种塑料/纳米碳复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN104708832A CN104708832A (zh) 2015-06-17
CN104708832B true CN104708832B (zh) 2017-07-11

Family

ID=53408793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510152210.7A Active CN104708832B (zh) 2015-04-01 2015-04-01 一种塑料/纳米碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN104708832B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109094051B (zh) * 2018-08-20 2020-05-08 吉林省贞靓科技有限公司 一种具有多频谱电磁波防护性能的超轻、超薄、柔性、透气的超细纤维复合膜及其制备方法
CN113004564A (zh) * 2020-06-30 2021-06-22 士彩材料科技(苏州)有限公司 一种复合导电层的膨体聚四氟乙烯膜及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962130B2 (en) * 2006-03-10 2015-02-24 Rohr, Inc. Low density lightning strike protection for use in airplanes
EP2070978B1 (en) * 2007-12-14 2012-07-25 Tsing Hua University Carbon nanotube-based composite material and method for fabricating same
CN103985433A (zh) * 2014-05-06 2014-08-13 东莞市纳利光学材料有限公司 碳纳米管导电薄膜及其制备方法
CN104371129A (zh) * 2014-10-30 2015-02-25 苏州莱特复合材料有限公司 一种碳纳米管复合材料及其制备方法

Also Published As

Publication number Publication date
CN104708832A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
Wang et al. Ink-based 3D printing technologies for graphene-based materials: a review
Wang et al. 3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties
Wang et al. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation
Lan et al. Axial alignment of carbon nanotubes on fibers to enable highly conductive fabrics for electromagnetic interference shielding
Idowu et al. 3D graphene foam-reinforced polymer composites–A review
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
Byrne et al. Recent advances in research on carbon nanotube–polymer composites
CN106189088B (zh) 一种碳纳米管-氧化石墨烯混杂增强复合材料的制备方法
Ahmadi-Moghadam et al. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites
Gao et al. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper
JP2019527641A (ja) カーボンナノチューブフィルム構造体およびその製造方法
Bi et al. Near infrared-induced shape memory polymer composites with dopamine-modified multiwall carbon nanotubes via 3D-printing
CN104627977B (zh) 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
Liu et al. Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites
CN102912626B (zh) 基于碳纳米管/氧化石墨烯/poss单体的纤维表面上浆剂的制备方法
Liu et al. Differently-charged graphene-based multilayer films by a layer-by-layer approach for oxygen gas barrier application
KR20190137376A (ko) A.소수성·기능성 나노시트(나노튜브) 나노 셀룰로오스 에어로겔. 외
CN107325421A (zh) 一种聚合物/石墨烯/碳纳米管复合材料的制备方法
CN106660068A (zh) 用于多孔介质中的纳米纤维的定向对齐的装置和方法
Wang et al. Fiber-welded ciliated-like nonwoven fabric nano-composite multiscale architectures for superior mechanical and electromagnetic shielding behaviors
TWI650287B (zh) 散熱漿料及散熱結構的製造方法
Guo et al. State of the art recent advances and perspectives in 2D MXene-based microwave absorbing materials: a review
CN104708832B (zh) 一种塑料/纳米碳复合材料的制备方法
Song et al. Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites
Zhang et al. Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20171030

Address after: 221600 Jiangsu city of Xuzhou province Peixian Yangtun Industrial Park No. 4 on the south side of the road

Patentee after: Sayfo (Xuzhou) Co., nano science and technology

Address before: 215123 Jiangsu Province, Suzhou City Industrial Park Jinji Lake Road No. 99 nano city northwest of the 1 building 207 room

Patentee before: Suzhou the first element Nanosolutions GmbH